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The Maxwell fish-eye is an exceptional optical system that shares with the Kepler problem and 
the point rotor (mass point on a sphere) a hidden, higher rotation symmetry. The Hamiltonian 
is proportional to the Casimir invariant. The well-known stereographic map is extended to 
canonical transformations between of the phase spaces of the constrained rotor and the fish
eye. Their dynamical group is a pseudoorthogonal one that permits a succint "41T" wavization 
of the constrained system. The fish-eye exhibits, unavoidably, chromatic dispersion. Further, a 
larger conformal dynamical group contains the potential group, that relates the closed, 
inhomogeneous fish-eye system to similar, scaled ones. Asymptotically, it is related to free 
propagation in homogenous media. 

I. INTRODUCTION 

The Maxwell fish-eye is an optical medium, in principle, 
in any number of dimensions, whose refractive index n (q) is 
afunction - (I + q2) - I ofthedistanceqto the center. It isa 
spherically symmetric inhomogeneous system that is a piece 
de resistance in optics textbooks and treatises 1-3 because it is 
very illustrative to test solution methods since the system 
possesses exact, closed solutions. The system was originally 
proposed as a problem by the Irish Academy; it asked for the 
refractive index of a medium that could conceivably form 
images in the least depth (fish eyes are notoriously fiat) and 
Maxwell's solution was published in 1854.4 The medium is 
ideal, of course, because of light injection and attenuation 
problems, and because of size restrictions by the physical 
requirement n> 1. Yet, this system is truly the hydrogen 
atom of optics, as we shall see: it possesses a manifest 
SO(N - I) and hidden SO(N) rotation symmetry groups, 
and SO(N,I), ISO(N), and SO(N,2) dynamical groups. 

The paths oflight rays in a Maxwell fish-eye medium are 
closed: They are circles on planes that contain the origin, and 
whose points form conjugate pairs with respect to the origin. 
(For fixed p and origin, vectors ql and q2 are conjugate 
when they are anti parallel and their magnitudes relate 
through ql q2 = p2.) In the posthumous work of Luneburg, 
Mathematical Theory of Optics, 3 a section titled "The sur
prising properties of an optical medium of refractive in
dex ... " shows that the circles in the Maxwell fish-eye are the 
stereographic projection of great circles on a sphere in one 
higher dimension. Group theory had not yet come into much 
vogue before 1949, when the book manuscript was assem
bled out of lecture notes, and contains no mention of the 
work of Focks and Bargmann6 on the hidden rotation sym
metry of the hydrogen atom. The statement that a higher 
rotation symmetry is at play in the Maxwell fish-eye was 
made in the work by Buchdahl,7 who mapped the constants 

of the fish-eye circles (plane orientation and vector to the 
center) onto the constants of the Kepler orbits (plane orien
tation and Runge-Lenz vector). These are generators of an 
SOC 4) group under the Poisson bracket. 

The Maxwell fish-eye is usually given as an example of a 
geometric-optics perfect imaging instrument because all 
light rays issuing from anyone point in the medium will 
follow circle arcs that intersect at the point conjugate to the 
first, and the optical length of all these circle arcs between 
the two conjugate points is the same.2 (Nevertheless, chro
matic dispersion is not discussed in the standard texts. ) Gen
eralizations of the fish-eye, such as the Luneburg lens used in 
microwave antenna design8 give the fish-eye a nontrivial 
practical interest. 

The fish-eye is a rare instance of a "41T" optical instru
ment; as the hydrogen atom, it is a system worth studying for 
its own, group-theoretical sake. We regard it as a prime ex
ample to calibrate the Lie-Hamilton formulation of geomet
ric and wave optics, previously used only for homogeneous 
optical media;9,10 the description here includes time evolu
tion. Section II reports a succint derivation of the Hamilton 
equations of motion of optics in time from the assumption 
only of the local validity of Snell's law. We find no extra 
effort for working in N - I dimensions. These equations 
lead to the classical phase space formulation of geometrical 
optics, where the momentum vector is constrained to a 
sphere, rather than a plane as in mechanics. II 

Section III studies a system in mechanics that is also 
constrained to a sphere, albeit in configuration space: the 
point rotor. We believe that the rotor system, rather than the 
Kepler problem, is the simplest mechanical SO(N) model 
analog to the fish-eye. We write the rotation generators of 
the symmetry group, the SO(N) Casimir invariant, and the 
Hamiltonian of the system as functions on phase space under 
Lie-Poisson bracketsl2 and constrain them to their projec
tion on the equatorial plane of the sphere. In Sec. IV we 
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introduce an extended canonical stereographic map of the 
phase spaces, the configuration part of which is the familiar 
sphere-on-plane 1: 1 map (excluding the north pole, that 
maps to the point at infinity). This is an optical aberration 
map of the generic form of distortion; 13 concomitant to this, 
the momentum spaces of the two systems map mantaining 
the canonicity of the transformation. The projected rotor 
Hamiltonian becomes the Hamiltonian of the Maxwell fish
eye, the Casimir invariant. 14

•
15 We build the SO(N,I) and 

SO(N,2) dynamical algebra generators in Sec. V, adapting 
previous results for the hydrogen atom. 16 The exponentiated 
SO(N,2) group action is given explicitly in the geometric 
optics representation. This dynamical algebra includes a 
new number generator, square root of the SO(N) Hamilto
nian function. 

In Sec. VI we follow the same program for wave optics 
at a lighter pace, because spherical harmonics are well 
known as solutions to wave motion on a sphere. 17

,18 The 
frequencies are discrete and given by the square roots of the 
Casimir operator eigenvalues. The medium can thus only 
sustain a discrete set of colors; sharp wave fronts will un
dergo chromatic dispersion. Among the concluding remarks 
in Sec. VII, we point out that SO(N,1) is the potential 
group,19.20 that bridges between the fish-eye and the homo
geneous medium. Finally, an SO(N,2) bundle over configu
ration space is suggested to describe a more general class of 
inhomogeneous media. 

II. THE HAMILTONIAN-TIME FORMULATION OF 
OPTICS 

We model geometric optical rays as the paths taken by 
points indicated by q(t)E91D

, at a time parameter t, whose 
velocity vector may have arbitrary direction but must be of 
fixed magnitude at each point of the medium, 

dq 
v(t) =-, 

dt 

c 
Ivl=--· 

n(q) 
(2.1 ) 

Here, c stands for the light velocity in vacuum and n(q) is 
the refractive index of the medium atthe point q(n = 1 char
acterizes vacuum). We assume that this index is a scalar 
function of the space coordinates only, and not oftime, ray 
direction, or any other ray descriptor. The time needed to 
traverse a vanishing distance ds is dt = n/c ds. Physics as
serts that c is a universal constant and that n < 1 is unphysi
cal. 

We shall now build a vector p(t) tangent to the path 
q(t), i.e., parallel to v. Snell's law is particularly transparent 
in suggesting the right length for this tangent vector p. It is 
not v = c/ n, as could wrongly be inferred from (2.1), but 
such that at any surface u possessing a normal vector ~ and 
separating two otherwise homogeneous media nand n' (con
stant), there holds the well-known sine law: 

n sin () = n' sin ()', (2.2) 

with the three vectors p, p', and ~ coplanar, and where as 
usual we denote by () and ()' the angles between ~ and the 
directions p and p' of the ray before and after refraction. 

Equation (2.2) may be seen as a conservation statement 
when we write each member as the magnitude of a cross 
product I~xpi = 1~llplsin () between the (common) sur-
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face normal ~ and the vector p constrained to have length 
Ipi = n, or 

(2.3) 

and similarly for the primed quantities. The requirement of 
coplanarity is the linear dependence of the three vectors: 
p = ap' + {3 ~, for some real a and {3. The magnitude of the 
cross product of p with ~ is consistent with (2.2) only for 
a = 1. A vector statement equivalent to the sine law (2.2) 
plus coplanarity is therefore that 

p-p'={3~. (2.4) 

Here, {3 is a scalar function of the vectors. If we assume 
I~I = 1 and decompose p = Pl + p~~, where p~ = po~ is 
the coordinate ofp along ~, and Pl is the conserved compo
nent of p in the plane tangent to the surface. The picture we 
obtain of the optical medium is that for every point qE91D we 
have an Y D _ I sphere in p space, that will be called the 
Descartes sphere of ray directions, whose radius depends on 
the point. 

Indeed, Snell's law should be called Descartes' if the 
French philosopher, besides finding Eq. (2.2) and the re
quirement of coplanarity, I had only realized that the appro
priate tangent vector p is not the velocity vector of the light 
corpuscule, but 

(2.5) 

so that its magnitude be consistent with (2.1) and (2.3). In 
the denser of two media, the ray approaches the surface nor
mal as a particle falling in a potential step well, but actually 
travels slower. 

We shall now derive from (2.3) and (2.4) the two Ham
ilton equations of motion for the light points of geometrical 
optics moving through inhomogeneous media, and find the 
function F'pt (q,p) that serves as optical Hamiltonian. II In 
fact, we have done so already: Eqs. (2.1) and (2.5) compose 
to the first equality in 

dq c JF'pt where F'pt = c pop + A..(q), dt = n2 p = --ap- , 2n2 'I' 

(2.6) 

where the second equality defines F'pt up to an arbitrary 
additive function ¢1(q). The equality between the first and 
third terms is Hamilton's first equation. This equation, we 
saw, follows from the geometry of tangent vectors and the 
definition of p in (2.5). 

To introduce the optical dynamics contained in Snell's 
law, we must generalize equation (2.4) for refractive indices 
n(q) that possess a gradient field Vn acting as surface nor
mal for infinitesimal refraction p' = p + dp in a time interval 
dt. Equation (2.4) then becomes 

~ = yVn, (2.7a) 
dt 

where we are left to determine the scalar function y(p,n (q». 
This we do differentiating Eq. (2.3) in two different ways: 

dn2 dq c 
- = 2nVno - = 2n - Vnop (2.7b l ) 

dt dt n2 

= 2po ~ = 2ypoVn, (2.7b2 ) 

dt 
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whence, 

r= cln(q). (2.7c) 

From (2.3) and this follows the second Hamilton vector 
equation of motion 

dp c a7f"Opt 
-=-Vn= ----, 
dt n aq 

(2.8) 

where the Hamiltonian function in (2.6) is forced to have 
t,b(q) = const, and thus determined as 

7f"Opt(p,q) = c[p.p/2[n(q) ]2] + const, (2.9) 

is now determined up to an arbitrary additive constant. In 
fact, the Hamiltonian is constant along ray trajectories when 
the momentum vector p is everywhere on its Descartes 
sphere21,22 of radius n(q). Most important, observe that 
geometric optical Hamiltonians are constrained to have the 
form 

Jr'pt _ [momentum] 2 X [scalar function of position] . 
(2.10) 

The Hamilton equations of the motion are usually de
rived in a roundabout way from Fermat's global principle of 
least action, through the variational argument of the Euler
Lagrange equations. Canonical momentum is then defined 
as the velocity gradient of the Lagrangian and shown to par
ticipate in a condensed set of equations that are Hamil
ton's.13 It is surprising that the above short derivation seems 
not to be known. Indeed, these arguments may be repeated 
mutatis mutandis to find the Hamiltonian evolution under 
translations along the optical axis [involving d Idq; (Refs. 
10,21,22)] or along the ray length [involving d Ids (Ref. 
23) ] . Here, we take the time dt as the infinitesimal "measur
ing rod." The form chosen here displays best the group-theo
retical properties of the Maxwell fish-eye. 

III. THE ISOTROPIC POINT ROTOR 

The phase space of a nonrelativistic point mass in N 
dimensions is the ensemble of position coordinates 
g Q = {Q; }f~ I E!Jt N and their conjugate momenta 
P = {Pi }f~ I E!JtN

• This is a 2N-dimensional space where we 
can introduce an antisymmetric form { . , . } between pairs of 
coordinates given by 

{Q;.p) = D;j = - {Pj,QJ, (3.1) 

{Q;,Q) = 0, {p;.p) = O. (3.2) 

This can be extended to all formal power series functionsJ, g, 
h of phase space through asking the form to be linear, to 
satisfy Jacobi's identity,14 and to be a derivation 
({fg,h} = J{g,h} + {J,h}g, {J,const} = 0). These proper
ties are those of a Lie bracket,12,14,15 so the coordinates of 
phase space serve as the basis for a Lie algebra provided we 
recognize the "I" in (3.1) as the central element in that 
algebra, with null brackets {1,QJ = 0 = {1,pJ. This is the 
Heisenberg-Weyl algebra. 24 Classical mechanics (and geo
metric optics) work with the realization provided by the 
Poisson bracket II 

(3.3 ) 
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Under ordinary multiplication these functions of course 
commute:fg = gf. 

The Hamilton equations for geometric optics, (2.6) and 
(2.8), are expressible in Poisson brackets: 

dQ. dP· 
-' = - {K,QJ, -' = - {K,pJ. 

dt dt 
(3.4a) 

We denote {K,'} the Lie operator l2 associated to the ob
servable K. The evolution of any function f( Q;,Pj ) with 
time tis 

df af iQ af iF 
-=---' -+---'-
dt aQ dt ap dt 

-}f,. . ~ +}f,. . !!.!!- = - {K f}. 
aQ aQ ap dP , 

(3.4b) 

This is the Hamiltonian flow of phase space generated by K. 
Since dK I dt = {K,K} = 0, the trajectories in phase 

space 'O(t), P(t), are flows along surfaces K = const. We 
may use functions h other than the Hamiltonian as genera
tors of flows: df Ids = - {hJ}, with s a length parameter 
along the flow lines generated by h. In particular, the flow 
generated by {Q;,o} is translation of phase space in the P; 
direction. Similarly, the flow generated by {p;.o} is transla
tion in the - Q; direction. Any observable f such that 
{K J} = 0 defines surfaces f = const that the flow of the 
Hamiltonian must respect. Finally, note that the commuta
tor of two Lie operators {J, 0 }, {g,o } is generally nonzero; in 
fact, it is the Lie operator of the Poisson bracket of the two 
functions: From the Jacobi identity we find 

[{J,o },{g,o}] = {J,o }{g,o} - {g,o }{J,o} = ({J,g}o}. 
(3.5) 

When this quantity is zero, the Lie operators commute, and 
the flow generated by one function is invariant under parallel 
transport by the other. The Poisson bracket of the two gener
ators is then a constant. 

Linear functions of phase space close into the N-dimen
sional Heisenberg-Weyl algebra WN • The independent qua
dratic functions are 

A;j =P;Pj , 

B;j = Q;Pj + QjP;, 

(3.6a) 

(3.6b) 

G;j = Q;Qj' (3.6c) 

R;j = Q;Pj - QjP;. (3.7) 

and close into the real symplectic algebra sp(2N,!Jt). The 
linear plus quadratic functions also close, the algebra is 
WN sp(2N,~). In particular, theR;j close into theN-dimen
sional rotation algebra so(N) that generates l4 a joint rota
tion of the '0 and P subspaces in their i-j planes; the flow 
generated by'O·P = !l:;B ~j is a radially i!!.ward flow in the '0 
coordinates and radially outward in the P coordinates, and 
leads to reciprocal scaling of the two subspaces. Flows can of 
course also mix the position and conjugate momentum sub
spaces, as those generated by P;Pj and Q;Qj' Among all 
functions of phase space, there exist subsets that also close 
into Lie algebras whose vector dimension may be finite or 
infinite; some ofthem will come up for scrutiny below. 
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A point rotor is a mass point constrained to move on a 
sphere in configuration space 

-+ --+ -+ N 

Q 2=Q-Q= L Q;=Q.Q+Q~=p2, (3.8) 
;=1 

where p is an arbitrary but fixed radius, and we indicate by 
9 = (QI ,Q2 , .. ·,QN - I) the first N - I components of 
Q = (Q,QN)' On the sphere, thus, 

Q ';> = 0'~p2 - IQI 2
, OE{ + 1,0, - n. (3.9) 

The sign 0' of Q Jv ± > keeps track of the two hemispheres and 
the Q JS'> = 0 equator. We shall not insist on considering sep
arately the 0' = 0 lower-dimensional manifold, but we keep 
in mind the natural continuity conditions between the two 
hemispheres. The Hamiltonian flow must leave that sphere 
invariant. 

Those functions Fofthe full !R2N phase space that have 
zero Poisson bracket with Q 2 preserve the sphere where the 
point moves; among them, our purported rotor Hamiltonian 
Jr'0t. They will generate the symmetry and dynamical 
group (s) of the point rotor (the latter contains the former). 
Functions F of phase space that have zero Poisson bracket 
with Q 2 satisfy 

• N -+ aF 
I.e., 0 = L 2Q;{F,Q) = - 2Q· ---=;- . 

;=1 ap 
{F,Q2} =0, 

(3.10) 

Among the linear and quadratic functions in (3.1), (3.6), 
and (3.7), only 1, Q;, Q;Qj' andR;J = Q;Pj - QjP; have this 
property, whileP;,P;Pj,andB;J = Q;Pj + QjP; do not. This 
property yields a Lie algebra of functions under the Poisson 
bracket,12 and its universal covering algebra (obtained by 
ordinary multiplication of the algebra elements) has the 
same property. 

The symmetry algebra of the system will be the subset of 
those functions that have zero Poisson bracket also with 
Jr'0t. The rotor point mass is on a sphere, with no preferred 
origin or direction. The set of functions R;J forms a vector 
basis for the so(N) algebra and generates the N-dimensional 
rotation group SO(N). Special consideration is thus due to 
the SO(N) Casimir function of second degree in the genera
tors (and of fourth degree in Q; and Pj ) : 

I -+2-+2 -+-+2 
<I> = 2 'L R;JR;J = Q P - (Q-P) . (3.11) 

IJ 

In N = 3 dimensions, this is the squared norm of the cross 
product Q XP, the angular momentum antisymmetric ten
sor. 

Under Poisson brackets, the functions I, Qi> plus 
C;J = Q;Qj belong to an Abelian ideal of dimension D given 
by I, N, plus !N(N + 1) that, together with the R;J' form a 
larger "inhomogeneous" algebra iDso(N) and generate a 
corresponding group. The Lie transformations from these 
functions do not affect configuration space at all: they trans
late momentum space and mix it with position. The isotropic 
point rotor needs thus one further specification: its dynamics 
must be rotation invariant. This means that any and only 
rotations of a Hamiltonian flow can be Hamiltonian flows. 
Hence, Jr'0t must be a scalar under rotations and so the 
indices in the arguments must balance. Exit the single Q; 's 
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from consideration therefore, but retain pairs Q;Qj = C;J' 
Since C;J = Cj,; but R;J = - R j,;, a series expansion of Jr'0t 
with balanced indices can contain any number of C's, but 
only terms with pairs of R 'so 

On the sphere IQI2 + Q~ =p2,~;C;,; = ~;Q;Q; =p2is 
a constant, and so are ~;JC;JC;J = p4 and ~;JC;JR;J = O. 
Higher degree polynomials of the C's and R 's do not yield 
further independent invariants because any number of con
tracted factors of C, yield a single C (times a constant, since 
~jC;JCj,k = p 2C;,k) and any odd number of contracted R 's 
yield a single R times a power of <I> (since 
~j,kR;JRj,kRk,/ = - <l>R;,/). The fourth-order invariant is 
~R;JRj,kRk,/R/,; = 2<1>2. This reduces all higherinvariants to 
contracted products of ... RCRC'" that vanish, since for 
any i and m, it holds that ~j,k,lR;JCj,kRk,/C/,m = O. The con
clusion is therefore that the point rotor Hamiltonian Jr'0t 
can be a function of <I> only, the rotation Casimir given in 
(3.11 ). Since <I> is quadratic in momentum P we may take 

(3.12) 

for some constant OJ, E is a constant of the motion. 
The constraint to the sphere Q 2 = p2 leaves us with a 

2N-dimensional phase space (QJ) that is too large, because 
there is the redundant coordinate QN in (3.9). Since Hamil
tonian phase spaces come in even dimensions only, we 
should expect another constraint to be at hand. Indeed, 
among the quadratic functions (3.6), the rotor evolution 
Hamiltonian (3.12) leaves invariant the traces 
Q.P= ~;B;.; = ~ andp 2 = ~;C;,; = r of (3.6); since there 
is a relation between the constants, E = OJ [p2r - ~2], we 
can choose the gauge ~ = 0 leaving r = E /OJp2. We de
noted Q= (Q,QN); let us similarly denote P= (P*,PN ) 
.!~re p* are the first N - I components, so that 
Q-P = Q·P* + PNQN = 0 fixes 

P';> = _ Q·P*/0'~p2 -IQI2. (3.13) 

What happens to the Poisson bracket structure? Disre
garding 0', the position space differential under constraint is 

dQ=(dQ,dQ';» = (d Q , -Q.d
Q

). (3.14) 
0'~p2 _ IQI2 

The Pfaffian form 25 (or first integral invariant of Poincare 
[16(a)]) is 

P.dQ = P*·dQ + PN dQN 

= P*.d Q + P*·QQ·d Q 
p2 -IQI2 

=P*(.I.+ .QQ. )dQ 
p2 -IQI2 

Q·P* = P·d Q for P = p* + Q. 
p2 -IQI2 

(3.ISa) 

(3.ISb) 

(3.ISc) 

(3.ISd) 

The last line defines a new set of N - I coordinates P, so that 
the standard Pfaffian form in those N - 1 coordinates equals 
the Pfaffian in the old N coordinates with the constraints. 
The transformation from (QJ) [restricted by (3.9) and 
(3.13)] to (Q,O',P) spaces preserves the Pfaffian and, from 
it, the Poisson and Lie bracket structure [( 16a) ],25 in the 
new variables (Q,P). [The sign 0' distinguishes between two 
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copies ofQ space; the P*f---+.P transformation in (3.15d) is 
I : I for all points on the jp I sphere (except when I Q 12 = p2, 
on the (7 = 0 submanifold).] Note that it would be incorrect 
to simply "leave out" the Nth coordinate in the reduction 
from N to (N - I )-dimensional Poisson brackets; the pro-..... 
jection Q= (Q,QJ:>(Q)~Q must be accompanied by the 
nontrivial momentum map P = (p* ,!~ Q,P*»)--+ 
P (Q,P*). We write this map as (Q,(7,P) = (Q,P) I rot . 

The Hamiltonian function (3.12) after this substitution 
becomes 

JY = (J)C(j, (3.16a) 

(3.16b) 

Under the Irot map, the so(N) symmetry subalgebra genera
tors become 

(3.17 ) 

M; = R;,Nlrot = - (7~p2 - IQI2 Pi' i = I, ... ,N - 1.(3.18) 

We may verify that under the rotor map their Poisson 
bracket relations remain the same in the reduced 2 (N - 1)
dimensional phase space (Q,P), as if we had simply replaced 
QN and set PN = O. 

There is a well-developed theory of constrained Hamil
tonian systems of the second class (i.e., when the Poisson 
brackets of the constraints do not vanish). One may calcu
late the Dirac bracket [( II b,c)] between two functions of 
the rotor space constrained by 51 = Q2 - p2 and 52 = PN 
and find the same formal result when t = O. The old Pois
son bracket is the replaced by the Dirac bracket, and this 
equals the Poisson bracket in the reduced subspace of the 
first N - I components Q and P. 

In conclusion, on a homogeneous, isotropic sphere, the 
free motion of a point rotor in (QJ) is on sphere geodesics: 
arcs of great circles. The reduction to (Q,(7,P) in effect "pro
jects" the position coordinate of the point rotor on two 
copies of its equatorial plane, distinguished by the hemi
sphere sign (7, and with a new canonically conjugate momen
tum P. In this phase space, the reduced Hamiltonian (3.16) 
has a natural "kinetic energy" term IPI 2 and obeys a (Q_p)2 
"potential"; the trajectory jumps between the two values of 
the sign (7 (through (7 = 0) when it crosses the I Q I = p equa
tor. We see this motion as spherical rotor motion projected 
on the equatorial plane. 

IV. THE STEREOGRAPHIC MAP 

The stereographic map is a bijection between the mani
folds of the sphereSN _ I C91N and 91N 

- I U{ oo} (the projec
tion pole maps on 00). This map was applied deus ex ma
china by Focks in 1935 to the hydrogen atom Schrodinger 
equation in momentum representation, to obtain the hydro
genic wave functions in terms of the four-dimensional 
spherical harmonics. Figure I shows the geometry of the 
map for N = 2, between the circle SI and the line 91, and the 
essentials of the general N-dimensional case. The surface of 
the sphere };;"~ I Q; = I Q 12 + Q ~ = p2 maps on the 
(N - I )-dimensional optical position space, of vectors 
q = {q; };"~-II. A point on the sphere that subtends the angle 
X between the projecting pole and the - QN axis, will mea
sure an angle 2X from the center of the sphere. The first 
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----------~=-~~~--------4---__ ~ 

FIG. 1. The stereographic projection maps the circle on the line in N = 2 
dimensions. The two regions IQI <p, u = ± 1, and their boundary 
IQI = p. u = 0, map onto the full line q; the boundary maps on Iql = 2p. 

appears in right triangle with sides 2p, Iql, and ~lql2 + 4p2, 
and its double in another right triangle of sides - QN' IQI, 
andp. 

Trigonometric functions of X and 2X are 

sinx=q/~lqI2+4p2, sin2x=Q/p, (4.la) 

cosX=2p/~lqI2+4p2, cos2X= -QNlp, (4.lb) 

tan X = q/2p, tan2x= -Q/QN' (4.lc) 

From common identities, we find 

and 

Iql2 = 16p2 P + (7~p2 - IQI2 
P _ (7~p2 _ IQI2 

(4.2a) 

(4.2b) 

This is the transformation that "opens" the sphere to the 
plane. \0 Similarly, we find the inverse transformation 

and 

Q J:> = U~p2 _ IQI2 = P Iql2 - 4p2 
Iql2 + 4p2 

(4.3a) 

(4.3b) 

A given point Iql <2p (X<!1T) is mapped by (4.3) on 
IQI <p, (7 = - I (since QN <0); the equator Iql 
= 2p (X < !1T) maps on IQI = p and (7 = 0 (with QN = 0). 
As Iql increases beyond 2p (!1T <X < ~1T), the range sweeps 
again through IQI <p with (7 = + I (i.e., QN > 0). The 
points at zero and infinity in the plane correspond to the 
center of the balls (7 = - I and (7 = + I (i.e., IQI = 0, 
QN = +p), respectively. The stereographic projection is 
therefore a map between qe91N 

- I and two open balls 
Qe91N 

- I, IQI <p, labeled by the sign (7 of QN' whose boun
daries I Q I = p (QN = 0) are identified. 
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Functions F( 0) on the original sphere thus become 
functions .FlO( Q,o"» upon reduction of variables, and 
.FlO(q» upon stereographic projection. In Fig. 1, where 
N = 2, the q space is the horizontal line and Q space is the 
segment - p < QI <p twice. Figure 2 displays the N = 3 sit
uation showing a great circle of the S2 -sphere mapping onto 
a fish-eye orbit in a two-dimensional optical world. 

Great circles on the O-sphere project by the stereogra
phic map onto circles in the q plane.3 Only the Nth axis is 
distinguished, so we may rotate the first N - 1 coordinates 
such that the great circle lies in the 1 - 2 - N submanifold, 
reducing the construction to that of Fig. 2. Further, the vec
tor normal to the circle plane may be made to lie on the 
Q2 = 0 plane, tilted by /3 in the QI direction. 

To parametrize explicitly, let us use Euler angles (/3,y) 
for the points of the great circle in 0 space, 

(QI(Y»)_~ COS~COsy) /3E[O,1T], 
Q2 (Y) - sm Y , ,=~ _ ro d 2 

. r=--I - in mo 1T, 
QN(Y) -sm/3cosy 

(4.4) 

where the components 3, ... ,N - 1 are zero and omitted. In Q 
space, i.e., the equatorial plane, this draws out an ellipse of 
semimajor axis p and semiminor axis p cos /3. Actually, due 
to the twice changing sign of Q A,") (y), half the ellipse lies on 
the a = + 1 chart and half on the a = - lone. Through 
(4.2a) we find the stereographic projection ofthe great cir
cle (4.4). It is 

ql (Y) = 2p cos./3 cos Y , 
1 + sm/3cos Y 

sin Y 
q2 (Y) = 2p --.----''--

1 + sm/3cos Y 
(4.5) 

Analytic geometry verifies that this is a circle of radius 
2p sec /3 with center on - 2p tan /3. For every point 
q(Q,a)E!RN-I we may define its conjugate poine 
q* = q( - Q, - a), stemming from the antipodal point 
- 0 on the sphere. The vectors q and q* are antiparallel and 

satisfy Iqllq*1 =p2. 
A spherical coordinate grid with colatitude circles such 

as (4.5) will map onto families of bipolar coordinates on the 
plane with respect to the two poles. 17 Letting Y stand for 
time, it is clear that any great circle arc followed between two 
conjugate points will be traversed in the same time inter
val. 1-3 It is also clear that rotations of the sphere in the 
1, ... ,N - 1 subspace will rotate the q plane simultaneously; 
rotations into the QN direction produce the full family of 
different-sized circles that join any two fixed conjugate 
points in the optical q space. The former is the manifest sym
metry while the latter is the hidden symmetry of the system. 

The stereographic map and its inverse have been consid
ered thus far as transformations of position space. They are 
called point transformations because the canonically conju
gate momentum does not enter. In optics, such a map is 
called a pure distorsion. Indeed, what happens in momen
tum space? The coordinates p = {p;(Q,P)}f=-11 that are 
canonically conjugate to the components of 
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a'~ ______________________ ~~~~ ____ -ia 

FIG. 2. The stereographic projection mapping a great circle on the Q sphere 
tilted by an angle /3 onto a circle in the q plane. Two pairs of antipodal
conjugate points, A-A' and B-B', are shown to map on a-a' and bob '. 

qj(Q) = <,h(IQI)Q;, i= 1,2, ... ,N-l, (4.6a) 

may be found again from the conservation of the Pfaffian 
form, written p·dq = P·dQ (Ref. 25), where now 

Jq; J<,h 
dq. = "" - dQ. = A. dQ. + Q. "" - dQ. 

I -7 JQj J'I' 1 '-7 JQj J 

= "" (,1.8 .. + A.' Q;Qj) dQ. = "" J .. dQ.. (4.6b) -7 'I' I,} 'I' IQI J -7 I,} J 

Once the Jacobian matrix J(Q) = {J;j} is known for 
dq = J d Q, then p·dq = p.J d Q = p.Q solves as 
p = JT(Q) -Ip and P = JT{Q(q»p, where T means matrix 
transposition. In our case the {Q;Q/IQI 2} are idempotent 
matrices and we can find the canonically conjugate momen
tum map to be 

p= p_a~p2_IQI2 p_ Q'P Q. 
2p 2p2 

(4.7) 

Notice that Q A,") = a~p2 - IQI2 appears with its sign, so 
that p is a single-valued function over the rotor sphere. Simi
larly, we find the inverse transformation 

P = Iql2 + 4p2 (p + 2q·p q). 
4p2 4p2 _ Iql2 

( 4.8) 

We are working here only with maps between 2(N - 1)
dimensional phase spaces; the (oJ) space where the rotor 
motion is embedded and constrained need not be used. 

Assured that the transformation between (Q,a,P) and 
(q,p) spaces is canonical, we may write the so(N) functions 
(3.17) and (3.18) in (q,p). They are 

(4.9) 

M; =P[(I-~)P+ q.p q], i= 1, ... ,N-l, 
4p2 2p2 

(4.10) 

and will close into the same algebras under the Poisson 
bracket in (Sol!) space as they did before under the Poisson 
bracket in (Q,P) and in (Q,P). 
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Finally, from the discussion in this section, the Casimir 
and Hamiltonian functions in (3.16) can be calculated re- . 
placing q(Q,P) and p(Q,P). They are 

(4.11 ) 

Now we compare this "stereographically projected" rotor 
Hamiltonian JY with the generic optical Hamiltonian 
jFpt = clpI2/n (q) 12 in Eq. (2.9). Their dependence on the 
squared momentum Ipl2 is the same and they coincide only 
when the refractive index of the optical medium is 

no 1 ~ n(q) = , no =n(O) =- -. 
1 + Iq12/4p2 P 2ill 

( 4.12) 

This is the refractive index that characterizes the Maxwell 
fish-eye. 

V. THE FISH-EYE so(N,2) DYNAMICAL ALGEBRA 

The realization of the so(N) algebra in (4.9) and (4.lO) 
is well known from the theory of the hydrogen atom.5,6,15,16 
The momentum space of that system is the stereo graphic 
projection of the Fock sphere, where rotor momentum 
moves. Here, it is configuration space that maps under the 
stereographic projection. The earliest reference to (the 
Fourier transform [qt-+P,~ - q] of) the so(N,2) algebra 
written here seems to be Ref. 16. It is perhaps best known 
from the book by Wybourne,26 who quotes the result of 
Barut and Bornzin,27 Here, we shall use these results to ex
amine the exponentiation to the SO(N,2) group oftransfor
mations of the Maxwell fish-eye optical phase space. This 
phase space is, we recall, qEmN - 1 and p constrained, for each 
point in q space, to lie on the Descartes ray-direction sphere 
(2.3), i.e., a sphere SN _ 2 cmN 

- 1 of radius 

p(q) = Ipi =N/(p[1 + IqI2/4p2]), 

as demanded by the constancy of ( 4.11). 
The set off unctions L;J in (4,7) ,'for iJ = 1,2, ... ,N - 1, 

that generate ordinary joint rotations of q and p spaces, close 
into an so(N - I) algebra that integrates to an SO(N - I) 
group. These transformations map fish-eye orbits onto simi
lar fish-eye orbits, rotated around the origin. This is the 
manifest symmetry group of the Maxwell fish-eye. 

The N functions M;, i = 1,2, ... ,N - 1 transform as a 
vector under SO(N - 1) and, together with the L;/s, are 
generators of an so(N) algebra. The corresponding group is 
SO(N); it maps any given fish-eye orbit onto all other possi
ble orbits in the same medium. Fish-eye orbits can thus be 
made to change their radius and center. This is the hidden 
symmetry group of the fish-eye. Still a symmetry, though. 

Enter dynamics. We may calculate that 

{M;,qj} = - o;Jp( I _lqI2/4p2) - q;q/2p, 

{M;,p) = L;/2p + o;Jq·p/2p. 

( 5.la) 

(5.lb) 

The first expression shows that under the integrated action 
of{a-M, ° }, q will map (nonlinearly) into q' (q,a). The sec
ond expression shows that if we consider Pj' q-p, and 
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{M;,q-p} = p[ - (1 + ~~:) p; + ~; q;], (5.2) 

then further Poisson brackets of these functions will close 
into an algebra larger than so(N). To identify this algebra 
we recall that the Cartesian basis of so(N,M) generators 
satisfy 

{A;J,Ak,l} = gj,kAt.; + g;,1AkJ + gj,tA;,k + g;,kAj,l' 
(5.3a) 

where 

{

I, j=h;,N, 

gj,k = -1, N+ 1<J=k<N+M, 
0, otherwise, 

(5.3b) 

We take A;J = - Aj ,; for iJ both in the range (l, ... ,N) or 
both in (N + 1, ... ,N + M), and + Aj ,; otherwise. 

We write the so(N, I) generators in the following way: 

L;J = A;J' (SAa) 

M; = A;,N' iJ = 1,2, ... ,N - I, (5Ab) 

K; = A;,N+ 1 = M; - 2pp; 

= p[ - (1 + ~~:) p; + ~; q;]. 
KN = AN,N+ 1 = - q-p. 

(SAc) 

(SAd) 

We recognize the "noncompact" generators to be the K's, 
formally because of the minus sign in {K;.Kj } = - L;J' and 
manifestly because - q-p generates unbounded magnifica
tions of configuration space, On smooth functions/of phase 
space, 

exp /3{KN,o }j(q,p)t-+/(e -Pq,efip), /3Em. (5.5) 

We note that this action is no longer an invariance transfor
mation of the fish-eye Hamiltonian (4.9) but, for JY!ish-eye as 
a function of rotor radius p, 

exp - /3{K N' 0 }:JY (p ) fish-eye 

t-+llJp2(l + e2P lqI2/4p2)2e- 2P lpI2 = JY(e-Pp)fiSh-eye. 
(5.6) 

In particular, we note that the radius p of the rotor sphere 
dilates to infinity for /3-- - 00. If we set ill = !cno- 2p - 2, 
then by (4, lO) we map the Maxwell fish-eye Hamiltonian 
JY(p)fiSh-eye onto JY( 00 ) fish-eye = no, the optical Hamilto
nian of an infinite homogeneous medium. 

The other K;. i = 1,2, ... ,N - I will produce SO(N)-ro
tated versions of this action, Of these we wish to remark a 
direct physical interpretation, The SO (N,} ) generators in 
(SAc) may also be obtained through the standard de/orma
tion formula14,28 as K; = {'G' ,pJ, in general with a sum
mand 1'p;, l' = const, This suggests ill - l{JY!ish-eye,pJ = ill - 1 
dpJdt, to be a ray "acceleration" vector. 

We observe that the functions p; are linear combinations 
ofso(N,I) generators, viz"p; = (M; - K; )/2p. Thus a sec
ond visible noninvariance transformation of the optical fish
eye Hamiltonian is 

exp l:;a;{M; - K;,o }:JY(q,p)fiSh-eyet-+JY(q _ 2pa,p)fiSh-eye, 
(5,7) 

i,e" the map is to another fish-eye whose origin is at a instead 
of the origin. The algebra generated by L;J's and p; 's is the 
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Euclidean algebra iso (N - 1) C so (N, 1 ) . 
The group SO (N, 1) thus obtained therefore contains 

not only the symmetry group of the Maxwell fish-eye, but 
also the transformations between all possible such fish-eyes, 
translated and dilated, up to and including asymptotically 
the homogeneous medium. This is the potential group of the 
Maxwell fish-eye. Potential algebras of the family so(M,N) 
were used in Refs. 19 and 20, to relate the quantum Poschl
Teller and other mostly one-dimensional potentials to the 
free particle. That this approach also serves optical systems, 
is in principle remarkable. 

A search for further functions closing under Poisson 
brackets with the generators of so(N, 1) is rewarded when 

we introduce the function p = m = 1 p I. We may then ver
ify that an algebra is formed by the previous so(N, 1) genera
tors, plus 

Hi = Ai,N+ 2 = qiP, i = 1,2, ... ,N - 1, ( S.8a) 

HN =AN.N+2 =HN+ I -2pp= _p(1_lqI2/4p 2)p, 
(S.8b) 

.ff=HN+ I =AN+ I ,N+2 =p(1 + IqI2/4p2)p= + fl. 
(S.8c) 

We note prominently that.ff in (S.8c) is the square root of 
the so(N) Casimir function Crff in (4.9b). It is a compact 

The evolution parameter s is along the flow lines 
v = p( 1 + Iq12/4p2)p = const, or Hfish-eye = constant. Thus 
we find the optical evolution generated by the Hamiltonian 
H fish·eye = OJ.../f/l through observing that 

exp t{Hfish-eye,o} = exp(lUt 12v) {.ff,o }. (S.12a) 

The result is then given by (S.lO) and (S.II), replacing the 
parameter s by the time t through 

s = lUt /2p(1 + Iq12/4p2)p. (S.I2b) 

This is the transformation of phase space along the orbits of 
the fish-eye system. 

VI. WAVIZATION OF THE MAXWELL FISH-EYE 

In this section we shall use another well-known realiza
tion of the symmetry and potential algebras and groups that 
describes wave optics. We will "wavize" (or "ondulate"?) 
the Maxwell fish-eye by a method analogous to the dynami
cal quantization of mechanical systems. 29 

The scalar wave equation for the field amplitUde <I> (O,t) 
in a homogeneous N-dimensional medium ~!RN, of refrac
tive index no, is 

f a2<1>(~,t) = (~)2 a2<1>(~,t) (6.1) 
;~I aQi c at 

This equation may be put in evolution form (i.e., with first-
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generator of an so (N,2) algebra. In the hydrogen-atom sys
tem,16 this 'last' generator is the number operator. 

Let us examine finally the integrated group action gen
erated by .ff = H N + I = An + I.N + 2' This is a sui generis 
evolution of the fish-eye system. From (S.3), 

exp s{.ff,o }:AiJ 

= K;"coss-H; sins, I<,i<,N,j=N+ 1, (S.9) 
{

A ., 1 <,ij<,N, 

K; sin s + H; cos s, 1 <,i<,N,j = N + 2. 

Hence, forpi = (M; - K;)/2pandp = (HN+ I - H N)/2p, 

[
. I-COSs] + p sm s + qop q;. 

4p2 
(S.lOa) 

exps{.ff,O}:p= [coss+ I-;OSS (1 + ~~:)]p 

- _1_ q.p sin s. (S.lOb) 
2p 

Finally, for q; = H;lp, 

(S.l1 ) 

order time derivative) through doubling the function space, 

Ccln: )2a ~)(:) = :t (:), (6.2a) 

where the space Laplacian a is 

N a2 
a=I-2' 

;~I aQ; 
(6.2b) 

The first component equation in (6.2a) defines 
4>(O,t) = a<I>(O,t)lat, and the second then reproduces 
(6.1). The solutions of the wave equation can be expressed in 
terms of the initial conditions (<1>0,4>0) at t = 0, through 
integration of the one-parameter evolution group. This is 

(
<I> (Q,t») (0 
4> (O,t) = exp t (clno )2a I)(~o(E») o <1>0 (Q) , 

(6.3) 

provided the refractive index no is independent of time-a 
good general assumption. 

When light is of a definite color, i.e., when the time be
havior of the wave function is that of a single Fourier compo
nent v, 

(6.4) 

then the time-independent wave equation for a homoge
neous medium factorizes as 
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here we have further factorized into radial and angular vari
ables 

- 1 N-2 
Crfi= --IA k 2 j,k J, 

(6.6a) 

Aj,k = {Qj a~k - Qk a~j)' (6.6b) 

Notice that in (6.5), the factor (vnOIC)2>O appears where 
the familiar energy eigenvalue 2mE Ifz2 appears in the time
independent Schrodinger equation of quantum mechanics. 

The wave equation on the sphere S N _ 1 C mN is obtained 
from (6.1) after separation in spherical coordinates. This 
reduces the equation to 

_ -+ (n Vp)2 -+ 
Crfiq>(Q) = ~ q>(Q). (6.7) 

The operators (6.6b) are well known !.t' 2 (mN) self-adjoint 
realizations of the rotation algebra and group generators. 
Only N - 1 variables among the Q; are independent be-

cause, as in (3.9), QN = U~p2 - IQI2. Through the stereo
graphic projection (4.2) and (4.3) we may now map the Q; 
coordinates of the p sphere in (6.6) onto the q plane mN 

- 1 
where the Maxwell fish-eye lives. The chain rule for (4.2a) 
would yield 

~ - (1 + J!L) (~+ 2q; q.~) (6.8) 
aQ; - 4p2 aq; 4p2 _ Iql2 aq' 

for i = 1,2, ... ,N - 1. Compare with the geometrical (classi
cal) expression (4.8) for the canonical conjugate Pj : func
tions on the p sphere no longer have an independent coordi
nate QN' and a laQN acts as zero and plays no further role. 

While in mN, the independent formal operators, Q; and 
a laQj close into the N-dimensional Heisenberg-Weyl alge
bra, after restriction to S N _ 1 and subsequent stereographic 
projection, they do so only for iJ = 1,2, ... ,N - 1. The opera
tors (6.8) generate translations that do not leave the sphere 
S N _ 1 invariant, so they cannot be exponentiated alone; they 
are not self-adjoint on the space of functions on the sphere. 
However, the rotation generators A;j in (6.6b) are self-ad
joint, and hence valid operators on the sphere. Other valid 
operators are the Q;, i = 1,2, ... ,N - 1, and products or uni
formly convergent series thereof. 

The Casimir operator Crfi appears in (6.7); its eigenval
ues on the space of single valued and bounded functions are 

(6.9a) 

The light colors v that the compact space S N _ 1 can sustain 
are thus limited to the discrete frequencies 

vN =-C-~/N(lN +N-2), IN =0,1,2, .... (6.9b) 
nop 

We know l8 the Hilbert space !.t'2(SN I) of Lebesgue 
square-integrable functions q>(Q) over the sphere SN_ I' 
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These functions are first mapped on the two functions 
<1>,,= ± 1 (Q) = q>(Q) on the balls in mN- 1 where IQI <p, as 
we saw in Sec. IV. Then we proceed through the stereogra
phic projection on wave functions ¢(q) = <l>u(Q), with 
q(Q,U)EmN- 1 as given in (4.2). The !.t'2(SN_I) inner 
product oftwo functions q>, 'I' is thus 

(q>,'I')y'2(SN_ 1l 

= L
N

_

, 

dN-1n(Q)q>(Q)*'I'(Q) (6.1Oa) 

I ~ ( dN-1Q <l>u(Q)*\IIu(Q) 
u= ± 1 P - JIQI <P U~p2 _ IQI2 

1 ( dN-1q 

= pN- 1 JmN-1 (1 + IqI2/4p2)N- 1 

X q>(Q( q) )*<I>(Q( q» 

= (¢;,p)fiSh-eye = ( dN-1q¢(q)*tP(q), J9iN- I 

where 

and 'I' and tP are bound by a similar relation. 

(6.1Ob) 

(6.1Oc) 

(6.1Od) 

(6.11 ) 

Under this inner product, symmetry transformations 
are unitary and their infinitesimal generators (6.6b) are self
adjoint. When we use the customary inner product form 
(¢,tP)fish-eye in (6.1Od) for a "flat" space of measure d N - I q, 

'" A theso(N) generatorsL;j andM; are the Schrodinger quanti-
zation ofthe "classical functions" in (3.17) and (3.18) and 
(4.9) and (4.10) [i.e., through the replacements q;f-+Il;', 
(multiplication by q;), and P/-~P; = - i a laq;]. Because 
the functions involved are linear in the components of Pi> 
there is no operator-ordering ambiguity in this case: any 
quantization rule that guarantees self-adjointness under the 
inner product f mN _ I d N - Iq ... Ref. 24 yields 

!(q; )Pj~~{!(q; ),p) + 

= ~ [!(q;)Pj +pj'(q;)] 

= _ ij(q;) ~ + ~i a!(q;) . 
aqj 2 aqj 

This allows us to write the Maxwell fish-eye dynamical gen
erators K; in (5.4), independent of any ordering rule. 

The optical fish-eye Hamiltonian is the Casimir opera
tor of SO(N) built in (3.17) and (4.9). By itself, as a func
tion in (Q,P) or (q,p), the Hamiltonian function would be 
subject to ordering-rule ambiguities;24 however, as Casimir 
operator, Crfi is the sum of squares of the operators (6.6a); 
defined thus, the Hamiltonian is unique and independent of 
the quantization scheme. All higher-order Casimir invar
iants are zero: the sphere S N _ 1 can only support the totally 
symmetric representations of SO(N). The number of inde
pendent Maxwell fish-eye states that are degenerate for some 
IN is given by the branching rules of the so(N) representa
tions. The representation row indices are provided by the 
canonical basis, 14 and given as a (N - 1 )-plet 
{IN,IN-1> ... ,12}, with the integer labels Ij bound by 
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IN >IN -I>···>/3 >1/21. The count is 2/2 + 1 forthespheri
cal harmonics on the surface of the ordinary sphere S2' and 
(/3 + 1)2 for the curved S3 space that we use in the model of 
the "physical" Maxwell fish-eye. 

In the plane two-dimensional optical world projected in 
Fig. 2 (N = 3), the description of the wave patterns in the 
Maxwell fish-eye is easy: The labels are the usual {I,m}, and 
the wave solutions are in the linear span of the ordinary solid 
spherical harmonic basis {'?!I I,m ('n}~ ~ _ I (Ref. 18), each 
vibrating with an angular frequency (6.9b), namely 

v(/) = (clnop)~/(/+ 1), 1=0,1,2, .... ( 6.12a) 

The time evolution of a linear combination of harmonics 
with coefficientsf/,m is then 

~ 00 I ...... 
<1>( Q t) = "e;V(/)1 " I' '?!I (Q). (6.12b) ,~ L JI,m I,m 

I~O m~-I 

These functions can be visualized as a pattern of light with 
intensity (<I>,<I»y2(S2) on the ordinary S2 sphereofradiusp. 

Light of a given color number I has only 21 + 1 distinct wave 
patterns labeled by m = 0, ± 1, ... , ± I. Rotations of the 
sphere will mix m's, maintaining the linear subspaces I invar
iant. When the stereographic projection (4.3) is applied, 
with the weight (obliquity) factor given in (6.11), the pro
jections of the spherical harmonics on the optical q space will 
provide an 2'2(vt2)-orthogonal basis for the Maxwell fish
eye solutions. These are 

'Y' t _ YI,m(q/( 1 + IqI2/4p2» 
I,m (q, ) - 1 + Iql2/4p2 

X exp(ict ~/(/ + 1 )Inop , (6.13 ) 

where we have written the solid spherical harmonic con
strained to the sphere in Cartesian coordinates as 

'?!I I,m (Q)ls, ='?!II,m(Q,u~p2_IQI2) =pIYI,m(Q,u). 
Consider first the "extreme" m = ± I wave patterns 

'Y'I, ± I (q (,8, y) ,t), using polar angles (,8, y) on the sphere. The 
functions behave as sin I ,8 exp i( ± Iy + ct 1 
nop~ I (/ + 1) and will exhibit I moving nodal meridians 
with a braid of maxima at the equator,8 = 11"12. The pattern 
is a function of y + Wit, where WI is the angular velocity of 

the sphere, WI = (c/nop)~1 + 1//,1= 1,2, .... That rotat
ing light pattern will project on the optical plane as the circu
lar motion of waves in the fish-eye, with I nodes as spokes in a 
rigid rotating wheel. The belt of light maxima may also ro
tate on an inclined axis; it will then project its equatorial 
braid on an off-center circle on the fish-eye plane, the nodal 
meridians will project on circular nodes that cross through 
the two conjugate points that are images of the new rotation 
poles. These 'circle-of-light' rotating solutions, we surmise, 
are the best wave analogs of the geometric light orbits, such 
as that of Fig. 2. 

We note that, inevitably, chromatic dispersion takes 

place: WI -~ 1 + 1/1 is not independent of I, as it is in a 
homogeneous optical medium where wave velocity is inde
pendent of wave number. For 1= 0, 'Y'o,o (q) = const! 
(1 + Iq12/4p2) in (6.13). For growing I, Iwd decreases 

monotonically from WI = c{2lnop down to Woo = clnop. 
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Asymptotically with I, we see that the surface of the sphere 
of radius p moves at the equator with velocity 

v = Woo = clno· 
Another set of harmonics that are easy to "isualize, are 

the m = ° solutions '?!I 1,0 ( Q3 ). They contain a Legendre pol
ynomial PI (cos ,8), that has I nodal circles (only one can be 
the equator great circle); they are independent of the longi
tude angle y. These linear multi pole standing-wave solutions 
have their global absolute maxima at the two sphere poles, 
with a relative sign ( - 1) I between the two, and their single, 
sui generis vibration frequency v(/) in (6.12a). When this 
vibration mode is tilted by SO (3) to any angle and projected 
on q space, the strongly elongating polar regions will map on 
a conjugate pair of pulsating light zones in the Maxwell fish
eye. They will be in or out of phase according to the parity of 
I. A Dirac 8 flash at some point of the fish-eye, or at a closed 
wave front line q(,8o,y), yESI, will decompose by 

00 

8( cos,8 - cos ,80) - L PI (cos /3) PI (cos /30) 
I~O 

into a weakly convergent series of the above conjugate-pair 
"standing waves." 

There is dispersion again. Under time evolution, the co
efficients PI (cos /3 0) in the series will be multiplied by 

e;v(/) t, v(/) _ ~ 1(/ + 1), whose periods are incommensurable. 
Thus although the optical path between two conjugate 
points is equal along any circle arc joining the points, and 
wave fronts are well defined, I we see that the Maxwell fish
eye is not quite a perfect imaging device2 in the sense that it 
cannot forestall the chromatic dispersion that will smear out 
any pulse. This is in contrast with optics in a homogeneous 
space, where spherical 8 wave fronts propagate as such in 
odd dimensions (and develop a trailing wake in even dimen
sions I7 ). Although we can work with Dirac 8's on the S2 
sphere, they are not eigenfunctions of any rotation genera
tors. 

In the plane optical world of Fig. 2, the manifest symme-
1:J.y gener~tor is L 1,2 and the hidden symmetry generators are 
MI and M2':'" Thx extra ~nerators of the dynamical algebra 
so(3,1) areKI> K 2 , andK3 , given by (5.4c) and (5.4d). This 
enlarged linear space of operators may be used to define oth
er bases for the polychromatic, wavized fish-eye. We refer to 
Eqs. (5.4c) to choose the two commuting operators 

P;=-2
1 

(if;-'k) = -i a
a , i=I,2, (6.14) 

.p q; 

that are generators of the Euclidean algebra iso (3) together 
with the symmetry generators. These define the plane-wave 
generalized basis of the 2'2(!Ie) with the inner product 
(.,. )/iSh-eye in (6_lOd). Such solutions quickly loose their 
shape under Maxwell fish-eye evolution because they are 
eigenfunctions of operators that do not commute with the 
driving Hamiltonian. Their time evolution may be calculat
ed group theoretically through the transformation (5 . lOa ) 
or as overlap coefficients between the elliptic (I,m) and 
parabolic (PI ,P2) subgroups of the SOC 3, 1) group that we 
have realized on the !If plane_ 

Extending further the dynamical algebra group to the 
conformal SO (3,2) by the geometric-optics generators 
H; = q;p, i = 1,2, H3 = JV - 2pp, and H4 = JV 
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= p( I + /q/2/4p2)p [generically SO(N,2) for (N - 1 )-di
mensional fish-eyes], we have integral operators: the scalar 

root of the Laplacian, p = ~pi + p~ . Its action p on smooth, 
properly decreasing functions t,6(q) is through a formally 
divergent kernel (as a Dirac {j' derivative) given by 

(pt,6)(q) = r d 2q'II(q - q')t,6(q'), 
JV!2 

II(q) = _,_' r d 2p/p/exp ip.q. 4r JV!2 
(6.15 ) 

This scalar root operator may enter commutators and sym
metrized products. Indeed, the Heisenberg-Weyl commuta
tors of 

H; = !(q;p + pq;) and % _ pp =!( /q/2p + p/q/2) 
close, with the rest of the SO (3,1) generators, into the Lie 
algebraofSO(3,2) in Eqs. (5.3). In this realization we have 
the SO(3) Casimir operator written as%(% + 1). Gener-

A A 

ally, for SO(N,2), it isff(ff + N - 2). 

VII. CONCLUDING REMARKS 

When a "physical" three-dimensional optical medium 
is homogeneous, the symmetry of the system is the Euclid
ean algebra iso ( 3 ) .9 In this case there are no additional, 
hidden symmetries. The optical Hamiltonian is then also the 
Casimir invariant, with eigenvalues - k 2;>0; the irreduci
ble representation is then labeled by the wave number kE!R 
(the second Casimir,L'p, is zero). We may thus isolate any 
single "color" k and work with monochromatic optics. On 
the other hand, the Maxwell fish-eye seen here has the sym
metry algebra soC 4) and its representation labels are dis
crete, allowed only for discrete colors v n' n = 0,1,2, .... Once 
one n is chosen, the space of wave functions is of finite di
mensions n2

, just as in the hydrogen atom. All these soC 4) 
representations fit into a single degenerate representation of 
its dynamical algebra so ( 4,1 ). 

The dynamical algebra so( 4,1) also contains the Euclid
ean iso (3) algebra of rotations and space translations of ho
mogeneous media. Homogeneous and fish-eye optical spaces 
are thus identified as different subalgebra reductions of their 
common dynamical algebra so ( 4,1 ). The iso (3) algebra is a 
contraction of so ( 4 ) by the scaling generator A N,N + 1 seen in 
(5.4d). In this sense, so(4,1) is the potential algebra 19 (or 
group,20 that binds the fish-eye light orbits to free propaga
tion in a homogeneous optical medium. 

The role of the larger dynamical algebra so ( 4,2) in the 
Maxwell fish-eye is more subtle: it yields the Hamiltonian 
time evolution as a number generator in the algebra, 
ff = AS•6 ' that exponentiates easily to the evolution sub
group. Indeed, the same strategy of finding a larger group, 
applied to homogeneous space optics, will use the square 
root p of the Casimir invariant p2 of iso (3). This quantity is 
p = (A4,6 - AS,6 ) /2p and commutes with all iso (3) opera
tors. The scaling generator also contracts ff to p. 

We have seen here that there is a realization of the alge
bras that models scalar geometrical optics, and another real
ization that models wave optics, both for the Maxwell fish
eye and for homogeneous media. Evolution along an optical 
axis has been the primary concern for Euclidean optics,9 
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while evolution in time is highlighted here to predict chro
matic dispersion. 

Small neighborhoods around points qo in a smooth radi
ally symmetric inhomogeneous medium may be approxi
mated by neighborhoods of Maxwell fish-eyes that are dis
placed by v and/or scaled by p and no, in such a way as to 
approximate the refractive index n(qo + q) 

=n(qo) +l:;q;[Jq;n(q»'Io + ... by the "local" fish-eye 
shape 

no/( 1 + /q - v/2/4p2) -no (1 + /v/2/4p2) 

- noq·v/2p2 + ... 
through their value and gradient, when n( /q/). This con
struction is a section in a bundle over configuration space, 
where for each qE!R3 there is an so ( 4,2) evolution direction 
determined by the local Hamiltonian. While the curvature is 
positive, the "compact" AS,6 -generated subgroup is fol
lowed, or its translates by SO (2,1 ) C SO ( 4,2) group trans
formations. In the regions where n is constant, the direction 
is along the free-flight Euclidean number operator p. Finally, 
when the curvature is negative (~ip), the "noncompact" 
generator is A4,6' This 'hyperbolic' Maxwell fish-eye carries 
its corresponding local so(3,1) symmetry algebra. Work is 
being done to understand further the Lie algebra and global 
group properties of particular inhomogeneous optical sys
tems. 
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On Clebsch-Gordan coefficients and matrix elements of representations 
of the quantum algebra Uq{SU2) 
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Clebsch-Gordan coefficients and matrix elements of irreducible representations of the 
quantum algebra Uq (su2) were considered in several papers. In particular, a few expressions 
for them were derived. An approach to Clebsch-Gordan coefficients and to matrix elements of 
representations of Uq (su2 ) on the base of the theory of basic hypergeometric functions is given. 
This approach allows one to obtain q-analogs of all well-known classical expressions for 
Clebs.ch-Gordan coefficients (most of them were absent). New symmetry relations, generating 
fun~tlOns, and recurrence formulas for Clebsch-Gordan coefficients of Uq (su2) are obtained. 
UnlIke other papers, Clebsch-Gordan coefficients and matrix elements are considered on the 
base of minimal theoretical constructions (in fact, without using the notion of a C· algebra and 
of a Hopf algebra) . 

I. INTRODUCTION 

Quantum groups and algebras appeared in the quantum 
method of the inverse scattering problem.l-4 An indepen
dent definition of compact quantum groups, as deformations 
of Lie groups, was given by Woronowicz.5.6 The theory of 
representations of quantum groups and algebras is under 
development. 7-10 It was shown II that a q-analog of the 
quantum harmonic oscillator is related to quantum groups. 
Quantum groups and algebras are of great importance for 
applications in quantum integral systems, in quantum field 
theory, and in statistical physics. 12-15 The recent papers l6-19 
show that representations of quantum groups and algebras 
are closely connected with basic hypergeometric functions. 

Our paper deals with irreducible finite-dimensional rep
resentations of the quantum algebra Uq (su2). They determi
nate the quantum group SU q (2). Finite-dimensional repre
sentations of the algebra Uq (su2) are described in Refs. 3 
and 4. Representations of the quantum group SU (2) are 
found in Refs. 6 and 17. Kirillov and Reshetikhi~ 18 have 
considered Clebsch-Gordan coefficients (CGC's) and Ra
cah coefficients of Uq (su2). They gave three expressions for 
CGC's and derived some of their properties. CGC's are also 
considered in Refs. 19 and 20, where they are expressed in 
terms of q-Hahn polynomials and of the basic hypergeome
tric functions 3IP2' 

In Refs. 18 and 20 expressions for CGC's are given with
out proof. The derivation of Koelink and Koornwinder l9 is 
based on the results of the paper by W oronowicz6 and uses 
the c· algebra theory. We give a simple derivation of an 
expression for CGC's with the help of an analog of classical 
method of highest weights.21 Then using the results of the 
theory of basic hypergeometric functions and of the q-calcu
Ius we derive several expressions for CGC's. Almost all of 
them are analogs of the well-known expressions for CGC's 
of the group SU(2). These expressions are obtained when 
q-+ 1. 

We derive new symmetry relations for CGC's of 
Uq (su2) and give recurrence formulas and generating func
tions for them. Using CGC's, we derive expressions for the 
matrix elements d ~n of representations T of Uq (su2 ). The 

part of these matrix elements [up to constants c(/,m,n,q)] 
was found in Ref. 17. Let us note that matrix elements of 
representations of the quantum group SU q (2), which are 
understood in Woronowicz's sense,6 are given in Refs. 16 
and 22. Of course, there are relations between these matrix 
elements. But, first, our derivation does not use the C· alge
bra theory; second, our matrix elements correspond to the 
fixed basis, for which CGC's are given; and, third, our ma
trix elements have somewhat another sense. 

Our presentation depends strongly on results of the the
ory of basic hypergeometric functions and of the q-calculus. 
We give necessary definitions and formulas in Sec. II. Proofs 
of these results can be found in Refs. 23-25. 

In Sec. III, irreducible representations of the algebra 
Uq (su2 ) and their CGC's are introduced. The expressions 
for CGC's are derived in Sec. IV. We give them in terms of 
the basic hypergeometric function 3IP2 and in the form of 
sums. Symmetry relations for CGC's are obtained in Sec. V. 
Generating functions and recurrence relations are given in 
Secs. VI and VII. In Sec. VIII we show the connection of 
definition of the quantum group SU q (2) with matrix ele
ments of representations of Uq (su2). Further information 
can be found in Refs. 1 and 17. The expressions for these 
matrix elements are derived in Sec. IX. They are represented 
as functions of the matrix elements til' t 12 , t 21 , t22 of the two
dimensional representation T 112 of Uq (su2). The results for 
the classical group SU (2) are obtained when q -+ 1. There
fore, the results of Sec. IX give a new approach to the Wigner 
d-functions. In fact, formulas (86 )-( 89) below are a q-ana
log of classical Wigner d-functions. 

II. BASIC HYPERGEOMETRIC FUNCTIONS AND q
CALCULUS 

Let 
11-1 

(a;q) n = II (1 - aq), (a;q)o = 1, aEC, nEZ + ' (1) 
j~O 

where q is a fixed complex number and Z + is the set of non
negative integers. Basic hypergeometric functions are de
fined as 
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_ (al, ... ,an + I ) 

- n + I CfJn b" ... b
n 

Iq,z 

= i: (al;q)m···(an+l;q)m~. 

m ~ 0 (b I;q) m ... (b n;q) m (q;q) m 
(2) 

We shall also use the notation 

n + 1<1> n (cl,···,cn + I ,;d" ... ,dn ;q,z) 

_ rn (qC, qCn f I.qd, qdn•q z) 
-n+ITn ,0", ",."". (3) 

If a I = q - n,nEZ + ' then series (2) terminates. It is a poly
nomial. The polynomial 

Pn (x;a,b Iq) = 2CfJI (q - n,abqn + I;aq;q,qx) (4) 

is called a little q-J acobi polynomial. 26 

If one considers matrix elements of representations of 
Uq (su2 ), the relation 

2CfJ, (q - n,b;c;q,z) 

= (- l)nq -n(n+ ,)/2{(b;q)n l (c;q)n}zn 

X 2CfJ, (q - n,q - n + 'c - ';q- n + 'b - ';q,qn + 'clbz) 

(5) 

is useful. We shall also use the relations27 

3CfJ2 ( q - n ,d,ej,g;q ,q ) 

if I d;q) n n (_ n g dq - n + , eq) 
= if; d 3CfJ2 q , d, - ; 1 ' g; q, -I ,( 6 ) 

,q)n e 

( 
cqn) (cla;q)n 

2CfJ, a,b;c;q,- =---
a (c;q) n 

(7) 

Let us note the formula 

(abzlc;q) 00 (c c abz) 
2CfJI (a,b;c;q,z) = ) 2CfJI -'-b ;c;q,- , 

(z;q '" a c 
(8) 

where Iql < 1 and (a;q) '" = lim (a;q) n' 
n- '" 

If aEC then [a] will denote the expression 
a/2 - a/2 1 a 

[a] = q -q =q-(a-I)/2--=!L. (9) 
ql/2 _ q - 1/2 1 _ q 

IfmEZ+ then 
-m(m-I)/4 

[m]! = [1][ 2] ... [m] = q (q;q ) In , [ 0 ]! = 1, 
(1 - q)m 

(10) 

where (q;q) n is given by formula (1). For (q;q) n we have28 

(q;q)N+, = (q;q)N(qN+l;q)" (11) 

(q;q)N-, = (_l)'q,(,-2N-I)/4(q;q)N(q-N;q),-I, (12) 

(q-l;q-I), = (_I)'q-'('+')/2(q;q),. (13) 

The expressions [N ± r]! can be written in terms of (qm;q) ,: 

[N + r]! = [N]!q-,(,+2N-1)/4{(qN+ l;q),/(1- q)'}, 

[N - r]! = [N]!( _1)'q,(,-2N-3)/4 

X {(1 - q)'/(q - N;q) J. 
Below we shall also use the relations 
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(14) 

(15) 

(qN + I;q), = [N + r]![N]! - Iq,(,+ 2N - 1)/4(1 - q)', (16) 

(q- N;q), = [N ]![N _ r]! - I( _ l)'q'('- 2N- 3)/4(1 _ q)'. 

(17) 

The expression 

(1-x)(n) = (1-q- 1x)(1_q-2x )"'(1_q-nx ) 

= (q-nx;q)n 

= i (q - n;q) , X' 

,~o (q;q), 

= ,to [~L (_x)'q,(,-2n-l)/2 

= ICfJO(q-n;q,x) (18) 

is an analog of the binomial formula in the q-calculus. Here, 

[n] !q,(n - ,)/2 

[r]![n - r]! 

It is a q-analog of the binomial coefficient. Usually one sets 

(19) 

for any aEC. For (b - x) (n) we have 

(b-x)(n)=b n(1-xlb)(n)= i (q-n;q), x'b"-'. 
,~o (q;q), 

(20) 

In the q-calculus the d!tferentiation operator is replaced 
by the difference operator Bx , where 

BJ(x) = {j(qx) - l(x)}/(qx - x). 

y! e have B x -+ d I dx when q -+ 1. The inverse of the operator 
B x is the q-integration operator. For 0 < q < 1 the definite q
integral is given as 

.c I(x)dq (x) = c( 1 - q) ,to q'!(q'c) 

'" 
= L (x, - xr+ I )f(x,), (21) 

r=O 

where c> 0 and x, = cq'. The formula 

00 x' 
Eq (x) = ,~o [f;]j!' (22a) 

where 

[[r]]! = IT [U]] = IT qi - 1 = (q;q), , ' 
j~1 j~1 q-l (1-q) 

defines a q-analog of the exponential function. We have 
BxEq (ax) = aEq (ax). The relation 

1'" Xb-1Eq( -x)dqx 

00 

=(1-q) L {qn(b-I)Eq( _qll)}qn 
n = - 00 

= qb(b+ 1)/2rq(b) (22b) 

determines q-gamma function. It has the properties 
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r q (n) = [[ n - I]]!, 

r q (b + 1) = [[ b ]] r q (b), nEZ +' bEC. 

The formula 

11 ua- 1(1_qu)(c-a-1) 

X n <l>n _ 1 (d1,···,dn;e1,···,en _ 1 ;q,ux)dqu 

= r q ( a) r q (c - a) /r q ( c ) 

(23a) 

X n + 1 <l>n (d1,···,dn,a;e1,···,en _ 1,C;q,X), (23b) 

where Re a> 0, Re(c - a) > 0, is a q-analog of the well
known formula for usual hypergeometric functions. 28 

The function 2CfJ1 (a,b;c;q,x) = 2CfJ1 (a,b;c;x) satisfies the 
relations 

(I - a)2CfJ1 (qa,b;c;x) = ZCfJ1 (a,b;c;x) - a2CfJ1 (a,b;c;qx), 
(24) 

(1 - b}zCfJ 1 (a,qb;c;x) = 2CfJ 1 (a,b;c;x) - bzCfJ 1 (a,b;c;qx), 
(25) 

(I - cq - 1 )2CfJ, (a,b;q - 'c;x) 

= 2CfJ, (a,b;c;x) - cq - '2CfJ' (a,b;c;qx), (26) 

{x(1 - a)( 1- b)/(l - c)}zCfJ, (qa,qb;qc;x) 

= zCfJ, (a,b;c;x) - 2CfJ, (a,b;c;qx) (27) 

[see formulas (2.9) and (2.10) in Ref. 29]. Excluding ap
propriate summands from (24)-( 26) we obtain relations 
that can be written as 

[e - d b<l>1 (d,e;f;x) + qC/2[d b<l>1 (d + I,e;f;x) 

- qdI2[eb<l>1(d,e + I;f;x) = 0, 

[e - d] [f - Ib<l>1 (d,e;! - I;x) 

+ [d][f-e-I]2<1>1(d+ I,e;f;x) 

- [e] [f - d - 11z<l>1 (d,e + I;f;x) = 0. 

(28) 

(29) 

Excluding 2CfJ, (a,b;c;x) and zCfJ, (a,b;c;qx) from (24), (25), 
and (27) and then replacing qa by a, qb by b, we obtain the 
relation 

2<1>1 (d,e - I;f;x) - 2<1>1 (d - I,e;f;x) 

= q(d+ e-f- 2)/2[e - d] [f] - IXz<l> 1 (d,e;! + I;x). 
(30) 

III. REPRESENTATIONS OF THE QUANTUM ALGEBRA 
Uq (SU2) 

The associative algebra, generated by the elements H, 
E + ' E _ , which obey the commutation relations, 

sinh hH 
[H,E± ] = ±E± ,[E+ ,E_ ] =-.--

slOh h /2 

qH _q-H 
= , q1/2 _ q-1/2 

whereq = exp h, is called the quantum algebra Uq (su2 ).1t is 
a deformation of the universal enveloping algebra of the clas
sical Lie algebra su(2). The structure of a Hopf algebra is 
introduced I on Uq (suz). This structure includes the homo
morphism 

a:uq (su2 ) ..... Uq (su2 ) ® Uq(suz)' 
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which acts onto H, E + ,E _ as 

a(E± ) = E± ®qH/2 + q-HI2®E±, 

a(H) =H® I + I ®H. 

(3Ia) 

(3Ib) 

The relation (3Ia) means that the tensor product for the 
algebra Uq (suz) is not commutative. 

Finite-dimensional irreducible representations of 
Uq (suz) are given4 by integral or by half integral number I. If 
the representation T I corresponds to the number I then the 
carrier space VI of TI has the orthonormal basis em' 
m = -I, -I + 1, ... ,/, such that 

E ± em = ([I + m] [I ± m + I] ) 112e m ± , , Hem = me m , 

(32) 

where [n] is given by formula (9). The representations TI of 
Uq (suz) are deformations of the corresponding representa
tions of the classical Lie algebra su (2). It is easy to verify 
that 

E ne =([/=F m ]![I+m+n]!)1I2e 
(±) m [/- _ ]'[1 ]' m±n' +m n. ±m. 

1m ± nl<l. (33) 

Finite-dimensional representations of Uq (su2 ) are com
pletely reducible. The tensor product of representations of 
Uq (suz) are defined in accordance with formulas (3Ia) and 
(3Ib). Therefore, TI ® Tm=l= Tm ® TI and for matrix ele
ments we have 

(34) 

The last inequality will be more clear in Sec. VIII. If 

TI'(E ± ) =E/~ ,TI'(H) =Hi , then it follows from (3Ia) 
and (3Ib) that 

E ~ = E I~ ® qH,/2 + q - H,/2 ® E I,± ' 

H" = HI ® I + I ® H 2, 

(35a) 

(35b) 

where E ~ and H ® are the operators in the representation 
TI, ® T I,. It was proved by Jimb04 that 

T I,® TI, = L $ TI, 
I 

(36a) 

where summation is the same as in the case of the classical 
group SU (2) (see, for example, Ref. 21). 

Let {ej},{e;J, and {e~} be the bases of the carrier 
spaces of the representations T 1" T 1" and T I from (36a), in 
which E + ,E _ , H are given by the formulas of the type 
(32). As in the classical case, we have the expansion 

I =" [II 12 I ] em L . k mej®e", 
j,k } 

(36b) 

which defines CGC's of the tensor product TI, ® T I,. The 
formula (31 b) means that CGC is equal to zero ifj + k =1= m. 
Everywhere below we assume that j + k = m. Similar to 
classical case,21 CGC's of Uq (su2 ) satisfy the orthogonality 
relations 

L [/~ 
j } 

L [l~ 
I } 

i ~][; i 
I ] [~I 

m-j m l 
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IV. CLEBSCH-GORDAN COEFFICIENTS OF Uq (SU2} 

To evaluate CGC's of Uq (su2 ) we use the method of 
highest weights.21 We put m = I into relation (36b) and act 
by the operator TI(E + ) ==E 1+ upon both sides of this rela
tion. According to (35a) we have 

= I [/~ 
j+k=1 J :] 

In addition, E 1+ el = O. Using this formula, in the same way 
as in Ref. 21 we obtain the recurrence relation for CGC's 

[j :] , 
which gives, 

Therefore, 

[j i :] = ( - 1 )/,-jq{/,(I, + \) -/,(1, + I) -/(/+ I) + 2j(/+ Il}/4 

[j :J = (_I)/,-jq(-j-I)(/,-jll2 

X( [II + j]![l2 + k ]!)1I2A, (38) 
[II - j]![l2 - k]! 

where A does not depend onjand k. To evaluate A, wesubsti
tute expression (38) into formula (37a) with m = I. We 
have 

A -2= I q(-j-I)(/,-jl/2 [II +j]![l2+ k ]!. 
j+k=1 [l1-j]![l2-k]! 

Using relations (14) and (15) and the definition of the func
tion 2<1>1 we obtain 

A -2= [2/d![I+/2-/d! 

[II + 12 -I]! 

x 2<1>1(l+/2 -/1 + 1,l-/1-/2;-2/1;q,q-2/-1). 

Applying formula (7) we represent this basic hypergeome
tric function in the form of one summand. Now in the same 
way as in Ref. 21 we get 

( 
[2/+1]![l1+/2-/]![lI+j]![l2+k]! )112 

X [/1+12 + 1+ 1]![I + II - 12]![/-/1 + 12]![l1 - j]![l2 - k]! ' 
(39) 

where [n]! is defined by formula (10). According to formula 
(33 ), 

= I~m [l-m] 

(E I )1- mel = ( [21 ]![ 1 - m]! )1I2el . 
- I [I+m]! m 

k=O k q I 

X(E\. ®qH,12 l(qH,/2®E\. )/-m-k. 

In this reason Hen~e, with the help offormulas (10) and (13) we obtain 
from (40) that 

[j ~] 
=( [/+m]! )1I2«EI_ )/-mel,e.®e') 

[2/]![/-m]! I J k 

=( [I+m]! )1I2(el (EI )/-m(e.®e'». 
[2/]! [1- m]! I' + J k 

(40) 

[ IJ~ 12 1]=I-mqA [I-m]! ([lI-j]![l2- k ]! 
k m n~o [n]![1- m - n]! [II + j]![l2 + k ]! 

[12 + I - j - n]! [II + j + n]! ) 112 

X [12 _ I + j + n]! [II - j - n]! 

12 

k+l-m-n :], 
Using the mathematical induction it is easy to derive that 

where A = (nk - j(l - m - n) )/2. From here and from 
(39) we derive a q-analog of Racah formula for CGC's: 

2772 

X ( [c - m]![c + m]![a - j]![b - k ]![a + b - c]![2c + 1] )1/2 

[a + j]! [b + k ]! [a - b + c)! [c - a + b ]! [a + b + c + I]! 

(- l) nqn<c+ m+ 1)/2[a + j + n]![b + c - j - n]! XI ..' 
n [n]![c - m - n]![a - J - n]![b - c + J + n]! 
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where m =j + k and 

BI = !b(b + 1) - !a(a + 1) - !c(c + 1) + Y(m + 1) 

(we replace 11,/2, and Iby a, b, and c, respectively). Let us 
note that this formula is given without proof in Refs. 18 
(with a misprint) and 20. 

By means of relations (14) and (15) the sum in (41 a) is 
reduced to the form (2) for the function 3f{J2' Replacing 3f{J2 

by 3<1>2 [see formula (3)], we receive 

b 

k 

b 

k 

c] ( - 1)a- jqB'll(abc)[c + b - j]! 

m - [a - b + c]! [c + b - a]! [b - c + j]! 

c] B ll(abc)[b+c-j]! 
m = q , [c - b + j]! [a + b - c]! [b - a + c]! 

x ( [a + j]! [b - k ]! [c + m]! [2c + 1] ) 1/: 

[a - j]![b + k ]![c - m]! 

<I> ( - a + j,a + j + 1, - c + m I ) 
X 3 2 b + . + 1 b +' q,q, -c ] ,- -c ] 

(41b) 

where BI is the same as in (41a) and 

II ( abc) = ([ a + b - c]! [a - b + c]! [c - a + b ]! ) 1/2. 

[a+b+c+l]! 

The relation (6) is used to obtain other expressions for 
CGC's of Uq (su2 ). Setting 

n = a - j, d = qa + j + I, e = qm - c, 

!=t/-C+b+t, g=q-c-b 

into (41 b) and applying relation (6), we get 

(
[a + j]! [b - k ]! [c + m]! [2c + 1] ) 1/2 <I> (a + j + 1, - a + j, - b - k I _ b + k) 

X 3 2 b . b . 1 q,q , 
[a-j]![b+k]![c-m]! - -c+J,c- +J+ 

(42) 

where 

B2 =!a(a+ 1) +!(b+ 1) -!c(c+ 1) +Jjk. 

Putting here 

n = a - j, d = q - b - k, e = qC - a - b, 

!=qc-a-k+l, g=qC-b+j+t, 

with the help of relation (6) we obtain 

[; ! :] 
B Mabc) = q ,------'----'------

[a + b - c]! [c - a - k ]! [c - b + j]! 

X ( [a + j]! [b - k ]! [c - m]! [2c + 1] [c + m]!) 112 

X ([a - j]!-I[b + k ]!-1)1/2 

( 
C - a - b, - b - k, - a + j I ) 

X3<1>2 c-a-k+ 1, c-b+j+ 1 q,q, 

where 

B3 = !(a + b - c)(a + b + c + 1) + ~(ak - bj). 

Putting 

n = a - j, d = qm - c, e = qa + j + I, 

! = qb - c + j + I, g = q - b - c, 

into (41a) and using the relation (6) we obtain 
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(43) 

b 

k :] 
= ( _ 1)a- jqB4 [b + c - j]![a + b - m]! 

ll(abc)[a + b + c + I]! 

( 
[a+j]![c+m]![2c+l] )112 

X [a _ j]![b - k ]![b + k ]![c - m]! 

(
-a+j ,-a-b-c-l,-c+ml a-b+c+I) 

X 3<1>2 • q,q , 
- a - b + m, - b - c + ] 

where 

B4 =!(b - a - c)(a + b+c+ 1) 

+ji(b+c+ 1) +~ak. 

Let us here set 

n = a + b + c + 1, d = qm - c, e = qU - b - c, 

! = q - 2c, g = t/ - b - c, 

and apply relation (6), then put 

n=b-a+c, d=q-a-b-c-I, 

e = qm - c, ! = q - b - c, g = q - 2c , 

(44) 

into the obtained formula and again apply this relation. As a 
result we have 
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[~ b C] 
1 k m 

= (_1)b+kqB, l1(abc)[2c]![b+c+j]! 
[a-b+c]![b-a+c]! 

X( [a-j]! [2c+l] )1I2ct>(a-b-c,-c-m,-a-b-c- 1
1 b+k+l) (45) 

[a + j]![b + k ]![b - k]! [c + m]![c - m]! 3 2 - 2c, - b - c - j q,q , 

where 

B5 =!(a-b-c)(a+b+c+ 1) 

-!k(b+c+ 1) -!bj. 

If we here put 

n=b-a+c, d=q-c-m, e=qa-j+l, 

f = qa - b - m + I, g = q - b - c - j, 

and take into account relation (6), then we obtain 

-, 
= (_I)b+kqBh l1(abc)[b+c+j]! 

[b-a+c]![a-b-m]! 

X( [a-j]![c-m]![2c+l] )1/2 

[a + j]![b + k ]![b - k ]![c + m]! 

(
a - b - c, - c - m,a - j + 11 ) 

X 3ct>2 b . b 1 q,q, - - c - l,a - - m + 
where 

B6=!(a - b- c)(a + b - c+ 1) 

+ !iCc - a) - !k(1 + 1). 

(46) 

[~ b c] 
1 k m 

Using formulas (2), (3), (16), and (17) we express the 
function 3ct>2 in the form of a sum and obtain from (43) a q
analog of the Van der Waerden formula for CGC's: 

[; ! :] = qB'Mabc)( [a - j]![a + j]![b + k ]![b - k ]![c + m]![c - m]![2c + 1]) 112 

( _l)nq -n(a+b+c+I)/2 
xI . 

n [n]![a + b - c - n]![a - j - n]![b + k - n]![c - b + j + n]![c - a - k + n]! 

Analogously, a q-analog of the Jusys-Bandzaitis formula for CGC's is derived from formula (44): 

[
a b c] = (_l)a-jqB4([a+j]![a-j]![c+m]![C-m]![2c+ 1] )1/2 
j k m 11 (abc) [b + k ]! [b - k ]! 

( _l)nqn(a-b+c)/2[a+b_m_n]![b+c_j_n]! XI . 
n [n]![c-m-n]![a-j-n]![a+b+c-n+l]! 

The formula (46) leads to a q-analog of the Wigner formula for CGC's: 

[l~ b C] = (-I)b+kqB"MabC)( [c+m]![c-m]![2c+ 1] )1/2 
k m [a + j]! [a - j]! [b + k ]! [b - k ]! 

( _l)nqn(a+b-c+I)/2[a_j+n]![b+c+j_n]! 

X ~ [n]![c + m - n]![b - a + c - n]![a - b - m + n]!' 

Setting c = a + b into (47) we obtain 

[; ! a : b] = q(ak _ bj)/2 

( 
[2a]![2b ]![a + b - m]![a + b + m]! )1/2 

X [2a + 2b ]![a + j]![a - j]![b + k ]![b - k]! . 

If c = a - b in (49) then we obtain 

[; ! a:b] = (_I)b+kq -(bH ak+k)/2 

( 
[2b]![2a-2b+ 1]![a+j]![a-j]! )1/2 

X [2a+ 1]![b+k]![b-k]![a-b+m]![a-b-m]! . 
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V. SYMMETRIES OF CLEBSCH-GORDAN 
COEFFICIENTS 

It follows from (43) that 

b 

k 

a 

-j 
From formula (44) we derive that 

b 

k 

X([2C+ 1] )1/2[C 
[2a+ 1] m 

b 

-k 

(52) 

(53) 

The expression (43) for CGC's is symmetric with respect to 
the transformation 

[; 
b ~] k 

[ (a + b + m)/2 (a+b-m)/2 
a~b]' = (a - b + j - k)/2 (a - b - j + k)/2 

(54) 

By means of relation (13) we derive from (41a) that 

[; 
b b 

:mL k 
c] =(_1)a+b-C[a. 

-k m q -J 
(55) 

(since q is replaced by q - I we have supplied CGC's with 
index q). 

The classical analog of symmetry relations (52 )-( 55) 
(they correspond to the case q = 1) generates the symmetry 
group for CGC's, which contains 72 elements. 2 

I In the same 
way, relations (52)-(55) generate the symmetry group for 
CGC's of the quantum algebra, containing 72 elements. But 
now relation (55) replaces q by q - I. In fact, this replace
ment means that algebra Uq (su2) transforms into the alge
bra U I (su2 ). 

q 

Besides these symmetries there are "reflection symme-
tries" of expressions for CGC's related to transition of the 
type 1-+ I = - 1 - 1. As in the classical case, the existence of 
these symmetries is connected with the fact, that the finite
dimensional representations T of Uq (su2) are continued 
[with the help of Uq (sI2)] to the finite-dimensional repre
sentations T of Uq (SU I•I ), which are contained in the reduc
ible representations T f and T <_ /_ I of Uq (su l.l ), (for de
tails see Ref. 30). 

In the classical case the "reflection symmetries" are re
lated to the property r (b + 1) = b r ( b) of the classical 
gamma function. The gamma function, introduced in the 
formula (22b), has analogous property. Let us take the func
tion 

i\(b) = q- (b-l)(b-2)/4r
q

(b) 

instead of r q (b). Then according to (23a) we have 

rq(n) = [n - I]!, 

r q (b + 1) = [b ] r q (b), nEZ + ,bEe. 

Therefore, if b is not an integer, then 

rq(b) 

i\(b-n) 
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= [b-l][b-2]"'[b-n] 
A A 

= (-I)n{rq ( -b+n+ 1)/rq( -b+ 1)}. 

If b-+m, mEZ, we obtain 
A E q ( - k + 1) = [ - k ]! = ( _ 1) k - m [m - I]!. (56) 
r q (-m+l) [-m]! [k-l]! 

Thus, as in the c~ssical case, the ratio of the values of the 
gamma function r q at integer points has sense. 

The relations for CGC's, related to "reflection symme
tries," are obtained with the help of the expressions for 
CGC's (in the form of a sum) by substitutions of the type 
1-+ -1- 1 =1 and by taking into account relation (56). In 
this way, repeating reasonings of the classical case, we obtain 
the symmetries 

[; 
b ~] = ( _ 1) b + k [~ b !] k k 

= ( - 1) b - c - je b ~] k 

= ( - 1)a-
j
[; b !] k 

= (_1)a+b-c[~ b !]. (57) 
k 

We can combine these symmetries with symmetries (52)
(55) as it is done in the classical case. 

Let us note that symmetry relations (52)-(55) were 
obtained by other (more complicated) methods in Refs. 18 
and 19. The reflection symmetries are.new. 

VI. GENERATING FUNCTIONS FOR CLEBSCH
GORDAN COEFFICIENTS 

Let 

F= (1 +x)(b-a+c) 

X 2<1>1 (c - a - bJ - a;c - b + l;q, _ qa - b - CX), 

where (1 + x) (n) is defined by formulas (19) and (20). We 
represent (1 + x) (b - a + c) in the form of the sum over n [ac
cording to formula (18)] and 2<1> I ( ... ) in the form of the 
sum over m [according to formula (2)]. Now we set 
m + n = b + k and change the summations over nand m by 
the summations over k and m. After some simple transfor
mations we obtain 

F = I (qa - b - C;q) b + k x b + k 

k (q;q)b+ k 

( 
C - a - bJ - a, - b - k I ) 

X ,<1>2. q,q . 
. C - b + J + l,c - a - k + 1 

Using formula (43) for CGC's and relation (10) we derive 
that 

( 
[a - b + c]![a + j]![2c + 1] )112 

[b + c - a]! [a + b - c)! [a + b + c + I]! [a - j]! 
(1 +x)(b+c-a) 

X -'-----'-----
[c - b + j]! 

X 2<1>I(c-b-aJ-a;c-b+j+ l;q, _qa-b-cx ) 

Groza. Kachurik. and Klimyk 2775 



                                                                                                                                    

= L [~ 
k-m~j J 

b 

k 

x ([ b + k ]! [b - k ]! [c + m]! [e - m]!) 1/2 ' 

where 

b 

k 

where 

(58) 

A = !b(2a - 2j - 2e - 3b - 3) - (a - e)(a + e + I). 
Thus, the function from the left-hand side of (58) is a gener
ating function for CGC's of Uq (su2 ). Other similar formulas 
can be received by means of symmetry relations. 

Let us consider formula (58) as an expansion of the 
function from the left-hand side into the series in powers of x. 
Then we get 

M = q-A ([b - k ]![b + k ]![e + m]![e - m]![a - b + e]![a + j]![2e + 1] )112. 

(b + k)! [b + e - a]! [a + b - e] ! [a + b + e + I]! [a - j]! [e - b + j]!2 

There is the relation that can be considered (in some sense) as the inverse of (58). To obtain this relation we need one 
additional expressions for CGC's. We represent the expression (45) for CGC's in the form of the sum over n and change this 
summation by the summation over s = I + m - n. Then we represent the obtained expression in terms of the function 3<1>2' As 
a result we have 

b 

k 

where 

:] = (_I)b+C+k+m~ 

X Mabe) [a + b + e + I]! 
[a-b+e]![a+b-m+ 1]![b-a-m]! 

X ([a - j]![b - k ]![e - m]![2e + 1]) 112 ([a + j]![b + k ]![e + m]!) 112 

X 3<1>2 ( - e - m,e - m + l,b - k + l;a + b - m + 2,b - a - m + l;q,q), 

A = !a(a + I) - !b(b + 1) + !e(e + I)!k(m - 1). 
Applying the formula (23b) to this function 3<1>2 and taking into account relation (21), we get 

= (1 - q) L qr(b- k+ 1)(1 - qr+ 1)(O-j)2<1>1( - e - m,e - m + l;b - a - m + l;q,qr), 
r=O 

where 

D= (-1)' [a-b+c]![a+b-m+ 1]!([a+j]![a-j]![b+k]![b-k]![e+m]!)1/2 

~ a(abe)[a+b+e+ 1]!([e-m]![2e+ 1])112 

(59a) 

(59b) 

s=b +e+k +mandAisthesameasin(59a). 
Let us show that the function 

= o+i-cb+±-oa-i+c (qc-o-b;q)n(qo-b-c;q)r 

n ~ 0 r ~ 0 , ~ 0 ( q;q ) n (q;q) r ( q;q ) , 

G(x,y,Z) = (x_qy)(u+b-c) 

X(y_Z)(b+c-u)(z_X)(o-b+c) (60a) 

is also a generating function for CGC's. Representing every 
multiplier in the form of the sum (20), we obtain 

G(x,y,z) 

2776 J. Math. Phys., Vol. 31, No. 12, December 1990 

X (qb - a - C;q).,qnx ' - n + 0 + b - C 

xyn - r + b + c - uzr -, + u - b + c. 

Now we put 

s-n+a+b-e=a+h n-r+b+e-a=b+~ 

r-s+a-b+e=e-m 

and change the summations over n, r, s by the summations 
over n,j, k. Then 
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( a-b-c ) (qb-a-C.q ) 
~ a + j b + k c _ m q ;q c - a - k , c - b + j 

G(X,y,Z) = £.. x y Z 
j,k (q;q)c- a - k (q;q)c - b +j 

x 3C1>2(e - a - b, - b - kJ - a;e - a - k + I,e - b + j + I;q,q). 

Taking into account expression (43) for CGC's, after some 
simple transformations we receive 

G(x z) = (_1)a+b-2c a(abe)[a+b+e+ I]! 
,y, [2e+ 1]1/2 

XI(_1)k- J 
J,k 

Xa+jyb+kZc-mqD [a b 

X k' k I(a,b,eJ,) J 

wherej + k = m and 
I(a,b,eJ,k) = ([a + j]![a - j]![b + k]! 

~], 

X [b - k ]![e + m]![e - m]!) 112, 

(60b) 

(61) 

D = ! (e - a - k)( a - b - e - 1) + ! (e - b + j) 
X(b-e-a-I) -!(a+b-e)(a+b+e+ 1) 

+ !(bj - ak). 

Next generating function is given by the formula 

(V IU2 - qU IV2)(a+b-c)(W IV2 - W2VI)(b+c-a) 

X (U IW2 - WIU2)(a-b+c) 

= a(abe) [a + b + e + 1]![2e + 1] -112 

(62) 

where D and I(a,b,eJ,k) are the same as in (60b). To prove 
this formula it is sufficient to represent the left-hand side in 
the form 

(
u v)(a+b-C) 

uiavibwic -1. _ q -1. 
u l VI 

x(V2 _~)(b+c-a)(~_ u2 )(a-b+C) 

VI WI WI UI 
and to apply formula (60b). 

Let us replace in (60a) x by q2/3x andzby qll3z and take 
into account relation (20). We obtain that formula (60b) 
will be correct if we replace the left-hand side by 
(x _ qIl3y )(a+b-C)(y _ qI/3z )(b+c-a) 

X (z _ qIl3x )(a-b+c) 

and multiply the expression under the summation sign on 
the right-hand side by q(2C - a - b + 2J - m)/3. The correspond-
ing statement is valid for relation (62). 

The relation 

Eq(xv) Eq(yt) Eq(zu) 

Eq(xt) Eq(yu) Eq(qzv) 

I [~ be] 
a.b.cJ.k J k m 

x b+ c- aya - b+ CzO + b- cua +JVb + kt c- m( 1 _ q)AqB 
X----~----~~~----~--~--~~ a (abe)I(a,b,eJ,k) 

(63) 

where m =j + k, A = a + b - 2e - j + k, I(a,b,cJ,k) is 
given by formula (61) and 

B = -!a (3a - 1) - !b (3b + 1) 

- !e(3c + 1) - !i(a + e - 2b + 1) 

+!k(b+e-2a+ 1) +ab+ae+bc, 

is proved in the same way as relation (60b). 

VII. RECURRENCE RELATIONS FOR CLEBSCH
GORDAN COEFFICIENTS 

The formula 

Qn(q-X) = Qn(q-X;dJ,Nlq) 

(
q - n,df qn + t,q - x I ) 

= 3fiJ2 d - N q,q, n = O,I, ... ,N, 
q,q 

defines q-Hahn polynomials, which are orthogonal on the 
set xE{O,I, ... ,N} [see formulas (3.22) and (3.24) in Ref. 
31]. These polynomials are special cases of so-called q-Ra
cah polynomials Rn (,u(x»)from Ref. 32. The recurrence re
lations for Rn(,u(x», derived in Ref. 32, leads to that for 
polynomials Qn (q- X). It has the form 

A"Qn+ dq-X) - {An + CIt - (1- q-X)}Qn (q-X) 

+ C"Qn_1 (q-X) = 0, 

where 

(1- dfqn+ 1)(1- dqll+ 1)(1 _ qn-N) 
A = - , 

II (1 _ df q211 + I) (1 _ df q211 + 2) 

(1 - qll) (1 - fqll)(q- N- I - dfqll)dqn+ I 
C = -~--~--~~~----~~--~--

II (1 _ df q2n) (1 _ df q2n+ 2) 

From the other side, putting 

e - m = x, a - j = n, qb-c+ J = d, 

qC-b+J=j, c+b-j=N 

(64) 

into (41 b), we express CGC's in terms of q-Hahn polynomi
als: 

b 
k 

c] = ( _ 1) a - J B ([ a + j]! [b - k ]! [e + m]! [2e + 1]) 112 a (abc) [b + e - j] ! 
m q ([a - j]![b + k ]![c - m]!)I12[a - b + c]![c + b - a]![b - e + j]! 

X Qa -J (qm -';qb- c+j,qC- b+J,b + e - jlq). 
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Substituting into (64) the expression for q-Hahn polynomials in terms of CGC's, we get the recurrence relation for 
CGC's: 

[
a + 1 

Bo . 
J 

b 

k 

b 

k 
e] [a - 1 +Eo . 
m J 

b 

k ~] =0, (65) 

where 

Bo = [2a]([a-b+e+ 1][a+b+e+2][a-j+ 1][a+j+ 1][a+b-e+ 1][b+e-a])I12, 

Eo = [2a+2]([b+e-a+ 1][a+b-e][a+j][a-j][a-b+e][a+b+e+ 1])1/2, 

Do = q(c+kl12[2a][2a + 1][2a+2][e-m] _q-(0+11/2[2a][a+j+ 1][a+b-e+ 1][b+e-a] _qOI2 

X [2a + 2][a - j][a + e - b][a + b + e + 1]. 

Using formulas (29) and (2.10) of Ref. 29, we derive the recurrence relations 

[a b me] ([b-a+e][a-b+e+ 1])112 j k 

=q(0-b-Hkl/4([b+k][a+j+ 1])112 

[
a + 1/2 b - 1/2 me ] 

X j + 1/2 k - 1/2 
+q-(0-b+j-kl/4([b_k][a_j+ 1])112 

[
a + 1/2 b - 1/2 me ], 

X j _ 1/2 k + 1/2 

([a+b-e][e+m+ 1][2e+2])1I2[; ! ~] 
= q(b+C-20+ H 11/4([a _ b + e + 1][b _ k ])112 

[
a b - 1/2 e + 1/2] 

X j k + 1/2 m + 1/2 
- q- (a+c-2b+k+ 1l/4( [b _ a + e + 1] [a _ j] )112 

[
a - 1/2 b e + 1/2 ] 

X j + 1/2 k m + 1/2 ' 

([a+b+e+ 1][e-m][2e][2e+ 1]-1)112[; ! ~] 
= q(c-o+2b-kl/4( [a _ j] [a - b + e] )112 

X [a - 1/2 b e - 1/2 ] 
j + 1/2 k m + 1/2 

+ q(C - b+ 20 - jl/4( [b _ k ] [b _ a + e]) 112 

[
a b - 1/2 e - 1/2 ]. 

X j k+1/2 m+1/2 

Derivation of these formulas and other recurrence relations 
will be given in a separate paper. 

In the conclusion of this section we give the expressions 
for CGC's of the tensor product TI ® T 112, which will be 
used below. They follow from formulas (50) and (51) and 
have the form 
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[~ 

1/2 

± 1/2 

= ± (/ =Fm+ 1121/4( [l ± m + 1/2]) 112 

q [2/+1]' 

1/2 

± 1/2 

(66a) 

= +q=F(/±m+I121/4([/~m+1/2])1I2 (66b) 
[21 + 1] , 

where m = j ± 1/2. Let us note that CGC's of these tensor 
product for somewhat other definition of the quantum alge
bra Uq (su2 ) are given by Pasquier. 33 His CGC's are ob
tained from ours if one changes q by q - I . 

VIII. QUANTUM GROUP SUq (2) 

In the basis em' m = -I, -I + 1, ... ,/, the representa
tion TI of Uq (su2 ) is given by the matrix elements d ~n 
which depend on elements aEUq (su2 ). As in the classical 
case, the relations 

L [~I 
I 11 

Xd~,m, = d;J,d~,k" (67a) 

L [~I 12 1 ][/1 12 ~J j,J"k"k, 1 I kl m l j2 k2 

X d l, dl, -d l 
jJ-:o. k,k~ - m,m:!, (67b) 

are valid. We assume that CGC's are real. 

The matrix elements d:~~,112' d:~~,_1I2' dl~2112,112' 
d 1~2112, _ 112 of the two-dimensional representations T 112 of 
Uq (su2 ) will be denoted by til' t 12, t 21 , t22, respectively. It 
follows from (66a) and (66b) that CGC's of the tensor 
product T 112 ® T 112 are 
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[! ! : 1 = [ ~ ~ ~ ! 
[! ~ 1 ~ 1 = - [ ~! 
[~! ! ~]=[! ~! 

1 1 = 1, 
-1 

! ~l=q-1/4[2]-1/2, 
~] = q1l4[2] -112. 

Putting II = 12 = 1/2 into (67a) and using these CGC's, we 
find that 

t22tll = ql12[2] - I(d 60 + q-II), 

tllt22 =q-1/2[2]-I(d6o +qI). 

where I = d ~. Hence, 

t22 tll - qtll t22 = (q - 1)1. 

In the same way we obtain that 

(68) 

t12t21 =t2It12' t12tll = Jijt ll t 12 , t21tll = Jijt ll t21 , (69) 

Jijt ll t22 - t21 tl2 = JijI, t22t12 = Jijt12 t22' 

t22 tZI = Jijt21 t22 , 

t22 tll - tll t22 = (Jij - 1/Jij) t21 t lZ ' 

(70) 

(71) 

Using formula (36a) it is easy to show that any finite
dimensional irreducible representation of Uq (su2 ) can be 
received by successive tensor multiplication of representa
tions T 112. If in the multiplication procedure we use CGC's, 
then we obtain matrix elements of the representations 
T', 1= 0,1/2,1,3/2, .... Therefore, taking products of the 
elements t w t 12' t21 , t22 and their linear combinations we get 
the algebra A which contain all matrix elements of the repre
sentations T' of the algebra Uq (SU2)' The algebra A is an 
associative algebra, generated by the elements I = d~, tll' 
t 12, tw t22 and by the relations I, 17 (68-71). The structure of 
the Hopf algebra is introduced into A. In this case A is called 
the quantum group SU q (2). the matrix elements 
d ~n' 1=0, 1/2, 1,3/2, ... , - k,m, n<l, form a basis of A. 
The structure of a C * algebra is introduced into A in Wor
onowicz's approachs

,6 to the quantum group SUq (2). 

IX. MATRIX ELEMENTS OF THE REPRESENTATIONS T' 

Let us derive expressions for matrix elements of the irre
ducible reprsentations T' of Uq (su2 ) in terms of tIl' t 12, t21 , 
t 22• We put 12 = 1/2 into (67b). It follows from (66a) that 

[
II 1/2 1+ 1/2] = [ I 1/2 1+ 1/2 ] = 1. 

1/2 I + 1/2 - I - 1/2 - I - 1/2 
Therefore, 

d i! :~~,/+ 112 = d i,t ll , 

d '!/!...ZII2'/ + 112 = d '_ ,,/t21' 

di!:~~,_1_1I2 =di,_ltI2 , 

d 1!/~\12, _ 1_ 112 = d 1_ I, _ It22 . 

We obtain from here that 

d i, = t i: , d 1_ 1,/ = t~: , 
d i, _I = t ii, d I_I, _I = t ~i· 
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(72) 

Now let us put II = 1/2 into (67a) and use expressions 
(66a) and (66b) for CGC's of the tensor product 
T 112 ® T 112. We receive the relations 

[21 + 1] t II d ~j 

=q-(2/-k- j)/4([I+k+ 1][/+j+ 1])112 

X dl+ 112 + q(2/+k+ j+2)/4 
k + 112J + 112 

X ( [I - k ] [I - j] ) 1/2d ~~ I(JzJ + liZ' (73) 

[21 + 1 ]t12d~j = q(k+j)/4([1 + k + 1 ][/- j + 1]) 112 

X dl+ 112 _ q(k+ j)/4 
k + 1/2J- 112 

X ([1- k] [I + j] )1I2d~~1(}2Jk_1/2' 
(74) 

[2/+ l]t2Id~j =q(k+ j)/4([I_k+ 1][/+j+ 1])112 

X d'+ 1/2 _ q(k+ j)/4 
k - I12J+ 112 

X ([l + k] [1- j]) 112d ~-::..I(JzJ+ 112' (75) 

[21 + 1 ]t22 d ~j = q(2/+ k +j)/4( [1- k + 1] [/- j + 1]) 112 

X dl+l12 +q-(2/-k-j+2)/4 
k - 112J - 112 

x([I+k][/+j])I12d~-::..YJzJ_1I2' (76) 

In fact, these relations coincide with relations (4.6)-(4.9) 
. from Ref. 17. Setting 12 = 1/2 into (67a) we have 

[2/+ l]d~jtll =q(2/-k- j)/4([l+k+ 1][/+j+ 1])112 

X dl+l12 +q-(Z/+k+j+2)/4 
k + 112J + 1/2 

x([I-k][/-j])l12d~~I(;2J+I12' (77) 

[2/+ l]d~t12 =q-(k+j)/4([I+k+ 1][/-j+ 1])IIZ 

X dl+1I2 _q-(k+j)/4 
k+ I12J-1I2 

X ([1- k] [I + j] )112d~~I(JzJ_I12' (78) 

[2/+ l]d~jtzl =q-(k+ j)/4([/_k+ 1][/+j+ 1])IIZ 

X dl+ 112 _ q- (k+j)/4 
k-1/2J+ 112 

X ( [I + k ] [1- j] ) 112d ~ -::.. I(JzJ + 112' (79) 

[2/+ l]d~jt22 =q-(Z/+k+ j)/4([I_k+ 1][/-j+ 1])112 

X d I + liZ + q(21- k - j + 2)/4 
k - I/ZJ - liZ 

X ([I + k] [I + j] )IIZd~-::..I(;ZJ_I12' (80) 

For k = 1 relations (73) and (74) take the form 

[21 + 1] IIZtll d ~ 

=q-U-j)/4[1+j+ 1]I12di!:~L+I12' (81a) 

[2/+ 1]I12t12d~ 

= qU + j)/4 [1- j + 1] 112d i! :~L _ liZ' 

If k = - 1 in (85) and (86), then we have 

[21 + 1] I12tZI d I_IJ 

- q- (/-j)/4[1 +1' + 1] 112d 1+ 112 - -1-I12J+1I2' 

[21 + 1] 112t22 d 1- IJ 

(81b) 

(82a) 

=qU+j)/4[l_j+ 1] I12d l!/!...2112J_1/2' (82b) 

We consider relations (8Ia)-(82b) and similar relations, 
obtained from (77) - ( 80), as recurrence relations for matrix 
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elements d I± IJ and d J, ± I' These recurrence relations and 
matrix elements (72) show that 

dl _qU'-n'l/4( [2/]! )112tl+ntl-n (83) 
n,l - [I + n]![.l- n]! II 21' 

dl _qU'-II'l/4( [2/]! )1I2tl+lltl-1I (84) 
I,ll - [I + n]![1- n]! II 12' 

dl _qU'-n'l/4( [2/]! )112tl+lltl-1I (85) 
n, - 1 - [I + n]! [1 _ n]! 12 22' 

dl =qU'-n'l/4( [2/]! )112tl+l1tl-lI. (86) 
-I,n [/+n]![/-n]! 2122 

Now expressions for general matrix elements of the rep
resentations TI can be found. They have the form 

d l = ([1- n]![1 + m]! )112 
mn [1- m]![1 + n]! 

t m + nt m - n 
X II 12 q(m+n)(m- nl/4 

[m - n]! 

X 2<1>1 ( -I + m,l + m + l;m - n + l;q, 

- ..fqt12 t21 ), 

d l =([l-n]![l+m]!)I12 
nm [1- m]![1 + n]! 

t m + nt m - n 
X II 21 q(m+nl(m-nl/4 

[m - n]! 

X 2<1>1 ( -I + m,1 + m + l;m - n + l;q, 

- ..fqt12 t21 ), 

if m> I n I, and the form 

d l = ([I + n]![l + m]! )112 
- m,n [/- m]![l- n]! 

q-(m+n)(m-nl/4 

[m + n]! 

X 2<1>1( -I + m,l + m + l;m + n + l;q, 

d l =([I+n]![l+m]!)112 q-(m+n)(m- nl/4 
n, - m [I _ m]! [l - n]! [m + n]! 

X 2<1>1( -I + m,1 + m + l;m + n + l;q, 

(87) 

(88) 

(89) 

(90) 

if m> In I. Really, it follows from (83 )-( 86) that formulas 
(87)-(90) are valid form = I. In order to prove their valid
ity for general m we use a mathematical induction. Namely, 
we substitute expression (87) ford ~11 into (73 )-(75). After 
simple manipulations they reduce to formulas (28)-(30). 

But formulas (74) and (75) allowustotransformd~11 into 
d~-+;' I. Therefore, expression (87) for d~11 is valid. Analo
gously, with the help of relations (73)-(75) we prove for
mula (88). Formulas (89) and (90) are proved by means of 
relations (78)-(80). 

Other expressions for the matrix elements d ~n can be 
obtained from (87)-(90) with the help of relations (4), (5), 
and (8). 
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Remark: After the manuscript was submitted for publi
cation, we learned of Biedenharn's papers34,35 where a real
ization of the quantum algebra Uq (su2 ) is constructed by 
means of a q-analog of the Jordan-Schwinger mapping. Us
ing this realization a theory of q-tensor operators is devel
oped. As in the classical case, this theory is a powerful tool 
for development of the theory of the Racah and Clebsch
Gordan coefficients. We also learned of Nomura's paper36 
where properties of the Clebsch-Gordan coefficients of 
Uq (su2 ) are considered. In fact, there is no overlapping of 
our results with this paper. 
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Vector coherent state constructions of U(3) symmetric tensors and their 
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Generalized vector coherent state constructions of totally symmetric U (3) tensors are used to 
gain new expressions for the SU (3 ) ~ SU (2) xU ( 1) Wigner coefficients for the coupling 
(A til I ) X (A20) ..... (XloU 3). These expressions show how the extremely simple formulas ofLe 
Blanc and Biedenham, involving a single 9-j coefficient, arise as special cases of a general result 
that involves 12-j coefficients. A simpler general result involving only 9-j coefficients and K
normalization factors is derived in a way that can, in principle, be generalized to the generic 
coupling with multiplicity. 

I. INTRODUCTION 

In the past few years, a vector coherent state theoryl-5 
(VeS) and its associated K-matrix techniquel.6•

7 have been 
used to great advantage to evaluate explicit expressions for 
the matrix representations of higher rank Lie algebras. The 
unitary groups in the canonical chain U (n) ~ U (n - 1) 
~ ... ~ U (2) ~ U ( 1) form a particularly simple example,8 

and ves techniques have been used to cast many results for 
the U (n) Wigner-Racah calculus into new forms that reveal 
the structure of the Wigner and recoupling coefficients in a 
new light. It has been shown in particular9 that the U (n) 

elementary unit projective operators of Biedenham and 
Louck 10 can be written down very simply in terms of 
U (n - 1) Racah coefficients and the simple K-normaliza
tion factors ofVeS theory. Very recently Le Blanc and Bie
denham II have shown that some classes of U (n) 

~ U (n - 1) xU ( 1) reduced Wigner coefficients are simply 
products ofU(n - 1 )9-j type recoupling coefficients and K
normalization factors. The question naturally arises: To 
what extent can the most general U (n) ~ U (n - 1) xU (1 ) 
reduced Wigner coefficient be expressed in terms of 
U (n - 1) recoupling coefficients and the K-normalization 
factors of ves theory? The earliest detailed applications of 
ves theory have focused on the matrix elements of the gen
erators of the algebra. Very recently l2.13 ves theory has 
been generalized to include the Bargmann space realizations 
of more general operators lying outside the algebra. This 
generalization now makes it possible to examine the specta
cularly simple class ofU(n) tensors ofLe Blanc and Bieden
ham II and show that they are a special case of a more general 
result. In this generalization, U (n) ~ U (n - 1) xU ( 1) re
duced Wigner coefficients are expressible in terms of sum
mations involving U(n - 1) 12-j type recoupling coeffi
cients. For the Le Blanc-Biedenham case, these sums 
collapse to a single term in which the 12-j type coefficient 
collapses to a 9-j type coefficient. The ultimate aim of con
structing a U(n) tensor operator calculus in a unique (au
thor-independent) way has not been fully implemented in 

the generic case with multiplicity. 14 It may therefore be use
ful to first reexamine the special multiplicity-free case of to
tally symmetric U (n) tensors within the framework of the 
generalized ves theory. 12.13 It is the purpose of this investi
gation to generalize the Le Blanc-Biedenham result. To 
avoid the multiplicity problem, however, the investigation is 
restricted to the special case of totally symmetric tensors. To 
avoid some of the notational complexities of the Gel'fand 
notation needed for general U (n), a further simplification to 
n = 3 is made so that the U (n - 1) recoupling coefficients 
are expressible in terms of well-known angular momentum 
recoupling coefficients of 12-j, 9-j, or 6-j type. Three new 
expressions are given for the SU(3) ~SU(2) xU(l) re
duced Wigner coefficients for the most general coupling of 
type (AtIll) X (A 20) ..... (AJIl3)' In terms of their complexity 
and the number of required summations, these expressions 
are comparable to previously known 15 results. Since all re
sults are expressed in terms ofSU(2) recoupling coefficients 
and theK-normalization factors ofVeS theory, these results 
reveal the structure of the SU(3) ~SU(2) XU( 1) reduced 
Wigner coefficients in a new light. They are derived by ves 
techniques that can, in principle, be generalized to the gen
eric case with multiplicity, the ultimate aim of this type of 
investigation. 

The paper is organized in the following way. Section II 
gives the Bargmann space realization of totally symmetric 
U (3) tensor operators using the generalized ves ap
proach. 12 In this approach, a U (3) tensor operator is fac
tored into two parts in an SU(2)-coupled basis: (1) an "in
trinsic" operator acting only on the generalized ves 
"vacuum" states, U ( 1 ) extremal states in the U (3) 
~SU(2) xU(1) scheme; and (2) a Bargmann space (z
space) operator that changes the U ( 1) weights. As soon as 
the "intrinsic" operator reduced matrix elements are known, 
the evaluation of SU (3 ) ~ SU (2) xU ( 1) reduced Wigner 
coefficients is reduced to an exercise in angular momentum 
coupling. The "intrinsic" operator reduced matrix elements 
are evaluated in Sec. III. The new expression for the 
SU (3 ) ~ SU (2) xU ( 1) reduced Wigner coefficient is then 
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given in Sec. IV. For the coupling (..11#1) X (..120) -+ (..131'-2)' 
The expression of Sec. IV is particularly simple in practice if 
n, the number of squares added to row 3 of the Young tab
leau for (A 1# I) is very small compared with (..12 - n) the 
number of squares added to rows 1 and 2. The case n = 0 
leads to the first Le Blanc-Biedenharn result. For the case 
when (..12 - n) is small an alternate but similar expression 
may be more sueful. This is given in Sec. V. For the case 
(..12 - n) = 0 it collapses to the second Le Blanc-Bieden
harn result. The general expressions of both Sec. IV and V 
involve 12-j coefficients. An even simpler expression, involv
ing only 9-j coefficients, is derived in Sec. VI by a buildup 
process that compounds the two special Le Blanc-Bieden
harn results. This final approach not only gives the simplest 
result from the point of view of actual computations but also 
shows the greatest promise for the needed generalization to 
the generic case with multiplicity. 

II. VCS REALIZATION OF TOTALLY SYMMETRIC U(3) 
TENSORS 

The U (3) generators Eij can be realized in the usual 
way in terms of oscillator creation and annihilation opera-

t d 'h" 'l"'d' 123 tors, a jp an a jp ; WIt spatIa m ex I = , , ,or x, y, z, 
and "particle indexp, withp = 1, ... , n: 

Eij = ~ i (a,&ajp + aJpa,&). (1) 
2 p= I 

The complementaryl6 U(n) generators Cpq are 

Cpq = ~ ± (a;pa jq + ajqa;p)' (2) 
2 j= I 

For U (3) it is sufficient to choose n = 3, and this choice will 
be made. However, the specific value of n plays very little 
role in the present investigation. [A restriction to SU (3 ) 
with n = 2 has been shown to have some advantages by Le 
Blanc and Rowe 17 but would require some modification in 
the present construction.] 

In the V CS theory, the U (3) generators are organized 
into (1) an Abelian nilpotent algebra of raising operators 
Ei3 =Aj> with i = 1, 2; (2) an Abelian nilpotent algebra of 
lowering operators E3j = A ;, with i = 1, 2; (3) The U (2) 
subgroup generators Eij with i, j = 1, 2; (4) the U ( 1) sub
group generator E 33. 

The generators of U (2) ® U ( 1) are called the core sub
group generators. 

The U (3) state vectors can be specified by the Young 
frame integers [m\3 m23 m33 ] with standard Gel'fand sub
group labels m 12, m22, and mil' Alternatively, they can be 
specified by the total number of oscillator quanta 
N = m \3 + m23 + m33; the Cartan SU (3 ) labels 
A=m\3-m23, f-l=m 23 -m33, and U(2)xU(1) sub
group labels given in the notation of Ref. 5 by angular mo
mentum quantum numbers of I, MJ> and the U ( 1) label Y, 
the eigenvalue of j(EIl + E22 - 2E33 ), with Y 
j = (A + 2f-l) - w, w = 0, 1, ... , A + f-l. Note that 
w = m\3 + m23 - m 12 - m22, I = ~(m12 - m22 ), M[ 
= mil - ~(m12 + m22 ). Note also that w gives the eigenval-

ue of E33. The set of generalized "vacuum" or "intrinsic" 
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states of VCS theory will be chosen to be the states with 
w = 0, IN(Af-l)w = 0, 1= A 12,M[ = m), for which 

E i3 IN(Af-l)w = 0, I = (A 12)m) = 0, 

for i= 1,2; m = +..1/2, ... , -..1/2. (3) 

Note that the operators E j3 are raising operators for Y. The 
state with w = 0, m = !A is a highest weight state. In terms of 
the Elliott label 18 E = - 3 Y, however, the E'3 become lower
ing operators and the vacuum states become lowest E-weight 
states. The words raising and lowering will therefore be 
avoided. The E j3 =Aj will be named annihilation operators 
instead since they annihilate the generalized vacuum states 
ofEq. (3), whereastheE3j =A; canbenamedcreationoper
ators. In the U (3) xU (n) realization, with n = 3, the gener
alized vacuum state with m = + yt has the form 

IN(Af-l)w = 0, 1= m = A 12) 

la
t a!21~ t A II 

=J1IH (a ll ) t a21 a 21 

aL aTz at3 m" 

X ail ai2 ai3 (4a) 

all a12 a13 

with 

_----'(_A_+_l_)--=.(f-l_+_l-'--)(-'--A_+--=-f-l_+_2...;..) __ . (4b) 

(A + f-l + m33 + 2)!(f-l + m33 + 1 )!m33! 

The vector coherent state is built in terms of two com
plex variables Zj (i = 1,2), through the action of the creation 
operators E3j on the generalized vacuum or intrinsic states: 

Iz;N(Af-l)m) = exp(ztE 31 + zfE32 ) IN(Af-l)w 

= 0,(..1 /2)m). (5) 

Note that this coherent state carries the labels N(Af-l) and 
m = + A /2, ... , - A 12. It forms a (A + 1): dimensional ar
ray, i.e., it is a vector quantity. 

State vectors can be expanded in terms of the U (3) basis 
vectors IN(Af-l)wIM[). In the VCS method these are 
mapped into their z-space functional realizations: 

IN(Af-l)wIM[) -+ IN(Af-l)wIM[ )vcs, 

IN(Af-l)wIM[)vcs 

= I (N(Af-l)O(A 12)m leZ'AIN(Af-l) wIM[ ) 
m 

X IN(Af-l)O(A 12)m) ® 10), (6) 

with zoA = zjAj = z lE\3 + Z2E23' Note that this is a 
linear combination of intrinsic space standard kets, 
IN(Af-l)O(A 12)m), with coefficients that are functions ofz. 
For completeness the z-space vacuum ket 10) (for the action 
of the z bosons), has been included in Eq. (6). However, 
since its z-space realization is the simple number 1 it will 
usually be omitted throughout later sections. 

Operators 0 are mapped into their z-space realizations 
nO) via 
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(OIN(A,u)wIM/»vcs + L(N(A,u)O~mlez'AOe-z'Ae"'AIN(A,u)wIM/)IN(A,u)O ~m) ® 10) 
m 2 

= L L (N(A,u)O(A 12)mlr(0) IN(A,u)wIM) (N(A,u)wIM/Ie"·AIN(A,u)wIM/) IN(A,u)oT m) ® 10), 
m wTMr 

(7) 

with 

r(o) = 0 + [z-A,O] + Uz-A, [z-A,O]] + .... (8) 

The z-space realizations for the generators Eij are given in 
Refs. 5 and 8, but are repeated here for completeness. 

With i,j = 1,2, 

J 
r(Ei3 ) = r(A i ) = -a. ' 

'Zi 

(9) 

r(E3i ) = r(A ;) = ± (lEaiZa -lE33zi - ZiZa ~). 
a= I JZa 

Note that they are functions of the z-space operators 
Zi' J IJzj , and intrinsic operators lEij (denoted by double 
lines). These intrinsic operators are defined only through 
their action on the intrinsic states. They commute with the z
space operators Zi' J IJzj , and in the matrix element of 
r( 0) of Eq. (7) they must be worked through to the left so 
that they can act on the intrinsic state. Since generators do 
not change the irreducible representation of the group, the 
lE. connect intrinsic states only to intrinsic states (possibly lJ 

with m' =1= m). The lEij are thus defined through their pure 
intrinsic state matrix elements, e.g., with lE I2 =[+, 

(N(A,u)O(A 12)mllEdN(AJ.l)0(A 12)(m - 1» 
= ~(A 12 + m)(A 12 - m + 1). ( 10) 

In the generalized YCS method 12,13 operators 0 outside 
the group algebra are to be included. Since the action of such 
operators can change the U (3) irreducible representations, 
Eq. (7) is to be generalized to 

(0 IN(AJ.l) wIM/) )vcs 

L L L (N'(A 'J.l')0 ~ m'l 
N'().' ') m' --- 2 J.l. w/Mr 

X r(0) IN(AJ.l)wIM/) 

X (N(AJ.l )wIM/ I e".A IN(AJ.l ) wIM/) 

X IN' (A 'J.l' )O(A '/2)m') ® 10). (11) 

The oscillator creation and annihilation operators 
(aL a ia , for specific particle index a are of particular inter
est since more complicated operators can be built from these. 
We note first that the operators aL EiJ = Ai,zr, (i = 1,2), 
transform as U (2) tensors of rank [10], whereas their con
jugate partners a ia , E3i = A;, Zi transform as U(2) tensors 
[0--1]. In terms of standard spherical tensor T~, therefore, 

{zT, z~} = {z 12112 (z*), Z 1~2112 (z*)}, (12a) 

whereas 

{ZI,Z2} = {+ z 1~2112 (z), - ZI~21/2 (z)} 

(12b) 
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and 

{ t t} {( t)1I2 (t)1I2 }, a la ,a2a = a + 112' a -112' 

{ } {( -)1I2 (-1I2} a la ,a2a = a _ 112' - a + 1/2 . (13 ) 

Note also that at and a 3a are SU(2) scalars. 
The z-space realizations of the operators aia' aia can 

now be constructed by the application of Eq. (8) to yield 

r( (a! ) :';2) = (ci!) :';2, 

r(aja) = «ja + «Lz, + «~aZ2 
= (<<!)g _ ~[ci!1I2XlI/2(z) g, 

r(a3a ) =«3a = (<<a)g, 

r( (aa ) :';2) = (ci a ):';2 - Z :';2 (Z)(<<a )g. 

(14a) 

(14b) 

(15a) 

(15b) 

After the application ofEq. (8) the operators aTa. aia have 
been formally replaced by double-line intrinsic operators. 
These double-line operators again commute with the Zi and 
J 1 Jzj • They are again to be worked through to the left in the 
matrix element of r( 0) in Eq. (11) where they are then 
defined through their actions on the adjacent intrinsic state. 
Unlike the matrix elements of Eq. (10), however, th~y can 
convert an intrinsic state with N'(A 'J.l') to a nonintrinsic 
state, (with w=l=O), in the representation with N(AJ.l). The 
practical application of YCS theory thus depends on the e
valuation of the matrix elements of double-line operators 
such as «t, « between the purely intrinsic states on the left 
and the permitted states on the right (see Sec. III). Finally, 
note that the square bracket in Eq. (14) denotes angular 
momentum coupling using a right to left coupling order. 
This right to left coupling order convention simplifies phase 
factors in the YCS constructions and will be used through
out. 

The YCS mappings ofEqs. (6) and (7) are nonunitary. 
The r (0) are, in general, non unitary realizations of the op
erator O. Clearly, r(A;)=I=(r(Ai»t; and 
r(a;a) =1= (r(aia »t. Similarly, the YCS state vector 
IN(A.J.l)wIM1)vcs ofEq. (6) is not normalized. It will be 
instructive to give a specific evaluation of 
IN(A.J.l)wIM1)vcs, through 

(N(A.J.l )O(A 12) m I eZ
'
A IN(AJ.l )wIM1) 

= (N(A.J.l )wIM1Iez.'AtIN(AJ.l )O(A. 12 )m)* 

= L (N(A.J.l)wIMIIZ~2(At) 
k.ml.; 

X IN(A.J.l)0(A.12)m)*Z~2(z), 

where we have used 

(16) 

z*-At = ZTE31 + Z~E32 = ~[AtIl2XZ 1I2(Z*) ]g, (17) 

and repeated use of the angular momentum recoupling 
transformation: 
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[ [Z (k - lJ/2(At) xZ (k - 1 J/2(Z*)]0 X [At1l2X Z 1/2(Z*)] 0] g 

[

1/2 1/2 0] 
= (k - 1) /2 (k - 1) /2 0 

k/2 k/2 0 
X [[Z(k-l)/2(At) xZ 1/2(At) ]k/2 

X [Z (k - 1)/2(Z*) xZ 1/2(Z*)] k!2]g (18) 

= ~ k(k: 1) [Zk12(At> xZ k/2(Z*) ]g. 

In Eq. (18) we have used the value of the unitary (square 
bracket) form of the 9-j recoupling coefficient and the build
up relation for the z-space boson polynomials: 

[Z w,12(z) X Z w,12(z) ] ~2 

= Dw,w,+w)(w1 + W2)!/Wl!W2!Z~2(Z), (19) 

In Eq. (16) we have also used the conjugation relation 

(Z~;".(z*»·= (_1)k!2+m·Z~2(z). (20) 

The buildup relation together with Eq, (12) leads to the 
specific construction 

(z )w/2 - m( _ Z )w/2 + m 
Z~2(Z) = 1 2 , (21) 

~ (w/2 - m)!(w/2 + m)! 

where this is an eigenfunction of (lO)COll = ~(E~~l1 - E~~l1) 
and (lcoll·lcOll) with eigenvalues m and (w/2) (w/2 + 1); 
[see Eq. (9)]. The creation operator polynomial Z(At) is 
obtained from Z(z) by the replacement Zi ..... A ;. The non
normalized state l¢wIM)' constructed through the action of 
w creation operators At, via 

l¢wIM) = [ZW/2(At)XIN(A,u)0(A/2»HlI 

= L:«A/2)m(w/2)(M[ - m)IIM[) 
m 

XZf:J/-m) (At)IN(A,u)O(A/2)m) (22a) 

is orthogonal to states IN(A,u)w'l'M ~) with w' =/=w, or I' =/=1 
M ~ =/=M[ but is not normalized. The normalization factor is 
given by the K-matrix element of ves theory5,8 

[for the derivation, see Eq. (28) below]: 

IN(A,u)wIM[) = [1/K(A,u)w[] I¢W[M/)' (22b) 

Equations (6), (16), and (22) thus lead to 

IN(A,u)wIM[)vcs 

A w = K(A,u)w[ L:<- m-(M[ - m)IIM[) 
m 2 2 

XZ'%:}_ m (z) IN(A,u)O(A /2)m) ® 10) 

= K(A,u)w[IN(A,u)wIM[). (23) 

The normalized z-space state vector will henceforth be de
noted by 

IN(A,u)wIM) = [ZW12(Z) X I (A,u)O ~)]~ 

== I (A,u) [ ; X ~ ] I,M). (24 ) 

Note, in particular, that the state vector in Eq. (24) has 
been written with a round parenthesis. (Note also that the z-
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space vacuum vector 10) will be omitted henceforth for 
economy of notation; for the same reason the label N will 
henceforth be omitted but will be quietly understood.) The 
z-space state vectors of Eq. (24) form an orthonormal set 
with respect to the z-space integrations with the standard 
Bargmann measure.5 In evaluating matrix elements, it will 
be very useful to indicate explicitly whether matrix elements 
are to be calculated through their z-space integrations (with 
the Bargmann measure) or in standard Hilbert space form. 
For this reason the state vector of Eq. (24) has been written 
with a round parenthesis, I' .. ), whereas the state vectors of 
Eq. (22) are interpreted as standard Hilbert space vectors 
and are denoted by angular brackets, I"')' The appearance 
of round parentheses in a matrix element henceforth will 
automatically signal z-space integrations and pure intrinsic 
space operations. The appearance of angular brackets on the 
other hand, will signal standard Hilbert space operations. To 
transcribe the matrix element of an operator ° between 
states of the orthonormal Hilbert space basis IN(A,u) wIM[ ) 
to the corresponding z-space matrix element, we not only 
need to transcribe to the orthonormal z-space basis 
IN(A,u) wIM[) but also need to transform the nonunitary z
space realization r (0) to a unitary realization of the opera
tor to be denoted by y( 0). In the ves technique, this trans
formation is achieved via the K operator:5 

(25) 

The Hilbert space matrix element of ° can thus be tran
scribed to the z-space matrix element of y( 0): 

«A ',u')w'l'M'IOI (A,u)wIM) 

= «A ',u')w'l'M'ly(O) I (A,u)wIM) 

= K -I(A ',u')W'I'( (A ',u') [~' X ~' ]I'M'\ 

X reO) \ (A,u) [; X ~ ] 1M )K(A,u)W[' (26) 

This is a basic relation that will be used repeatedly to calcu
late matrix elements of intrinsic operators. It can also be 
used to verify the normalization factor character of Kin Eq. 
(22). Note that 

<¢W[M I (A ',u')w'l'M') 

=~(~ (M-m); m\IM) 

X ( - 1)w/2 - m< (A,u)O(A /2)(M - m) I 

XZ~;" (A) I (A ',u')w'l'M'). (27a) 

where we have used the conjugation properties of the Z of 
Eq. (20) to obtain (Z~2(Atnt = ( - 1)w!2 - mz~;" (A). 
Equation (26) can then be used to give 

< (A,u)O(A /2) (M - m) IZ~;" (A) I (A ',u') w'l'M ') 

= «A,u)O(A /2) (M - m) I 

XK -1r(Z~;" (A»K I (A ',u')w'l'M') 

= 1 X ( (A,u)O ~ (M - m) I ( Z~;" (~)) 

X I(A ',u')W'l'M')K(A ',u')w'[' 
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= (_ l)wl2-m{(A 'p')w'l'M'IZ~2(Z)I(Ap)W 

= O(A !2)(M - m»*K(A 'P')uff'> (27b) 

where we have used r(Aj) = a /az j , and the fact that a /az j 

is the adjoint of Zj with respect to Bargmann integrations. 5 

Finally, K or K -I acts as a simple unit operator on the nor
malized intrinsic state. Equations (27a) and (27b), with the 
orthonormality ofthe states (24), then give 

(tPwIM I (A 'p')w'l'M') 

= «A 'p')w'l'M'1 (Ap)wIM)*K(A 'p')w'J' 

leading to 

(tPwIM ItPwIM) 

= L L (tPwIMI(A 'p')w'l'M') 
(,1.'1") w'I'M' 
X «A 'p')w'I'M'ltPwIM) 

= IK(Ap)WII 2. (28b) 

= Duo '1")(,1.1') Dw,wDl'lDM'MK(Ap) wI' (2Sa) The K-factors have been evaluated by ves techniques:5.8 

(A + P + 1)!p! 
(A /2 + P + 1 - w/2 + I)!(p + A /2 - w/2 - I)! ' 

(29a) 

or, with w = p + q, 1= ! A - !p + !q, 

(A + It + 1)!p! (29b) 
(A + P + 1 - p)!(p - q)! 

General U (3) tensors can be constructed from the oscil
lator creation and annihilation operators so that their ves 
realizations follow from Eqs. (14) and (15). Note, however, 
that Eqs. (14) and (15) lead to the following form for the 
ves realization of the group generators E j3 = Aj of annihil
ation type: r(Aj) = :I.a<X;a<X3a; i.e., they are built entirely 
from intrinsic (double-line) operators. This is quite different 
from the "standard" realization of these group generators,5.8 
r(Aj) = a !aZj, in which they are built from pure z-space 
operators. It is well known that coherent state realizations of 
operators are not unique due to the overcompleteness of co
herent states. Both realizations must, however, give the same 
matrix elements. This was demonstrated explicitly in Ref. 13 
for the analogous versions of the annihilation generators of 
the Sp ( 6) :J U ( 3 ) algebra. It is to be noted, however, that the 
structure of the expressions for the matrix elements can be 
very simple for one type of coherent state realization and 
very cumbersome for another. In some cases a search for an 
optimal realization may therefore be needed. 

Totally symmetric U (3) tensor operators can be con
structed through the three-dimensional oscillator creation 
operators in a single particle variable a, say a = 1, via the 
polynomials 

T(A,O) (at) = [(at )W'I rwf]pI, = (J/2)(A,- W')(at ) w,I,M, a 3a '1/ W2' M, a , 

with 

(at )1, + M, (aL )1, - M, 
P 1, (at) = -;=;:::Ia==::::;::::- -;=;:::==;:::;:::::; 

M, a JCI2 +M2)! ~CI2-M2)! 

(30a) 

(30b) 

(The subscript 2 on the quantum numbers A, w, I, M is used 
for later applications.) The ves realizations of these totally 
symmetric U ( 3) tensors could be obtained by repeated ap
plication ofEqs. (14) or preferably by the direct application 
ofEq.(S). 
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For the latter, the needed tools are the commutator 

[z-A,a!a] = aiaz\ + a~QZ2 = - .J2[at1l2 XZ 1/2(Z) ]g, 
(31) 

and the angular momentum recoupling transformation 

= 

1 1 0 - -
2 2 
w w 0 
2 2 

w+l w+l 0 
2 2 

X [ [P wl2(at ) X (at) 1/2] (w + 1)12 

X [zw/2(Z) xZ 1/2)(w+ J)/2)~ 

= ~(w + 2)(w + 1)!2[P(w+ J)I2(at ) 

X Z (w + \ )/2(z) )~, (32) 

where we have again used the value of the unitary (square 
bracket) form of the 9-j recoupling coefficient and the build
up relation ( 19), together with the analogous relation 

[pw,/2(at) Xpw,/2(at ) ]::'2 

= Dw,w, + w, ~(WI + w2)!/W\!w2!p::'2(at ). (33) 

Repeated applications ofEqs. (31) and (32) in the vth com
mutator of Eq. (S) yields 
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(crt )W, - k 
X 3a 

~(W2 - k)! 
X [p (1I2)(A, - w, + k) (<<!) x z k I2(Z) H~;2)(A, - w,). 

(34) 

This is the needed yeS realization of the totally symmetric 
U (3) tensor. 

III. MATRIX ELEMENTS OF INTRINSIC OPERATORS 

In order to evaluate matrix elements of the totally sym
metric U (3) tensors between states of arbitrary (A IJ-t I) and 
(AJJl3), 

«AJJl3)w3I 3M 31 T~:}~1, I (A IJ-t I )wIIIMI) 

= «AJJl3)w3I 311 T~:}~)II (AlPl )wll ) 

X (IIMII 2M 2 113M 3) , (35) 

via yeS techniques through the use of the basic relation 
(26) and the r(T(A,O» ofEq. (34) it is necessary to evalu
ate the matrix elements of the intrinsic operators 
(crt) vp (1/2)(A, - v) (<<!) in thez-space basis. Note again that 
these intrinsic operators commute with Zi> a I azi • In a z
space matrix element they must be worked through to the 
left where they are then defined through their matrix ele
ments between a pure intrinsic state on their left and the 
appropriate permitted states on their right. 

It is sufficient to describe the intrinsic states of (AI,uI) 

«AJJl3)0(A3/2) IIPA,/2( at) II (AI,u'1 )0(.1,/2» 

by two-rowed tableaux. For the most general coupling 
(AIJ-tl) X (.1,20)-+ (AJJl3) in which n squares are added to 
row 3 of this tableau [with O<n<min (A2,,uI)], the intrinsic 
states for (AJJl3) with W3 = 0 will then have only n oscillator 
excitations of type 3. Since the (ttL) v are defined through 
their left actions on the intrinsic states of (AJJl3) , and since 
the left action of a1a annihilates an oscillator excitation of 
type 3, only operators with v<n will have nonzero matrix 
elements. The only terms ofEq. (34) that can contribute are 
those with k = w2, w2 - 1, ... , w2 - n. Note that, with n = 0 
and consequently .1,3 + 2,u3 = A I + 2,u I + .1,2' the basic rela
tion ofEq. (26) leads to 

«AJJl3)w3 = 0, 13 = (A3/2)IIT~:'!!)o.I,=A,12 
X II (A IJ-t I )wI = 0,11 = 11/2) 

= «AJJl3)0(A3/2) IIpA,I2(at ) II (AlPl )0(.1,/2» 

= «AJJl3)0(A3/2)IIPv2(~)II(AIJ-tI)0(A/2». (36) 

In this case the only needed reduced matrix element of in
trinsic operators is related immediately to a very simple re
duced matrix element in ordinary space. This is the reason 
for the simplicity of the Le Blanc-Biedenharn result. More
over, in this case the ordinary space angular momentum re
duced matrix element [denoted by standard double lines in 
Eqs. (35) and (36)] can be reduced to an overall SU (3) 
reduced matrix element (to be denoted by both double lines 
and double brackets9) through an SU(3) ::JSU(2) X U(1) 
Wigner coefficient with value 1. With .1,3 + 2,u3 
= Al + 2,u1 + .1,2: 

= «AIJ-tl) Y I = j(A I + 2,u1 )11 = .1,/2; (A20)!A2,!A2Ij (AJJl3) Y3 = j(A3 + 2,u3)I3 = .1,3/2 ) 

X «(AJJl3)IIT(A,O)(at )II(A I,uI») = 1 X «(AJJl3)IIT(A,O)(at )II(AlPl»)' (37) 

Although this « 1111» can be evaluated,9 it will drop out of 
all final expressions andis therefore not needed. (Note also 
that the particle index a on at has been dropped and will be 
omitted henceforth for economy of notation, although it is to 
be quietly understood.) 

For the case of arbitrary n, the intrinsic operator matrix 
elements of operators (a1) vp 112(A, - v) (~) with v = 0,1, ... , 
n, will be related to the standard Hilbert space matrix ele
ment 

«AJJl3)0(A3/2) II (aJ) np (112) (A, - n)( at) II (AIJ-t 1)0(.1,/2» 

by an inductive process through repeated use of the basic 
relation (26). The matrix element of the intrinsic operator 
(crJ)VP(1I2)(A,-V)(cr t ) between a purely intrinsic state of 
(AJJl3) on the left must have n - v z excitations in the state 
of (A lPl) on the right. This type of matrix element is evalu
ated by a tranformation back to ordinary Hilbert space, via 
Eq. (26), where the states with n - v excitations are con
structed by ordinary Hilbert space creation operator excita
tions A r through Eq. (22). The evaluation of the matrix ele
ments in yeS space of the formal intrinsic operators is thus 
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reduced to the evaluation of ordinary matrix elements in 
ordinary Hilbert space. The intrinsic operator matrix ele
ments therefore become fully explicit and well defined. 

The case n = 1 will be illustrated in detail. In this case 
only intrinsic operators with v = 0 and v = 1 lead to non
zero matrix elements. With W 2 = 0, Eq. (34) leads to 

r(p~2(at» = P~2(at), (38) 

and the basic relation (26) gives 

«AJJl3)w3 

• 'Of 

= 0(.1,3/2) IIPA,I2(at ) II (AIJ-tI)WI = 1 II = (A '/2» 

= (AJJl3) ~311y(pA'I2(at»1I (AIJ-tl) [ ~ X~I] .1,2') 

= 1 X (AJJl3) ~3I1PA'/2(~)11 (AIJ-tl) [ ~ X~I] ~' ) 
(39) 

where the z-space states are given by the angular momentum 
coupled notation, I (A,u)[w12XA12]I,M), of Eq. (24). 
Note that the "collective" angular momentum of the intrin-
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sic state, W3/2 = 0, is to be omitted in this notation. Note 
also that the left action ofthe intrinsic operator P A,/2 (at) on 
the intrinsic state ( (A.JIl3) (A.3/2) m I must create a state with 
one z-space excitation since n = 1 in the space of states with 
A.I + 2#1 = A.3 + 2#3 - A.2 + 3. By expressing the standard 
Hilbert space state with WI = 1 in terms of the l/fow,/,M, ) of 
Eq. (22), the needed intrinsic operator matrix element is 
given by 

(A.JIl3) A.; IIp A,I2( at) II (A. Jf.l I ) [ ~ X~I] ~' ) 

= 2 1 «A.3#3)W3=0A.3m31 
K (A.'#I)I(A'/2) 2 

x [p A,/2(at ) X [AtJ/2X I (A. Jf.l I )WI = O~I) r/2c~2 
(40) 

where we have used Z I 12(A t) = A tll2 and the reduced ma
trix element relation 

(/3I1TI'II1I) = (13M 3 I [TI'I1I) ]~" (41) 

Angular momentum recoupling yields 

(A.JIl3) ~3I1pA'I2(at)II(A.Jf.lI)[+ X ~I] ~') 
= 1 u(~.Ll A.3 A.2.£ A.2 - 1) 

K 2(A. I#I)I(A'/2) 2 2 2 2' 2 2 

X ( (A.JIl3) W3 = 0 A.; m31 [ [pA,/2( at),A tll2] (A, - I ll2 

X I (A. Jf.l I )W I = 0 ~I) C, ' (42) 

where the U-coefficient is a Racah coefficient in unitary 
form, and where the angular momentum-coupled operator 
[pA,12 xA t'''] (A, - 1)/2 has been converted to an angularmo-

mentum-coupled commutator by using the fact that At anni
hilates the intrinsic state in its left action on this state [cf. Eq. 

(3) ]. The angular momentum-coupled commutator is de
fined by 

[pA,/2( a t),A tJ/2]~, - 1)12 

= L (1.- m l A.2 m - mil A.2 - 1 m) 
m, 2 2 2 

X [P~~m, (at),A ;;:;2], (43) 

with 

{A t~/1212' -A t1Ifl2}' = {A LA I}::{E31 ,E32}, (44) 

this gives 

[pA,l2( a t),A tIl2]~, - I ll2 = ~(A.2 + 1)aIP~' - I ll2( at); 

(45) 

so that 

(A.JIl3) ; IIp A,I2( at) II (A. Jf.l I ) [ ~ XA.I] ~') 

= /(A.2 + 1) u(A. I 1.- A.3 A.2;£ A.2 - 1) 
K (A. Jf.l I ) I(A '/2) 2 2 2 2 2 2 

X ( (A.JIl3)0 A.;lIaIP (A, - Ill2( at) II (A. 1#1 )0 ~I) , 

(46) 

which is the first intrinsic space matrix element needed for 
n = 1. 

For the second needed intrinsic matrix element for the 
case n = 1, we use Eq. (34) to give 

r(alp~,-lll2(at» 

= tkIP~' - I l/2( at) 

- ~(A.2 + 1) [pA,I2( at) X Z 1/2]~, - 1)12. (47) 

The basic relation (26) yields 

( (A.JIl3)0 A.; lIaI P (A, - 1)12 ( at) II (A. Jf.l1)0 ~I) - ( (A.JIl3) ~3I1tkIP (A, - I ll2 ( at) II (A. Jf.ll) ~I) 

- ~(A.2 + 1)( (A.JIl3) ; II[P ",12 ( at) Z 1/2] (A, - I ll2l1 (A. Jf.ll) ~I) 

_ ~(A. + 1) ~ u(A. 1 1.- A.3 A.2.£ A.2 - 1) (A._II ) A.31IpA'I2(at ) II (A..Il ) [1.-x A. l ] £). 
2 ;.412 2 2 2 2' 2 2 .l/""'3 2 u-I 2 2 2 

(48) 

The last intrinsic matrix element in Eq. (48) is given by Eq. (46), so that 

(A.JIl3) ~3I1tklP(A,-I)/2(at)II(A.I,uI) ~I) 

= {I + (A. 2 + 1) L 2 1 U2(~ 1.- A.3 A.2;£ A.2 - 1 )} (A.JIl3)0 A.311aIP (A, - Il/2(at ) II (A.Jf.l1)0~) 
A'/2 K (A. I,uI)I(A'/2l 2 2 2 2 2 2 2 2 

= (A.3 + #3 + 3 )(,u3 + 2) (CA.JIl3)0 A.3I1ajpA,/2 - 112 ( at) II (A. JlLI)O A.I) , (49) 
(A.I + #1 + l),ul 2 2 

where we have used A.3 + 2,u3 = A.I + 2,u I + A.2 - 3 to simplify the final result for the sum over possible A. '/2. Equations (46) 
and (49) give the two needed intrinsic operator matrix elements for the case n = 1. 

The case n = 2 illustrates some additional features. Three intrinsic operator matrix elements are now needed. The analogs 
of Eqs. (39)-(46) yield 
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(50) 

where we have used Z ~ (At) = 2- 1
/
2 [A t112XA t112]~, angular momentum recoupling, and a double application of the 

commutator Eq. (45). 
For the next matrix element, Eqs. (26) and (47) yield 

(AJIl3)oA;lIaI P(A' - \)/2(at )II(AIIlI)WI = 1 A
2
') 

= {(AJIl3) ~1I(jIP(A'-I)/2(~t)II(AIIlI)[ ~ X~I] ~') 

- ~(A2 + 1)( (AJIl3) ~311 [PA,/2(~t) xZ 112] (A, - 1)
1211 (AIIlI) [ ~ X~I] ~')} K(AIIlI) I(A'/2)' (51) 

The left-hand side is evaluated by the technique used to evaluate the standard Hilbert space matrix element in Eq. (40) to give 

(AJIl3)0~lIajp(A'-\)/2(at)II(AIIlI)WI = 1 ~') 

= 1 ~U(AI J... A3 A2 - 1;~ A2 _ 1)(AJIl3)0 A311 (aI f pA,/2-I(at ) II (AIIlI)O AI) . (52) 
K(AIIlI)I(A'I2) 2 2 2 2 2 2 2 Ii 2 

Angular momentum recoupling together with Eq. (19) reduces the second term of the right-hand side of Eq. (51) to the 
intrinsic operator reduced matrix element of pA,/2(at ) which is given by Eq. (50), so that 

(AJIl3) ~311(jIP(A'-I)12(~t)II(AIIlI)[+X~I] ~') 

= (AJIl3)0 A311 (aj )2 pA,12 - I(at) II (AIIlI)O AI) { ~ U(A I J... A3 A2 - 1;~ A2 _ 1) 
2 Ii 2 K 2(AIIlI)I(A'/2) 2 2 2 2 2 2 

+ I (:2+1)~ U(~J...A3A2;~A2-1)U(AIJ...~J...;~1)U(AI1A3A2;~A2_1)} 
A "12 K (AIIlI)2(A"/2) 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 

= (AJIl3)0~11 (~)2 pA,/2-I(at ) II (AiIll)O~I) 
X ~ U(AIJ...A3A2-1.~Az_1)(A3+J-l3+4)(J-l3+2) 

K2(AIllI -1)I(A'12) 2 2 2 2 '2 2 (AI +J-l1 + 1)J-l1 ' 
(53) 

where we have used AI + 2J-l1 + Az - 6 = A3 + 2J-l3 to simplify the final result for the sum over possible A" /2. 
For the final intrinsic operator matrix element for n = 2, the basic relation (26) gives 

(AJIl3)0~11(~)2 pA,l2-I(at)II(AIIlI)0~1) 

= (AJIl3) ~ II (~)Z P A,/2 - I(~t) II (AIIlI) ~I) -~ (AJIl3) ~lIdj [peA, -1)/2(~t) xZ 1/2]A,12 - III (AiIll) ~I) 

+ ~A2(A2 + 1) (AJIl3) A; II [PA,/2(~t) xZ I ] A ,12 - III (A III I ) ~I) . (54) 

Angular momentum recoupling reduces the last two terms to the form that follows from Eqs. (50) and (53), so that 

(AJIl3)~II(~)Z P(~t)A"2-III(AIIlI)~I) 

= (AJIl3)OA311(aI )Z p(at )A'12-111 (AIIlI)OA I){1 +U2 I z 1 uz(AI J... A3 Az -1;~ Az -1) 
2 Ii 2 A '12 K (AIIlI)I(A'/2) 2 2 2 2 2 2 

+ U 2(A2 + 1) I [I U(A I J... A3 A2 - 1;~ Az _ 1)U(~J... A3 Az;~ A2 - 1) 
A" 12 A '/2 2 2 2 2 2 2 2 2 2 2 2 2 
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(55) 

It is now advantageous to carry out the sum over A '/2 first in the third term, where 

L u(A I ~ ,,13,,12-1.£ ,,12 -1)U(£~ A3A2.~ ,,12 -1)xU(~~~~'£ 1) = U(A I 1 A3A2.~ ,,12 -1) 
A '/2 2 2 2 2 '2 2 2 2 2 2' 2 2 2 2 2 2' 2 2 2 2' 2 2 ' 

(56) 

to obtain 

(A~3)~311(;;2 PA'/2-1(~t)II(AJlI)~I) 

= (A~3)0 ~311 (~)2 pA,/2 - I(at ) II (AJlI)O ~I) 

{
1+U L r 1 U2(AI~A3A2-1.£A2_1) 

2 A '/2 K 2(t,uI)I(A'/2) 2 2 2 2 ' 2 2 

,1.2(,1. + 1) L 1 U 2(AI 1 ,,13 A2.~ ,1.2 - I)} 
2 A"/2 ~2(AIJlI)2(A"/2) 2 2 2' 2 2 

=(A~3)OA311(a1)2 pA,/2-I(at ) I I (AJlI)OA I) (A3+,u3+4)(A3+,u3+3)(,u3+3)(,u3+2) 
2 Ii 2 (A I +,uI+l)(A I +,uI),uI(,uI-l) 

(57) 

For the case of general n (with ,,13 + 2,u3 = Al + 2,u1 + ,1.2 - 3n), the corresponding result is 

(A~3) ; II (~n p (A, - n)/2(~t) II (AIJlI) ~I) 

=(A~3)OA311(aI)np(A,-n)/2(at)II(AJlI)OAI) i L (,1.2+ I-v)! n! 
2 Jfif 2 v~OA"/2(A2+1-n)! (n-v)!v!K 2(AJlI)(n_v)(A"/2) 

X U 2(AI n - vA3 ,1.2 - v.~ ,1.2 - n) 
2 2 2 2'2 2 

= (A~3)0 ~311 (ir p (A, - n)/2(at ) II (AJlI)O ~I) 
(,1.3 +,u3 + n + 2)!(,u3 + n + 1 )!(AI +,ul + 1 - n)!(,ul - n)! X . 

(,1.3 +,u3 + 2)!(,u3 + 1 )!(A I +,ul + 1)!,uI! 
(58) 

The techniques illustrated in detail for n = 1 and n = 2 lead to the general result for the needed intrinsic operator matrix 
elements 

Note that Eq. (59) reduces properly to Eq. (58) for n = v. 
Finally, there remains the evaluation of the standard Hilbert space matrix element, with v = n. This is given by 

(A~3)0;11 (~n p(A,-n)/2(at ) II (AIJlI)O~I) 

= (AJlI) Y I = ~ (AI + 2,uI)II = ~;(A20) ~A2 - n,~A2 - ~11(A~3) Y3 = ~ (,1.3 + 2,u3)I3 = ,1.3) 
3 2 3 2 2 3 2 

X« (A~3) II T(A,O) (at) II (AJlI»)' (60) 

Since the double-bar, double-bracket factor will not be needed, it suffices to evaluate the SU (3) :::> SU (2) xU ( 1) reduced 
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Wigner coefficient with both W3 = 0, WI = O. In Sec. IV it will be shown that the square of this Wigner coefficient is given by 
the inverse of the double sum of Eq. (58). With a generalized Condon-Shortley phase convention, we therefore get, with 
11,3 + 2113 =11,1 + 2111 +11,2 - 3n: 

( AtIll) YI = J.. (AI + 2111 )11 = AI; 
3 2 

(61) 

IV. THE SU(3)=>SU(2)XU{1) WIGNER COEFFICIENT. FORM I 

The general SU(3) =>SU(2) XU(1) reduced Wigner coefficient for the product (AtIll) X (11, 20) -+ (A3Il3) follows from 
the general matrix element 

(A3Il3) W3I311 ;l; p(A,-w,)/2(Ut ) I I. (AtIll)WII I) 

= (AtIll)Y I = + (AI + 21l1) - wll;(A20) +11,2 - W2, 11,2; (i)
2

11 (A3Il3) Y3 

= + (11,3 + 21l3) - W3I3) < (A3Il3) II T(A,O)II (A til I ) >, (62) 

with W3 = WI + W2 - n for the coupling with n squares added to row 3 so that 11,3 + 2113 = AI + 2111 + 11,2 - 3n. The basic 
relation (26) together with the VCS realization of the totally symmetric tensor, Eq. (34), gives 

(A3Il3) W3I311 (i);' p(A,- w,)/2(ut ) II (AtIll)Wll) 

(11,2 - v + 1)! W2! 
(11,2 - W2 + I)! (w2 - v)!v! 

The reduced matrix element in Eq. (63), rhs, can be evaluated directly by the expansion 

(A3Il3) [ ~3 X~3]I311 (1-:v[P(A'-V)/2(~)XZ(W'-V)/2(Z)V'=(A'-{d')/211 (AtIll)[ ~I X~I]II) 

= 1 L (IIMl2M 2 113M3 > (AI m l ~ mw, IIIMI)(A2 - v m2 W
2 - n m w, 112M2) 

(2I3+1)aIlM;m;m,,,; 2 2 2 2 -

x(A3 m ~m 11M )(11,3 m I (a!)V P(A,V)/2(cott )(ZW,/2(z»tZ(W,.-V)/2(Z)Zw,/2(Z) 111,1 m) 2 3 2 w, 3 3 2 3 c:; m, won, m",. m"., 2 I' 
"v: 

and by using 

(
11,3 m I (d!v p(A,-v)/2(at) 
2 3 c:; m, 

"v: 

= L (A3 m31 (d!)V p!:,,-V)/2(at) I (AtIll)[n - Vx~]~m')(AtIll)[n - Vx 1~I~m' 
A '/2.m' 2 Fvi 2 2 2 2 2 2 

= L L (A3Il3)A311 (d!)'·P(A'-V)/2(tP.t)II(AIIlI)[n-vx~]~) 
A'/2m'm;m,,_,. 2 Fvi 2 2 2 

x(~ m' A2 - v m IA3 m )(AI m' n - v m _ I~m')(~m' I{z(n-. V)/2(z»t. 2 2 2 2 3 2 I 2 n v 2 2 I m" - ,. 

Finally, using Eq. (19) and the orthonormality of the Z :;:"2(Z) in z space and the IA I/2m l ) in intrinsic space 

(~I m; I (Z ~,-:- ~)/2(z»t(Z::;:~,2(Z»tZ ;,,~~ - v)/2(Z)Z ::;',~,2(Z) I ~I ml) 

(w3 + n - v)! (WI + W2 - v)! (WI W2 - v I WI + W2 - V ( ») -mw ---mw mw +mw 
w3!(n - v)! WI!(W2 - v)! 2 '2 ' 2 " 
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(66) 

with W3 = WI + W2 - n, Eqs. (64)-(66) give 

(A~3) [ ~3 X~3 ]1311 (ivr [P (A, - v)/2(ctt) xZ (w, - V)I2(Z) ]12 = A2 ; W211 (AIJlI) [ ~I X~I ]11) 

= I(AJI.l3) A311(d1)V P(A'-V)/2(<<t)II(AIJlI)[n-VX~]£) (W I +W2-V)! {I}, 
A '12 2 Fv! 2 2 2 ~(WI + W2 - n)!(n - v)!(w2 - v)!w l ! 

(67) 
where {~} is shorthand for the sum over the product of eight angular momentum Wigner coefficients that can be expressed in 
terms of a 12-j recoupling coefficient in unitary form: 

{I} = 1 I (IIMII2M2113M3) 
(213 + 1) all m', 

X -m --m -m -m --m m m (AI n-v lA' ')(WI W2-V Iw l +W2-V ) 
2 I 2 n - v 2 2 '"I 2 W, 2 (WI + w, ) 

X 

=I 
/" 

(211 + 1)(212 + 1)(wl + W2 - V + 1)(A3 + 1) ( _ 1)A ,/2-A'I2-vl2-nl2+ w, 

(213 + 1)(A I + 1 )(A2 - V + 1)( W3 + 1) 

12 II 13 ~ 
2 

W2-V ~ WI + W2 - V A' 

2 2 2 2 
A2-V Al A3 n-v 

2 2 2 2 

(2I"+1)(A3+1) U(I W2-V I A2-V'I"A2-W2)U(A2-VA3I"~'£I) 
(213 + 1) (A ' + 1) I 2 3 2' 2 2 2 2 ' 2 3 

XU(AI ~I" W2 - V'I WI + W2 -V)U(A I n - V I" ~.£ WI + W2 -V) 
22 2 ,I 2 2 2 2'2 2 ' 

where the 121 coefficient in unitary (square bracket) form is the standard transformation coefficient l9
•
2o 

J'] 
~' 

(68) 

(69) 

where the square brackets denote angular momentum coupling, for now in the conventional left to right coupling order. 
Since the intrinsic operator reduced matrix elements needed for Eq. (67) are known from Eq. (59); Eqs. (63) and (67) 

can be combined to give the desired SU (3) :::> SU (2) xU (1) Wigner coefficient in terms of the matrix elements of 
(aI )np (A, - n)l2(at ) between extremal states with WI = W3 = 0, where the double-line, double-bracket reduced matrix ele
ment is eliminated via Eqs. (60) and (62): 

«AI,uI) YI (WI )II;(A20) Y2 = jA2 - W2,12 = (A 2 - w2)/211 (AJI.l3) Y3(w3)I3) 

(A2 - W2 + 1)!v!(w2 - V)!(A 2 + 1 - n)!(n - v)!v! 

X (w I + W 2 - v)! 

~(n - v)!W I!(W2 - v)!(w l + W2 - n)! 

X I 1 U (A I n - V A3 A2 - v.£ A2 - n) 
A,12 K 2(A I,,uI-V)(n_V)(A'/2) 2 2 2 2 ' 2 2 
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I z II 13 ~ 
2 

wz-v ~ WI + Wz - V A' 
X 

2 2 2 2 

Az - V Al A3 n-v 

2 2 2 2 

X 
(211 + 1)(2Iz + I)(A3 + l)(wj + Wz - v+ 1) { _ 1),1,/Z - A '/2 - nlZ - v/2 

{213 + 1 )(A I + 1 )(Az - v + 1 )(w3 + 1) 

(70) 

Setting W3 = 0, we obtain a relation between the Wigner coefficient with W3 = ° but arbitrary will (wz = n - WI) and the 
starting coefficient [Eq. (61)], with both WI = 0, W3 = 0, (wz = n). Using relations such as those illustrated by Eqs. (56) and 
the sum over A II /2 in Eq. (53), the orthonormality sum over WI and II can be put into the form 

I ({AtPI)YI{W I)II;{A2!lz) Az - Wz A
z - Wz II (A:#3)Y3{0) A3)Z = 1 

w,.w,I, 3 2 2 

( 
1 1 1 Al 1 Az Az - n II 1 1 1 2 A3)Z = (/I,tPl) - (/I,I + 2/-l 1) -;(/I,2!lz) - - n -- (/I,:#3) - (/I,3 + /-l3)-

3 2 3 2 3 2 

X ± { (A z + 1 - v)!n! I z 1 uz(AI n - v A3 AZ;11 A2 - n)}. 
v=o {A2+1-n)!{n-v)!v!I, K (AtPl)(n-v)I, 2 2 22 2 

(71) 

The sum is the same as that which has been evaluated in Eq. (58) and leads at once to the needed starting Wigner coefficient 
with both WI = 0, W3 = 0, as quoted in Eq. (61). It is interesting to note that the square of this starting Wigner coefficient is 
given by the ratio of the reduced matrix element of (aj)np(,1,-n)/2{ut ) between ordinary Hilbert space states with both 
WI = 0, W3 = ° to that of the intrinsic operator (d! )op(,1, - n)IZ{ctt) between pure intrinsic states. 

With the evaluation of this starting Wigner coefficient, the general Wigner coefficient is given by 

with A3 + 2/-l3 = Al + 2/-l1 + A2 - 3n, W3 = WI + W2 - n, 

Form I: 

K{AtPl)w,I, 

K{A:#3)w./, 

W3!{A2 + 1 - n)!{A3 + /-l3 + 2)!{/-l3 + 1 )!{/-l3 + n + 1 )!(A3 + /-l3 + n + 2)! 

wl!w2!n!{A2 + 1 - W2)!{A I + /-ll + 1 ) !/-ll! {/-l I - n)!{A I + /-ll + 1 - n)! 

X miOIW,) ( _ 1)v W2!{A2 + 1 - v)!{wl + Wz - v)!n!{/-ll - V)!{A I + /-ll + 1 - v)! 

v=o (w2 - V)!{A2 + 1 - n)!w3!{n - V)!V!{A3 + /-l3 + 2 + n - V)!{/-l3 + n + 1 - v)! 

X I 2 1 U (AI n - v A3 A2 - v.~ A2 - n) 
,1'IZ K{A I,/-lI-V)(n_v),1'/2 2 2 2 2 '2 2 

X 

X 

12 II 13 ~ 
2 

W2-V ~ WI + W2 - V A' { _ 1),1,/2 - A '/2 - viZ - n/2 
2 2 2 2 

A2 - V Al A3 n-v 

2 2 2 2 

(2I1 + 1)(212 + l)(w l + W2 - V+ I)(A3 + 1) 

(213 + I)(A I + I)(A2 - V+ l)(w3 + 1) 
(72) 

This form is particularly economical, if nor W 2 are small so that the number of terms in the v sum is small. In particular, for 
n = 0, the sums collapse to a single term, the 121 coefficient collapses to a 91 coefficient, and Eq. (72) reduces to the first 
special Le Blanc-Biedenharn result. 

With n = 0, A3 + 2/-l3 = Al + 2/-l1 + A2 , W3 = WI + W2 , 

«A tPI) YI (WI )11; (A 20) Y2 (wz)I2 

A2 - Wz II 1 ) = (/I,:#3) Y3 {w3 )I3 
2 
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it ~ I, 
2 2 

K(AJ-t,) w,l, K(A20) w,l, (w, + w2)! A2 ~ 12 (73) 
K(AJit3)w,l, W,!W2! 2 2 

A3 W, +w2 13 
2 2 

V. FORM II FOR THE SU(3)::>SU(2)XU(1) WIGNER COEFFICIENT 
The expression of Sec. IV is particularly simple if n, the number of squares added to row 3 of the Young tableau for 

(AJ-t,), is very small compared withA2 - n. In the case whenA2 - n <n, it is advantageous to evaluate the Wignercoefficient 

«AJit3) Y3 (w3)I3; (OA2) - ! A2 + W2, 12 = (A2 - wz)/211 (A til,) Y, (w, )1,) 

via the reduced matrix element of the operator 

(a )W' T(OA,) = 3a - pl,=A,12-w,12(a ). 
Y, = - (l/3)A, + w"I,M, Cf M, a 

yW2! 

The ves realization ofthis operator is (again omitting the specific particle index, a) 

r( (a3) P~;-W')!2(a») 
~wz! -

(74) 

(75) 

(76) 

The needed intrinsic operator reduced matrix elements can be evaluated by the techniques illustrated in Sec. II. Now with 
A, + 2ft, = A3 + 2ft3 + 2A2 - 3n', 

(
AJ-t,)A'11 (d3)A,-v PV/2(d.)II(AJit3)[n'-VxA3]~) 

2 ~(A2 - v)! 2 2 2 

= (AJ-t,)OA, I I a~,-n' pn'!2(a) II (AJit3)OA3) 
2 ~(A2 - n')! 2 

(A2 - v)!n'! K 2(A3,ft3 +Az + 1 - V)n'(A,/2) 

(A2 - n')! (n' - v) Iv! K 2 (A3,ft3 + Az + 1 - v) (n' _ v)(A "IZ) K 2 (AJit3) n'(A,IZ) 
x (77) 

With these intrinsic operator matrix elements the recoupling techniques of Sec, IV can give the general Wigner coefficient 
(74), The symmetry property 

«AJ-t,)Y,(W,)/,;(A20)(AzI3) - wz,!z = (A2 - wz)/211(AJit3)Y3(w3)I3) 

=~[dim(AJit3)/dim(AJ-t,)][(2I, + 1)1(21, + 1)] (_1)A,+I',+A,+A.+I'.+I,+I.-I, 

X «AJit3) Y3( W3 )13; (OA 2) - Azl3 + W2,!211 (A til,) Y, (w, )1,) (78) 

gives the needed coefficient. Renaming n' = Az - n to be in agreement with the notation of Sec. IV we obtain the new form of 
the Wigner coefficient: with A3 + 2ft3 = A, + 2ft, + Az - 3n, W3 = W, + W2 - n. 

Form fl· 

«AJ-t,) Y, (w, )1,; (A20)(AzI3) - wz,!z = (A2 - wz)/211 (AJit3) Y3 (W3 )13» 

2793 

= ( _ 1 )1', + 1'.' + n + I, + I, - I, dim(AJit3) 21, + 1 K(AJit3)w,l, 

dim(AJ-t,) 213 + 1 K(AJ-t')w,l, 

(A z - W2)!(A2 - n)! (_ l)V (A z - v)!(w, + A2 - n - v)! 
W,!w2!w3!n! V!(A2 - W2 - v)!(Az - n - v)! 

min(A, - n,A, - w,) 

X I 
v=o 
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X( _1)A,12-A"12-A,12+n12+v12 (AI + 1)(212 + l)(w l +..1,2 - n - v+ 1) 

(..1,3 + 1)(212 - v+ l)(wl + 1) 

Al v A" ..1,3 

2 2 2 2 

X II 12 13 
WI +..1,2 - n - V 

2 
(79) 

~ I-~ ..1,2 - n - V ~ 
2 2 2 2 2 

In the special case with n = ..1,2 the sum in this expression collapses to a single term. The 12-j coefficient collapses to a 6-j 
coefficient, and with (AtIlI) = (A3,1l3 + n): 

«A3,1l3 + n)YI (w l )II;(nO)Y2 = n/3 - W2,!2 = (n - w2)/211(A3f.l3)Y3(w3)I3) 

X U(I n - w2 ..1,3 ~ . I ~) 
3 222 '1 2 

This is the second special case of Le Blanc and Biedenharn. II 

VI. FORM III. AN EXPRESSION WITH 9-j COEFFICIENTS ONLY 

(80) 

In the general case both forms I and II have the same complexity. Both involve two summations, the V sum and a sum over 
an angular momentum quantum number. Both involve 12-j coefficients in the general case. Since 12-j coefficients may not be 
readily available a simpler expression would be useful. Such an expression can be derived by a buildup process in which the 
representation (..1,20) is obtained from a stretched coupling of the representations (nO) and (..1,2 - n,O), the first adding n 
squares to row 3 of the Young tableau for (A til I ) to make the representation (AI,IlI - n), the second ..1,2 - n squares to rows 1 
and 2 to make the final (A3f.l3): 

«AtIlI)YI (w l )II;(A20)jA2 - W2,!2 = (..1,2 - w2)/211(A3f.l3)Y3(w3)I3)Usu, 

= L «AtIlI)YI(wl)II;(nO).!!.-. - w", n - w" II (AI,IlI - n)YI(w')J') 
w',I' 3 2 

(81) 

with W3 = WI + W2 - n, w" = w' + n - WI' W = W3 - w'. 
The coefficient for the coupling (nO) X (..1,2 - n,O) -+ (..1,20) is a special case of the 1st class ofLe Blanc-Biedenharn. The 

needed 9-j coefficient is related by symmetry to a trivial 9-j coefficient with all stretched angular momentum couplings leading 
to the simple result (with W 2 = w + w") 

J(nO).!!.-. -w" n-w" . (A2-nO) A2-n -w A2-n- w ll(A20)A2 -W2 A2-w2) 
\ 3 '2' , 3 '2 3' 2 

(..1,2 - n - w)!A2!(n - w" )!w!w"! 

Using Eqs. (73) and (80) for the remaining SU(3) Wigner coefficients, we obtain the right-hand side ofEq. (81). 
The coefficient Usu, for the left-hand side of Eq. (81) can be treated as a normalization factor. It is the SU(3) U 

coefficient for the SU3 recoupling implied by relation (81 ).It it were not known it could now be obtained from the right-hand 
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side of Eq. (81) for the special values WI = 0, W3 = 0, W2 = n for which the 9-j coefficient and the U coefficients for the right
hand side are all unity. (In this case w' = 0 only and I' = A /2 only.) From the known Wigner coefficient with WI = W3 = 0 of 
Eq. (61), we can thus determine Usu, via this special case: 

USU,«AJlLI)(nO)(A3J.t3)(A2 - n,O);(AI,1l1 - n)(A20» 
n!(A2 - n)!(1l1 - n + 1 )!(AI + III + 2 - n)! (1l3 + n + 1 )!(A3 + 113 + n + 2)! 

A2!(1l1 + 1 )!)(AI + III + 2)! (1l3 + 1 )!(A3 + 113 + 2)! 

With this value we get the general result for the SU (3 ) ~ SU (2) xU ( 1) Wigner coefficient. 
Form III (with ..13 + 2113 = AI + 2111 + ..12 - 3n, W3 = WI + W2 - n): 

(AJlLI) YI(w l )II;(A20) +..12 - W2,l2 = ..12; W211 (A3J.t3)I3) 

(AI + III + 1)!1l1!(1l3 + 1 )!(A3 + 113 + 2)!(A2 - n + 1 )!(A2 - w2)! 

(AI + III + 1 - n)!(1l1 - n)!(1l3 + n + 1 )!(A3 + 113 + n + 2)! 

XLL (..12 - n - W3 + W' + l)(w' + 1) w'!(A2 - n - W3 + w')!(wl - w')!(n + w' - WI)!(W3 - w')! w' l' 

AI W' 
I' 

2 2 

X 
K 2(A I,1l1 - n)w'l' ..12 - n W3-W' ..12 - n - W3 + W' 

K(AJ!LI) wIll K(A3iL3) w,l, 2 2 2 

..13 ~ 13 
2 2 

X U(I WI - W' I ..12 - n - W3 + w' 'I' ..12 - W2)U(I' WI - W' AI ~'I w'), 
1 2 3 2 ' 2 222'12 

For the special case with W3 = 0 this collapses to the simple result: 

( (A JILl ) YI (WI )11; (..120) + ..12 - w2,I2 = ..12 ; w211 (A3J.t3) + (..13 + 21l3)I3 = ~3) 

= (_ I)A,12+w,12-1, (211 + l)n! - (..1 2 - w2 )! 

X 
(AI + III + 1 - n)!(1l1 - n)!(A3 + 113 + n + 2)!(1l3 + n + I)! 

X 1 U(II ~ ..13 ..12 - n ;..11 ..12 - W2) . 
K(AJlLI)w,l, 2 2 2 2 2 

For the special case with WI = 0, on the other hand, Eq. (84) leads to 

( (AJ!LI) + (AI + 2111 ),11 = ~ ;(..120) ~ - w2,I2 = ..12 ; W211 (A3J.t3) Y3(W3)I3) 

= 
(..1 2 - n + 1 )!W2!(A I + III + 1 )!IlI!(A3 + 113 + 2)!(1l3 + I)! 

(83) 

(84) 

(85) 

(86) 

Finally, by interchanging the order of the coupling to (..1 2 - n,O) X (nO) in the analog ofEq. (81) still another form can be 
obtained for the totally symmetric SU (3 ) ~ SU (2) xU ( 1) Wigner coefficient. 

Form IIr (with ..13 + 2113 = AI + 2111 + ..12 - 3n, W3 = WI + W2 - n): 
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( (AIIlI) YI (WI )11; (A20) + A2 - w2,I2 = A2 ; W211 (AJP3) Y3 (W3)I3) 

(A3 +,u3 + 2)(,u3 + I)(A3 +,u3 + n + 1 )!(,u3 + n)!(,ul - n)!(A I +,ul + 1 - n)! 

(A3 +,u3 + n + 2)(,u3 + n + 1 )(A3 +,u3 + 1 )!,u3!,uI!(A I +,ul + I)! 

x (A2 - n + 1 )!(A2 - w2)!n!w2! L (WI + w)! 
WI!(W3 + I)! w,l w!(w2 - w)!(n - W2 + W)!(A2 - n - w)! 

Al ~ II 
2 2 

(WI + W + 1) XK(AIIlI) w,l, K(AJP3) w,l, A2 - n W A2 - n - W 
X 

(A2 - n + 1 - w) K 2(A3,,u3 + n)w+ w,.1 2 2 2 

A3 wI+w I 
2 2 

XU(I A2-n-w I n-w2+w.I A2-W2)U(I n-w2+ wA3 wI+w 'I~). 
1 2 3 2 , 2 3 222 '2 (87) 

VII. SUMMARY 

Three types of expressions have been derived within the 
framework of generalized ves theory for the SV(3) 
:::> SV (2) X V (1) Wigner coefficients for the multiplicity
free coupling (AIIlI) X (A20) ..... (AJP3) involving totally 
symmetric V (3) tensors. All three involve two summations 
and are therefore comparable to previously known results 15 

as far as their complexity is concerned. All results are ex
pressed in terms of SV (2) recoupling coefficients and the 
simple K-normalization factors ofVeS theory and therefore 
throw new light on the structure of such coefficients. Two of 
the expressions, given by Eqs. (72) and (79), involve 12:i 
coefficients. Their main value lies in the fact that they illus
trate how the spectacularly simple special cases of Le Blanc 
and Biedenharn II arise as special cases of very general re
sults. Simpler expressions involving only 9:i coefficients and 
Racah coefficients of 6:i type are given by Eqs. (84) and 
(87). These are derived by a coupling process which com
pounds the two special Le Blanc-Biedenharn results. In this 
process a V (3) tensor that can add squares only to row 3 of 
the starting tableau is combined with a V (3) tensor that can 
add squares only to rows 1 and 2. Since tensors for the gen
eric case with multiplicity l4 can also be built in this fashion 
the ves techniques used in this investigation may be useful 
for the general coupling with multiplicity. Special values for 
the SV (3) Wigner coefficients for the coupling 
(AIIlI)X(A20) ..... (AJP3) in which either the (AIIlI) or 
(AJP3) states are restricted to highest weight have also been 
given in a new form involving a simple Racah coefficient, see 
Eqs. (85) and (86). 

Note added in proof: The Wigner coefficients of this in
vestigation use the phase convention of Draayer and 
Akiyama (see Ref. 5). To convert to the phase convention of 
Biedenharn and Louck (Refs. 8-10), the state vector ofEq. 
(24) must be multiplied by the phase ( - 1) '" /2 - w/2 - I lead-
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ing to an additional overall phase of 
( - 1 )",,/2 - w,n - I, - ",.,/2 + w,/2 + I, to convert the Wigner co-
efficients of this investigation to the Biedenharn-Louck con
vention. 
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Hong-Chen Fu and Chang-Pu Sun 
CCAST (World Laboratory), P. O. Box 8730, Beijing, People's Republic o/China, and Department 0/ 
Physics, Northeast Normal University, Changchun, Jilin Province 130024, People's Republic o/Chinaa

) 

(Received 22 September 1989; accepted for publication 11 July 1990) 

The inhomogeneous boson realizations (IHBR) and the corresponding inhomogeneous 
differential realizations (lHDR) of Lie algebras, which play an important role in the search of 
quasi-exactly solvable problems (QESP) of quantum mechanics, are studied. All possible 
IHDR of semisimple Lie algebras can be obtained in this way. As examples, the IHBR and the 
corresponding IHDR of Lie algebras SU (2) and SU (3) are studied in detail. 

I. INTRODUCTION 

Recently discovered quasi-exactly solvable problems 
(QESP) 1-4 of quantum mechanics have been proved to be 
related to the inhomogeneous differential realizations 
(IHDR) of Lie algebras.2

-4 Turbiner studied the one-dimen
sional QESP by making use of the IHDR of Lie algebra 
sl(2),2 and pointed out that one could study the multi-di
mensional QESP by using the IHDR of sl (m) algebra.2 Shif
man and Turbiner studied the two-dimensional QESP by 
making use of the IHDR of Lie algebras su(2) Xsu(2), 
so ( 3 ) , and su ( 3 ) .3,4 Construction ofIHD R of Lie algebras is 
very important in the search of QESP. By extending Shif
man's discussions, the authors of this paper have obtained 
the IHDR of any Lie algebras.5 However, as pointed in Ref. 
5, this IHDR is trivial, i.e., it does not include all possible 
representations of Lie algebras. In this paper, we will contin
ue studying the IHDR of Lie algebras. 

On the universal enveloping algebra ~ (L) of Lie alge
braL, or on its quotient space ~ (L)IJ, whereJis a left ideal 
generated through algebraic relations in ~ (L), one can ob
tain all the representations of L, including indecomposable 
and irreducible representations. These representations are 
well-defined. Especially, for some concrete Lie algebras, 
Gruber et al. have given the explicit expressions of these 
representations.6-9 In this paper, from a representation on 
~ (L) or on ~ (L)I J, we define a representation of Lie alge
bra L on the Fock space, which is automorphic to ~ (L) or 
~ (L)I J, then give the IHBR of Lie algebra L. By making 
use of the corresponding relation between creation and anni
hilation operators of boson states and differential operators, 
we obtain the IHDR of Lie algebras. 

For semisimple Lie algebras, further discussions are giv
en. On the Fock space that corresponds to the finite-dimen
sional irreducible standard cyclic module V(A) 10 as the quo
tient space of ~ (L), all possible IHBR of semisimple Lie 
algebras marked by rank L non-negative integers, where 
rank L is the rank of semisimple Lie algebra L, are obtained. 
The IHDR of L obtained from the corresponding IHBR will 

a) Mailing address. 

use 1(dim L-rank L) independent variables, which is in ac
cord with Shifman's inference. 

As examples, we discuss varieties of IHBR and IHDR 
of Lie algebras SU (2) and SU (3) by making use of their 
representations on their universal enveloping algebras or on 
their quotient spaces given by Gruber et al.6

•
7 The IHDR of 

SU (3) marked by two non-negative integers can be ob
tained. 

It is worth noticing that Doebner et al. have studied the 
IHBRand IHDR ofSU(2) and SU(1,I) from the represen
tations of SU (2) and SU ( 1,1) on their universal enveloping 
algebras or on their quotient spaces. II Their results are the 
Hermitian conjugate of our results, combined with the index 
change. However, their method is different from the method 
used in this paper. One will find that our method is straight
forward and simpler than that used in Ref. 11. 

This paper is organized as follows. After studying in Sec. 
II the general procedure to construct the IHBR and IHDR 
of any Lie algebra, we will further show this procedure with 
SU(2) as an example in Sec. III. In Sec. IV, the further 
discussions for the semisimple Lie algebras are given. In Sec. 
V, the IHBR and IHDR of Lie algebra SU (3) are studied in 
detail. 

The symboll + denotes the set of non-negative integers. 
The symbol C denotes the complex number field. 

II. GENERAL PROCEDURE 

Let the basis for Lie algebra 
{To la = 1,2, ... ,M,dim L = M}. According to 
theorem, the basis for the universal enveloping 
~ (L) of Lie algebra L can be chosen as 

{X(iI,i2 , ... ,iM ) = T;' T~' .. T:;;li l ,i2, ... ,iM El +}. 

If we regard ~ (L) as the left L module, namely, 

p( Ta )X(iI,i2,· .. ,iM ) 

L be 
PBW 

algebra 

(2.1) 

(2.2) 
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one can obtain a representation p of L on ~ (L), called mas

ter representation. The matrix elementsp( Ta )::::: :::: are de
termined by the Lie product of L and are related to the M 
non-negative integers iI' iz, ... ,iM • 

Let Jbe a left ideal of ~ (L) generated through algebra
ic relations in ~ (L). On the quotient space ~ (L)IJ, which 
basis is also marked by certain of non-negative integers, 
(2.2) induces a representation. The different choice of J en
ables us to obtain all possible representations of L. For some 
concrete Lie algebras, these representations have been writ
ten as the explicit expressions.6-9 Now we construct the 
IHBR of L from these representations. However, for the 
sake of convention we only construct the IHBR of L from 
the master representation even though the arguments work 
also for the representation on ~ (L)IJ. 

We first define a Fock space Y with basis 

{lil,iz, ... ,iM) =:at i'a/ i, .. 'a:; iMIO) lai 10) = 0, ikEZ +}. 
(2.3) 

where the formula 

10,0, ... ,0)(0,0, ... ,01 = :exp( - i~1 a/aJ (2.9) 

is vacuum projective operator, : ... : is normal product. 
Equation (2.8) is the required IHBR of L. 

However, for a concrete Lie algebra, it is inconvenient to 
achievetheIHBR byuseofEq. (2.8). In fact, when we know 

the explicit form of p( Ta) t :;:' we can easily obtain the 
IHBR of L. In this case the following formulas usually used: 

at lil,iz, .. ·,iM) = li l,i2, .. ·,ik + 1, ... ,lM), 

aklil,i2, .. ·,iM) =iklil, .. ·,ik -l, ... ,iM), 

at ak li l ,i2, .. ·,iM) = i k li l ,i2, .. ·,iM), 

a~ak+ li l ,i2, .. ·,iM) = Uk + 1) li l,i2, .. ·,iM), 

~ 1 I" . . .) = £.. - '1'12'''''lk + j, ... ,IM , 
j~O j1 

eak lil ,i2, .. ·,iM) 

= ~ ik ! 1 ) £.. -----"--- i l ,i2 , .. ·J, .. ·,iM • 
j~O jlUk - j)! 

(2.10) 

In the next section this technique will be shown by virtue of 
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Then the mapping q;: ~ (L) -+Y defined by 

q;(X(iI,iz, .. ·,iM » = li l ,i2, .. ·,iM ) 

is an associative algebraic isomorphism. Let 

r(Ta) =q;p(Ta)q; -I. 

(2.4 ) 

(2.5) 

Then r ( Ta ) is a linear operator on Y and satisfies the rela
tion 

(2.6) 

Therefore Eq. (2.5) defines a representation of L on Y, 
called Fock representation. It is easy to see that 

(2.7) 

From (2.7) it follows that 

(2.8) 

SU (2) as an example, and in Sec. V with SU (3) as an exam
ple. 

From the IHBR of L, we can immediately write the 
IHDR of L by making use of the following corresponding 
relations: 

(2.11 ) 

III. IHBR AND IHDR OF LIE ALGEBRA SU(2) 

Let the basis for Lie algebra SU(2) be {T + , T _ , To} 
with the following commutation relations: 

[To,T±] = ±2T±, [T+,T_] = To· (3.1) 

The basis for the universal enveloping algebra ~ (SU (2» of 
SU (2) can be chosen as 

{X(m,n,r) =: T': T"-- T~ Im,n,rEZ +}. (3.2) 

(1) From the master representation of SU (2) on 
~(SU(2» given in Ref. 6 

p( To)X(m,n,r) = X(m,n,r + 1) + 2(m - n)X(m,n,r), 

p(T + )X(m,n,r) = X(m + 1,n,r), 

p( T _ )X(m,n,r) = X(m,n + 1,r) - mX(m - 1,n,r + 1) 

+ m(2n - m + 1)X(m - 1,n,r), 
(3.3 ) 
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the corresponding Fock representation is obtained as 

r(To)lm,n,r) = Im,n,r+ 1) + 2(m - n)lm,n,r), 

reT + )Im,n,r) = 1m + l,n,r), 

reT _ ) Im,n,r) = Im,n + l,r) - mlm - l,n,r + 1) 

+ m(2n - m + 1)lm - l,n,r). 
(3.4) 

From (3.4) we can immediately obtain the IHBR as 

r( To) = a/ + 2at a l - 2at a2, 

r(T+)=al+, (3.5) 

r(T_) =a2+ -a/a l +2a2+a2al -2ata~. 

The corresponding IHDR is obtained as 

a a 
D( To) = S3 + 2s l - - 2S2- , 

aS I aS2 

D(T+)=SI' (3.6) 

a a2 a2 

D(T ) =S2-S3-+2S2 -2s l-. - aSI aS2 aSI aS~ 

In comparison with the result in Ref. 11, we will find that 
(3.5) and (3.6) are the Hermitian conjugate of Doebner's 
result, combined with an index change 1~2. 

(2) From the representation6 ofSU(2) on the quotient 
space ~(SU(2»III' where II is a left ideal of ~(SU(2» 
generated by To - A·l (AEC), with basis 

{X(m,n) =X(m,n,O)Mod Ilm,nEl +}, 

p(To)X(m,n) = [A + 2(m - n) ]X(m,n), 

peT + )X(m,n) = X(m + l,n), 

(3.7) 

peT _ )X(m,n) =X(m,n + 1) + m( - A + 2n - m + 1) 
XX(m - l,n), (3.8) 

we can obtain the Fock representation. From this Fock rep
resentation the IHBR of SU (2) is obtained as 

r(To) = A + 2at a l - 2a2+ a2, 

r(T+) =at, (3.9) 

The corresponding IHDR is 

(3.10) 

(3) The master representationp induces on the quotient 
space ~(SU(2»II2' where 12 is a left ideal generated by 
T _ - Al (AEC), with basis 

{X(m,r) =X(m,O,r)Mod I 2lm,rEl +} (3.11) 

a representation6 

2799 J. Math. Phys., Vol. 31, No. 12, December 1990 

p( To)X(m,r) = X(m,r + 1) + 2mX(m,r), 

p( T + )X:(m,r) = X(m + l,r), 
r r' 

p( To)X(m,r) = A I . X(m,k) 
k=O (r- k)!k! 

- mX(m -1,r+ 1) 

- m(m - I)X(m - l,r). 

(3.12) 

From the Fock representation that corresponds to (3.12) 
one obtains the IHBR of SU (2) as 

r( To) = a2+ + 2at aI' 

r(T+) =at, 

r ( T _ ) = Aea
, - at a I - a t a~ , 

The corresponding IHDR ofSU(2) is obtained as 

a 
D( To) = S2 + 2s l-, aS I 

(3.13) 

D(T+)=SI' (3.14) 

D(T )=AealaS'_~~_~~ - ':J2aSI ':JI asi ' 

(4) Let 13 be a left ideal generated by T _, To - A 
(AEC). Then on the quotient space V= ~(SU(2»II3 with 
basis 

{X(m) =X(m,O,O)Mod I31mEl +}, (3.15 ) 

the master representation p induces a representation6 

p(To)X(m) = (A + 2m)X(m), 

p(T+ )X(m) =X(m+ 1), (3.16 ) 

peT _ )X(m) = m( - A - m + 1)X(m - 1). 

From corresponding Fock representation we obtain the 
IHBR and IHDR as 

a 
r(To) = A + 2a+a, D(To) = A + 2t-, as 

( 3.17) 

reT ) = -Aa-a+a2, D(T ) = -A~-t a
2

2. - - as as 
(5) When A = - N, where NE'l + , the subspace V N of 

Vspanned by 

VN:{X(m)EVlm;>N + l,mE'l+} (3.18) 

is invariant under the action of (3.16). On the quotient space 
VN= V IVN with basis 

VN:{XN(m) = (N - m)!X(m)Mod VNlm = 0,1,2, ... ,N}, 

dim VN =N+ 1, (3.19) 

(3.16) subduces a finite-dimensional representation6 

p(TO)XN(m) = ( - N 12:+ m)2XN(m), 

peT + )XN(m) = (N - m)XN(m + 1), 

peT _ )XN(m) = mXN(m - 1). 

(3.20) 

The corresponding Fock representation is obtained as 

r(To)lm) = (-NI2+m)lm), 

r(T+ )Im) = (N-m)lm+ 1), (3.21 ) 

reT _ )Im) = mlm - 1) (To = ~To). 
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It should be noted that the space carrying the representation 
(3.21) is a (N + I)-dimensional invariant subspace .Y N 

spanned by {1m) 1m = O,I, ... ,N} of Fock space with basis 

.Y:{lm)=a+mIO)lmEZ+, aIO)=O}. (3.22) 

From the finite-dimensional Fock representation (3.21) we 
obtain the finite-dimensional IHBR and IHDR as 

rc T <» = - N 12 + a + a, D( T <» = - ~ + t ~, 

rcT+) =Na+ -a+ 2a, D(T+) =Nt_t2~, 
at 

a rc T ) = a, D( T _ ) = -, (3.23) - at 
which are just the result obtained in Ref. 5. 

tV. COMMENTS ON tHOR OF SEMtStMPLE LIE 
ALGEBRAS 

Let L be a semisimple Lie algebra with Cartan decom
position L = H $l:fk<l> L p , where H is Cartan subspace 
(dim H = I = rank L ), <I> is root system, L P is the root space 
of root 13. Let <I> + = {f3l,f32, ... ,f3m} be a set of positive roots 
and !l. = {a l ,a2, ... ,al}C<l> the simple root system. Choose 
the basis for L as 

(4.1 ) 

whereYPiEL -Pi' xpiELp" hi =.haiER, with the following Lie 
product: 

[hohj ] = ° U,j = 1,2,00',1), [hoxpJ = f3j (hi )XPj ' 

[hoYpj] = - f3j (hi )YPj' [XPi'YPj ] = 8ijhW (4.2) 

If we regard the universal enveloping algebra Oft (L) of 
L with PBW basis 

{yi, yi, .. . y im h k'h k""h k'Xj , xj , ••• ;/,'" Ii k J' EZ+} p, p, p", I h, I p, p, p", p' p p 

(4.3) 

as the left L module, we obtain the master representation of 
L. 

Let leA) (AERO) be a left ideal generated by 
{XPi,ha - A(ha ) Ilf3iE<I> + ,aE<I>}. Then the quotient space 
Z(A) = Oft (L)ll(A) with basis 

{XUI,i2, ... ,im) =. [Y~"Yi,' "y;]Mod leA) likEZ +} 
(4.4) 

is a indecomposable standard cyclic module with the highest 
weightA. 1O 

If A is a dominant integral linear function, i.e., 
A(hi)=.AiEZ+, the left ideal yeA) generated by 
{y~:+ I ModI(A) Ii = 1,2, ... ,I} is the unique maximal proper 
submodule and the quotient module V(A) =.Z(A)IY(A) 
spanned by 

{BUI ,i2,· .. ,im ) 

=.XUI,i2, ... ,im )Mod Y(A)li l ,i2, ... ,im EZ+} (4.5) 

is a finite-dimensional irreducible L module, 10 on which the 
representation is marked by I = rank L non-negative inte
gers (A I,A2, ... ,A/ ). 
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From the representation on V(A), we can obtain the 
IHBR and the corresponding IHDR of L by use of the proce
dure given in Sec. II, which are marked by (A I,A2,00.,A/ ). 
These IHDR include all possible representations of L. 

Notice that the basis for V(A) is marked by m non
negative integers, where 

m = !(dimL - rankL). (4.6) 

Thus the IHBR obtained from the representation on V(A) 
uses creation and annihilation operators of m boson states 
and the corresponding IHDR uses m independent variables. 
Because V(A) is the irreducible module, m is the minimal 
number to construct all possible inhomogeneous differential 
representations. This fact is in accord with Shifman's argu
ments. 

V. tHBR AND tHOR OF SU(3) 

We choose the ordered basis for Lie algebra SU (3) as 

{e3l,e32,e2I' hi = ell - e22, h2 = e22 - e33, el3,e23,eI2}' 
(5.1) 

where eij is a 3 X 3 matrix with matrix element 
(eij) kl = 8ik 8j1' The basis for the universal enveloping alge
bra Oft (SU (3) ) of SU (3) can be chosen as 

{e~ e~2 ~I h ~h ~ e~3 ~2e~1 Im,n,p,k,l,r,s,tEZ +}. (5.2) 

The basis for the standard cyclic module Z(A) 
= Oft (SU ( 3 ) )I l, where I is a left ideal generated by 

{el3,e33 ,e I2, hi - A(h l ) 1, h2 - A(h2) 1}, can be chosen as 

{X(m,n,p) =. (e~ e~2~1 )Mod llm,n,pEZ+}. (5.3) 

The representation on Z(A) is obtained as7 

p(hl)X(m,n,p) = (AI + n - m - 2p)X(m,n,p), 

p(h2)X(m,n,p) = (A2 - 2n + p - m)X(m,n,p), 

p(e 12 )X(m,n,p) = p(AI - P + 1)X(m,n,p - 1) 

- mX(m - l,n + l,p), 

p(e23 )X(m,n,p) = n(A2 - m + p - n + 1 )X(m,n - l,p) 

+ mX(m - l,n,p + 1), 

p(e I3 )X(m,n,p) = np(A I - p + 1)X(m,n - l,p - 1) 

+ m (A I + A2 + P - m - n + 1) 

XX(m - 1,n,p), (5.4) 

p(e31 )X(m,n,p) = X(m + 1,n,p), 

p(e32 )X(m,n,p) = X(m,n + l,p), 

p(e21 )X(m,n,p) =X(m,n,p + 1) - nX(m + l,n - 1,p), 

[AI =A(h l ), A2 =A(h2)]· 

From the Fock representation that corresponds to (5.4) the 
IHBR is obtained as 

p(h l ) =AI-al+al +a2+a2 -2a3+a3, 

p(h2 ) = A2 - at a l - 2a2+ a2 + a/ a3, 

p(e\2) = Alai - a3+ a~ - a2+ ai' 

p(e23 ) = A2a2 - ata 1a2 + a3+a3a2 - a2+aL 
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p(e\3) = A,a2a3 - a3+ a~a2 + (A, + A2)a, 

+ a3+ a3a, - at ai - at a2a" 

p(e3 ,) = at, 

p(e32 ) = a2+ , 

p(e3 ,) = a3+ - a,+ a2. 

The corresponding IHDR is obtained as 

D(h,) =A,-S~+1]~-2;~, as a1] a; 

a a a 
D(h2 ) = A2 - 5- - 2TJ- + t-, as a1] a; 

a a 2 a 
D(e 12 ) = A,- - t-- - 1]-as a;2 as' 

a a 2 a 2 a 2 

D(e23 ) = A2 a1] - 5 as a1] + t a; a1] -1] a1]2' 

(5.5) 

a 2 a 2 a a 
D(e\3) = A,-- - t---- + (A, + A2)-

a1] a; a; 2 a1] as 
a 2 a 2 a 2 

+ t a; as - 5 as 2 - 1] a1] as ' 
D(e3 ,) = S, 
D(E32 ) = 1], 

a 
D(e2 ,) =;-5-, 

a1] 

(5.6) 

which is a realization on the infinite-dimensional space of 
polynomials 

{s m1]n;Pim,n,pEZ + }. (5.7) 

If A" A2el +, the left ideal Y(A"A2) =: Y(A) genera
ted by {X(O,O,l )'" + " X(O,l,O)'" + '} is the maximal proper 
module and the quotient module V(A"A2) 
= Z(A)/Y(A"A2) spanned by 

{X(m,n,p) =:X(m,n,p)Mod Y(A"A2) im,n,pEZ +} (5.8) 

is the finite-dimensional irreducible module. But it is diffi
cult to determine the linear independent basis for V(A"A2) 
from the set (5.8), and the resulting expressions of the repre
sentations on V(A"A2) are complicated and unenlighten
ing.7 However, for some special cases we can give concrete 
discussions. 

A. Triplet 

When A, = 1, A2 = 0, the basis for V( 1,0) can be cho
sen as 

{X(O,O,O),X(O,O,l ),X(O,l,1) =:X( 1,0,0)}, (5.9) 

where e3 , = e32e2 , is used. The representation induced on 
V( 1,0) is just the triplet ofSU(3). From this triplet we can 
obtain the IHDR on the space of polynomials with basis. 

{1,;,1];}. (5.10) 

B. Symmetrized IHDR of SU(3) 

We start from (5.4). 
It is observed that the subspaceJ(A"A2) with basis 

{X(m,n,p)EZ(A) iA,el + ,A2EC,p>A, + 1} (5.11) 
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is invariant. On the quotient space W(A"A2 ) 

=:Z(A)IJ(A"A2) with basis 

(X(m,n,p) =: (A, - p)!X(m,n,p)Mod J(A"A2) im,nel+, 

p..;;A,}, (5.12) 

Eq. (5.3) induces a representation as 

p(h,)X(m,n,p) = (A, + n - m - 2p)X(m,n,p), 

p(h2)X(m,n,p) = (A2 - 2n + p - m)X(m,n,p), 

p(e 12 )X(m,n,p) = pX(m,n,p - 1) 

- mX(m - 1,n + 1,p), 

p(e23 )X(m,n,p) = n(A2 - m + p - n + 1)X(m,n - 1,p) 

+ m(A, - p)X(m - 1,n,p + 1), 

p(e'3)X(m,n,p) = npX(m,n - 1,p - 1) + m(A, + A2 + P 

- n - m + 1)X(m - 1,n,p), (5.13) 

p(e3,)X(m,n,p) =X(m + 1,n,p), 

p(e32 )X(m,n,p) = X(m,n + 1,p), 

p(e2,)X(m,n,p) = (A, - p)X(m,n,p + 1) 

- nX(m + 1,n - 1,p). 

The IHDR is obtained as 

D(h,) =AI-S~+1]~-2;~ as a1] a; 

D(h2 ) = A2 - s~ - 21]~ + ;~ as a1] a; 
a a 

D(e'2) = - - 1]-a; as 
a a 2 a 2 a 2 

D(e23 ) = A2- - 5-- - t-- -1]-
a1] as a1] a; a1] a1]2 

a a 
+A,--;- (5.14) as as 
a 2 a a 2 

D(e\3) = a1]a; + (A, + A2) as + t a; as 
a2 a2 

- 1] a1] as - 5 as 2 

a 
D(e3,) = S, D(e32 ) = 1], D(e21 ) = A, -; - 5-, 

a1] 

which is a realization on the space of polynomials 

{s m1]n; Pi m,n,pEZ + ,0..;;p..;;A.}. (5.15) 
Particularly, when A, = 0, and p = 0, the representa-

tion (5.13) becomes 

p(hl)X(m,n) = (n - m)X(m,n), 

p(h2)X(m,n) = (A2 - m - 2n)X(m,n), 

p(e23 )X(m,n) = n(A2 - m - n + 1)X(m,n - 1), 

p(e I3 )X(m,n) = m(A2 - m - n + l)X(m - 1,n), 

p(e31 )X(m,n) = X(m + 1,n), 

p(e32 )X(m,n) =X(m,n + 1), 

p(e2,)X(m,n) = - nX(m + 1,n - 1), (5.16 ) 

where X( m,n) =:X( m,n,O). 
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When A2El + , it is easy to see that the subspace Q( 0,A2) 
spanned by 

{X(m,n)EW(0,A2) 1m + n>A2 + l,m,nEl +} (5.17) 

is invariant. On the quotient space H(A2) = W(0,A2)/ 
Q(0,A2) with basis 

{H(m,n) 

== (A2 - m - n)!X(m,n)Mod Q(0,A2)IO<m + n<A2} 
(5.18 ) 

dim H(Az) = !(A2 + 1) (A2 + 2), 

(5.16) induces a representation onH(A2) as 

p(hl)H(m,n) = (n - m)H(m,n), 

p(h2)H(m,n) = (A2 - m - 2n)H(m,n), 

p(e\2)H(m,n) = - mH(m - l,n + 1), 

p(e23 )H(m,n) = nH(m,n - 1), 

p(e13 )H(m,n) = mH(m - l,n), (5.19) 

p(e31 )H(m,n) = (A2 - m - n)H(m + l,n), 

p(e32 )H(m,n) = (A2 - m - n)H(m,n + 1), 

p(e21 )H(m,n) = - nH(m + l,n - 1). 

From the Fock representation that corresponds to (5.19) 
the IHBR is obtained as 

p(h l ) =ataz-ata., p(h2) =A2-ata.-2a2+a2, 

p(e\2) = - at a., peen) = a2, 

p(e13 ) =a., p(e3.) =A2a.+ -at 2a.-ataz+az, 

p(e32 ) = A2a2+ - at at a. - at Za2, p(e2.) = - at a2· 
(5.20) 

The corresponding IHDR is obtained as 

a a a a 
D(h.) = ",--t-, p(h2) =A2-t--2",-, a", as as a", 

a a 
D(e\2) = - ",-, D(eZ3 ) =-, as a", 
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D(e13 ) =~, D(e31 ) = Azs - sz~ - s"'~, as as a", 

D(e32 ) = Az", - "'5~ - "'z :",' D(ez.) = - t :",' 

(5.21) 

which is a realization on the finite dimensional space of poly
nomials with basis 

(5.22) 

In fact, if we choose the representation D in Ref. 5 as the 
antitriplet, we just obtain the realization (5.21) by making 
use of the general formula in Ref. 5. Therefore, the realiza
tion (5.21) marked by a non-negative integer is commensur
ate with the symmetrized direct product of A2 anti triplets of 
SU (3). So we call the realization (5.21) the symmetrized 
IHDR. 

C. Antitrlplet 

Let A2 = 1. Then we obtain the antitriplet from (5.21) 
on the three dimensional space of polynomials with basis 

(5.23 ) 
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The irreducible representations of the Lie superalgebra gl(mln) with highest weights of the 
form A = (A I.A2, .... ,tm Iw) are investigated using a recently introduced induced module 
construction for atypical modules. The gl (m In) ! gl (m In - 1) branching rules are obtained and 
a suitable Gel'fand-Tsetlin basis is introduced. The class of representations considered includes 
some multiply atypical irreducible representations of gl(mln) and all irreducible 
representations of gl (m 11 ). 

I. INTRODUCTION 

The concept of supersymmetry has applications in a var
iety of areas, 1,2 including condensed matter physics3-5 and 
nuclear physics,6 as well as particle physics, where it was 
first introduced.7 Underlying this concept is the theory of 
Lie superalgebras which, in the case of the so-called "basic 
classical" superalgebras and their finite-dimensional irredu
cible representations, has largely been developed by Kac. 8

,9 

Of all the Lie superalgebras, it is the basic classical superal
gebras whose theory is most like that of simple Lie algebras. 

However, there are crucial differences that have result
ed in many aspects of their representation theory remaining 
only partly explored. Kac9 showed that there are two dis
joint classes of finite-dimensional irreducible representa
tions of any basic classical superalgebra, and named these 
classes typical and atypical. Typical representations have 
many properties in common with finite-dimensional repre
sentations of simple Lie algebras, and in particular can be 
given explicitly by an induced module construction that al
lows a straightforward determination of their characters and 
dimensions.9 On the other hand, the situation with atypical 
representations is far more complex and they are still not 
well understood, although progress has been made in var
ious directions. 10-31 

In this paper we are concerned with finite-dimensional 
irreducible representations of the Lie superalgebra gl (m In), 
which we work with in preference to its basic classical subal
gebra sl(mln). The matrix elements ofthe generators in an 
orthonormal Gel'fand-Tsetlin basis have already been ob
tained, for each finite-dimensional irreducible representa
tion of sl(mll) anh gl(mll), by Palev. 25,26 More recently 
the branching rules and characters of all finite-dimensional 
irreducible representations of gl (m 11) have been deter
mined by Gould, Bracken, and Hughes28 using the modified 
induced module construction recently introduced for atypi
cal representations by Gould.27 The latter results confirm, 
for gl( m 11 ), the character formula conjectured by Hughes 
and King,22 as distinct from the formula obtained previously 
by Bernstein and Leites lO and by Van der Jeugt.23 More re-

cently, all finite-dimensional irreducible star and grade star 
representations of gl (m 11) have been classified.29 

Despite this recent progress in the representation theory 
of gl (m 11 ), the finite-dimensional irreducible atypical repre
sentations of gl(mln) for n> 1 are still poorly understood. 
One ofthe complicating factors is that gl(mln) for m,n > 1 
admits multiply atypical irreducible representations, where
as gl (m 11) only has singly atypical irreducible representa
tions (in the terminology used by Hughes and King22 ). An
other factor is that an irreducible representation of gl (m In), 
when regarded as a representation of the gl (m I k) subalgebra 
(0 < k < n), is not in general completely reducible. In this 
connection Palev30 has considered a class of "essentially 
typical" representations of gl (m In) that, by definition, do 
not present this second difficulty. 

It is our aim in this paper to investigate the structure of a 
different class of finite-dimensional irreducible representa
tions of gl (m In), those with highest weights of the special 
form A = (A 1,A2, ... ,Am IliJ,liJ, ... ,liJ) = (A Iw), where A is the 
highest weight of an arbitrary finite-dimensional irreducible 
representation of the Lie algebra gl (m ), and liJ is an arbitrary 
complex number. These representations are of special inter
est for physics because amongst them are the representations 
that arise in the interacting boson-fermion model of the nu
cleus.6,32 We note that this class in general contains multiply 
atypical representations ofgl(mln) (indeed, for m<,n, rep
resentations with maximum atypicality occur) and in the 
case of gl (m 11 ), contains all finite-dimensional irreducible 
representations, so it certainly contains representations that 
are not essentially typical. 

Nevertheless, we shall show with the help of the modi
fied induced module construction,27 the surprising result 
that any representation of gl( min) of the type described is 
for n> 1, a direct sum of irreducible representations of 
gl (m I n - 1) of the same type. The corresponding 
gl(mlnHgl(mln - 1) [and gl(mlnHgl(m) EB gl(n)] 
branching rules will be obtained ahd a suitable orthogonal 
Gel'fand-Tsetlin basis introduced. It would clearly be of in
terest in future work to determine the matrix elements of the 
generators in such a basis (cf. Palev30 ). 
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II. PRELIMINARIES 

The generators of the Lie superalgebra gl (m In) are giv· 
en by the even gl(m) Ell glen) generators Ej (l<iJ<m) and 
E ~ ( 1 <p, v<n), respectively, satisfying the usual commuta
tion relations, together with the odd generators ~, and 
t/It(1<i<m, l<p<n) satisfying the commutation and anti
commutation relations: 

[Ej,~] _ =DN~, [E~,t/t~] _ = -D:t/t~, (1a) 

[Ej,t/{] _ = -D~t/Ij, [E~,t/{] _ =8':,t/tL (1b) 

[~,t/ly] + 

= [t/It,t/tj] + =0, [t/t~,1'j] + =D;Ej + DjE;,(1c) 

where [,] _ (resp. [,] + ) denotes the commutator (resp. 
anticommutator): these two cases are taken into account 
below by the graded bracket, denoted [,]. We note that ( 1 a) 
[resp ( 1 b)] expresses the fact that the generators t/t~ (resp. 
t/It) transform as the irreducible representation 
(1,0) ® (0, - 1) [resp. (0, - 1) ® (1,0)] of the Lie algebra 
gl(m) EIlgI(n). 

A basis for a Cartan subalgebra of gl( min) consists of 
the commuting operators E; ( l<i<m), E~ (l<p<n) whose 
eigenvalues serve to label the weights of the representations. 
We denote the weights A of gl(mln) by (notation as in 
Kac8

) 

m n 

A = " A(O)E. + " A(l)D £." ~I'I' i= I Jl = I 

= (Al°l,···,A~)IAlIl, ... ,A~l), (2) 

so that, with this convention, the root system of gl(mln) is 
given by the set of even roots 

±(Ei-Ej ), l<i<j<m, ±(DJl-Dv), l<p<v<n 

together with the set of odd roots 

± (Ei - DJl ), 1 <i<m, 1 <p<n. 

Following Kac8 we choose, as a system of simple roots, the 
distinguished set 

Ei -Ei+ l (l<i<m), as =Em -DI' 

DJl -DJl + I (1<p<n) 

so that the sets of even and odd positive roots are given, 
respectively, by 

<1>0+ ={Ei -Ej ll<i<j<m}U{DJl -DvI1<p<v<n}, 

<1>1+ = {Ei - DJlll <i<m, 1 <p<n} 

and we set 

1 
Po =- L a 

2 aE<I>o+ 

1 min 
= - L (m + 1 - 2i) Ei + - L (n + 1 - 2p)DJl , 2 i =1 2Jl=1 

1 nm mn 1 .. 
PI =- L a=- LEi -- L DJl =- (nl-m), 

2 aE<I>,+ 2 i = I 2 Jl = I. 2 

P=Po -PI' 

We note that gl(mln) admits a nondegenerate even in
variant bilinear supertrace form arising from the fundamen-
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tal vector representation 11': 

(x,y) = str(11'(x)11'(y», x,yEgl(mln) 

leading to 

(EOEj) =Dij' (EoDJl) =0, (DJl,D y ) = -DJlv ' 

This in tum induces a nondegenerate bilinear form on the 
weights, given by 

m n 
(A A') = " A(O) N(O) - " A (I) A,(I) (3) , £"-1' L..JJJ-l 

i= I Jl= I 

with A as in Eq. (2) and A' = (A'(O) IA'(I) ). 
Every finite-dimensional irreducible gl (m In) module 

admits a unique (up to scalar multiples) gl (m) Ell gl (n) 

highest weight vector VA of weight A satisfying the condi
tions 

~VA = 0, l<i<m, l<p<n. 

Such a vector is called a highest weight vector and its weight 
A, called the highest weight of the representation, uniquely 
characterizes the representation (Kac8

): throughout we de
note the irreducible gl (m In) module with highest weight 
A = (A (0) IA (I) ) by VeAl. The components of the highest 
weight A necessarily satisfy the conditions 

MO) - AJO)EZ + ( 1 <i <j<m), 

A~l) - A~l)EZ+ (1<p <v<n), (4) 

which are just the conditions that A constitute a dominant 
integral weight ofthe Lie algebra gl (m) Ell gl (n): throughout 
we denote the finite-dimensional irreducible module over 
gl(m) Ell glen) with highest weight A by VoCAl. We denote 
the set of all weights A, whose component satisfy (4), by 
D + (the set of dominant integral weights). 

Corresponding to every AED + we may construct an 
indecomposable finite dimensional gl( min) module with 
highest weight A using the induced module construction of 
Kac8

• To this end we find it convenient for the moment to 
denote the Lie superalgebra gl(mln) simply by L and to let 
Lo denote the Lie subalgebra gl ( m) Ell gl (n ). We let L + 

(resp. L _ ) denote the graded Alebian subalgebra spanned 
by the operators t/t~ (resp. t/It) giving the Z2-consistent Z
gradation. 

L=L_ EIlLoEllL+. (5) 

We denote the universal enveloping algebras of L, Lo, L ± ' 

by U, Uo, U ± resp. and we denote by U + the universal 
enveloping algebra of the subalgebra 

(6) 

We note that the algebras U + are 2m n-dimensional with ba
sis consisting of lEiC together with all basis monomials 

.,/, .,/2 •..• ,/. (resp .• ,!!",.,!!"2 .• •• IPk) 
'f'1l! 'r1l2 'f'Pk ,'Pi1 'Pi2 'Pi,,' 

(7) 

where 1 <i l ,i2,··, ik <m subject to the condition that, for 
Pr = PI (r< I), we have 1 <ir < ... < il<m. From the Poin
care-Birkhoff-Witt theorem31 we may write, in view of (5), 
(6) : 

U = U _ Uo U + = U + Uo U _ 

=U_U+ =U+U_. 

Gould, Jarvis, and Bracken 
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Given a finite-dimensional irreducible Lo module 
Vo(A), we turn Vo(A) into a U + module by defining 

L + Vo (A) = (0). (9) 

The induced L-module V( A) is then defined by8 

V(A)=U®u Vo(A) (10) 
+ 

which is spanned by all vectors of the form [notation as in 
Eq. (7)] 

rf!:,'tf!:,2···tKk ®v, VEVo(A). 

We note that the induced module ( 10) is an indecomposable 
L module with highest weight A and dimension 
dim V(A) = 2mn dim Vo(A). In a similar way we may de
fine 

L _ Vo (A) = (0), 

which leads to the induced L module 

V_ (A) = U®u_ Vo(A). 

(11 ) 

(12) 

This is also indecomposable, but in this case is cyclically 
generated by a lowest weight vector of weight A _ , where 
A _ is the lowest weight of Vo (A): recall that 

A = (A(O) A(O) ... A(O)IA(l) A(l) ... A(I» 
- m' m-l' 'I n' n-l' '1 • 

We have the following result. 
Theorem 1: (Kac8

) 

V(A) = V(A) (Le.,V(A) is irreducible) if and only if 
(A + p,a) #0, for all aE<I>t . • 

A weight AElJ + satisfying the conditions of Theorem 
1, and the corresponding module V(A), are said to be typi
cal. Similarly, A and V(A) are called atypical if 
(A + p,a) = 0 for some aE<I>t+ j we note that 

(A + P,Ei - 81') = MO
) + A~t) + m + 1 - i -,u. (13) 

Thus in the case that V( A) is a typical gl (m In) module, and 
so equal to V( A), the structure of V( A) follows immediately 
from the induced module construction ( 10). In the case that 
V(A) is atypical, however, the situation is more complex, 
since in such a case the Kac module V(A) is no longer irre
ducible and V(A) only appears as a subquotient ofV(A): 

V(A) ~ V(A)IM(A) 

where M( A) is the (unique) maximal submodule of V( A). 
However for arbitrary AElJ + , we may employ the result27 

that the lowest weight Kac module [c.f. Eqs. (11), (12)] 

V _ (A - 2pt> 

= U®u .. Vo(A - 2pt), L_ Vo(A - 2pt) = (0) 

contains, as a unique irreducible L module, 

V(A) = U [¢® Vo (A - 2pt)] 

where 

(14) 

(15) 

Since the "'~ anticommute, the operator (15) is uniquely 
determined up to a sign: this operator is denoted T + in the 
work of Kac. 8 We note, since (pt,a) = 0 for aE<I>o+, that 
AElJ + if and only if A - 2p tElJ + . 
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It is our aim in the following to employ the modified 
induced module construction of Eq. (14) to investigate the 
irreducible gl (m In) modules. In particular we determine the 
gl(mlnHgl(mln - 1) branching rules (n> I) for the irre
ducible representations with highest weights 
A = (A (0) I A (1» whose odd component is trivial: 
A(l) = (w). 

III. INDUCED MODULE CONSTRUCTION 

Following Ref. 27 (see also Ref. 28) we introduce the 
tensors !iJ: defined by 

t/Jv!iJ: = OJ: 81 ¢, 
which transform as the irreducible representation (irrep. ) of 
gl(m) tIl gl(n) with highest weight (0, - 111,0) - 2pt: 

[EJ,ih] = n8Jih - 8~ 1/1;, 
[E~,¢n = 8~ih - mOJ:¢'k. (16) 

We similarly introduce the antisymmetric tensors 

defined by27 

"'~¢; = 8J8;¢r - 8:8~¢;. 
More generally we have the antisymmetric tensors 

(11" any permutation of numbers 1, ... ,k) which are defined 
recursively by 

.Ii :;,,,,"'\'k = 8v'8i :;,~""',Vk _ 8v'8i :;,:'~',"",Vk 
'1-'1' 'l-'J", '1< I' it '1-'12" '1< I' 12 'l-'ith" '1< 

+ ... + ( - l)k- t8;k8jk ",;>,',~:'k II, (17) 

It follows from their definition that the above tensors 
satisfy the commutation relations [cf. Eq. (16)] 

[E i -::i1""'l'k] _ >:i-::iI','''l'k >:i -::i1',I','''l'k ••• 
j,'I-'j,'''jk - nUj'f'j,"'h - Uj, 'f'jj,"'h -

As well we note the following graded commutation relations 
that may be proved using the methods of Refs. 27 and 28: 

(19) 

(summation over 1 <;;;q<;;;m, I <;;;u<;;;n, implied). In particular 
we obtain 

[t/f;',¢] = E7¢;: + ¢~E~,. 
[t/f;',¢j] = E7~v + if;ijE~. 

(20a) 

(20b) 

To construct the irreducible gl(mln) module with high
est weight A = (A. Iw) we introduce the irreducible 
gl(m) tIlgI(n) module Vo(A - 2pt) satisfying 

L_ Vo(A - 2pt) = (0). 

Equation (14) then implies that the irreducible gl (m In) 
module V(A) is given by 

V(A) = U _ ¢® Vo (A - 2pt), 

which is spanned by vectors 

rf!:,'···ifI:,:¢®w, WEVo(A - 2pt)· 
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We note that for the special irreps we are considering the 
representation labels of A' = A - 2pl are given by 

MOl' = Ai - n, l<i<m, A~I)' = w + m, 1 <J.l<n, 

so that, for wEVo(A - 2pl)' 

E~w = (w + m)~w. (21) 

Now we have, from Eqs. (20a, 21), for all 
WEVo(A - 2pl) 

t/I/¢® w = [t/l;"iJ] ® w 

= (w + m -E)f¢{®w 
where we have adopted the convention 

(w + m - E)~ = (w + m)8; - E~ 

and E denotes the gl ( m) adjoint matrix defined by34 

E~= -E~. 
More generally using Eq. (19) we obtain 

(22a) 

t/lfiJ~'.·.·.j:k ® w = (w + m - E)r¢J:u~'::;:k ® w. (22b) 

Following Bracken and Green33
,34 the gl(m) $gl(n) 

tensor operator t/If may be resolved into gl (m) shift compo
nents 

m 

t/If = L tP[r ]f, 
r= 1 

which effect the following shifts on the gl (m) $ gl (n) repre
sentation labels: 

tP[r]fllEVo(A-E,+OI)' lIEVo(A), A=(Alcb), 

The above shift components may be constructed using the 
projection operators34 

P[r] = IT (E-al
) 

I"., a, - al 

according t034 

tP[r]f = P [r]~t/1, 
where the adjoint roots a, take constant values on an irredu
cible gl (m) module with highest weight A given by 

a,=r-l-A,. (23) 

Alternatively in terms of the gl(m) vector matrix34 

E = (E5) we may write 

tP[r]f = t/1P [rH, 

where P[r] denotes the projection33,34 

and the roots a, are related to the adjoint roots a, by 
a, = n - I-a,. 

Using Eq. (22a) we have, for the action of the above 
shift components, 

tP[r]fiJ® w = P [rHt/1iJ® w 

= P [rH(w + m - E)Jif; ®w 

= (w+m-a,)iJ[r]f®w, (24) 

where 
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iJ[r]f = P [rH¢1 = ¢1P [r]~ 
and we have employed the gl(m) characteristic identity34 

E{P [r1J = a,P [r]~. (25) 

We note that the adjoint roots a, are given by [cf. Eq. (23) ] 
ii, = r - 1 - A; where A' now refers to the shifted weight 
A' = A - E,. Using 

(A + p,E, - 0,.,) 

=A,+w+m+l-r-J.l, forA=(Alcb) (26) 
we have 

(A + p,E, - ( 1 ) = w + m - r + A, 

=w+m-a, 

so that Eq. (24) may be expressed as 

tP[r]fiJ ® w = (A + p,E, - 01 )iJ[r]f ® w. (27) 

The states (27) either span the irreducible 
gl (m) $ gl( n) submodule of V( A) with highest weight 
A + E, + 01 or else are zero for all WEVo(A - 2pl) and 
choice of indices J.l, i. It follows that the irreducible 
gl(m) $ gl(n) module Vo (A - E, + 0) occurs (with unit 
multiplicity) in V(A) if and only if A - E, + 0) is dominant 
and (A + p,E, - 0) ) ¥=O. 

Proceeding further we now consider the action of two 
odd lowering operators t/lftPj on the vectors iJ ® w. We have, 
using Eqs. (22b) and (27) 

t/lftP[r]jiJ® w = (A + p,E, - 0) )t/lfiJ; ®P [r1Jw 
- k- l' 

= (A + p,E, - ( 1 )(W + m - E);tIltq 

®P [r1Jw. 
It follows that we may write, in terms of shift components, 

tP[/ ]ftP[r]jiJ®w 

= (A + p,E, - ( 1 ) (w + m - al )iJ[l:r]tVw, (28) 

where we have employed the gl(m) adjoint identity (25) 
and where iJ[l:r] denote the "primary" shift components 

iJ[l:r]r = P [l ]~ih;p [r1J. (29) 

Inthiscaseal = 1- 1 - AI' where A , now refers to the shift
ed gl(m) highest weight A' = ..1.- E, - EI , so that 

1 ¥=r, 

1= r. 

Substituting into Eq. (28) we arrive at 

tP[/ ]ftP[r]jiJ®w = AviJ[l:r]tVw, (30) 

where the coefficients A v , referred to herein as "selection 
factors," are given by 

and we have employed Eq. (26). 

1 ¥=r, 

1= r 

In the case 1 = r above, the tensor iJ [r:r] r is necessarily 
symmetric in i and j and hence antisymmetric in J.l and v. In 
such a case the states (30) are either identically zero or else 
span the irreducible gl (m) $ gl (n) submodule of V( A) with 
highest weight Ao = A - (E, - DJ ) - (E, - ( 2 ), In the 
case 1 ¥=r however, Eq. (30) does not yield a (pure shift) 
tensor and it is necessary to apply symmetrization opera
tions to the superscripts J.l, v (symmetric and antisymmetric 
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in this case). We then obtain, after symmetrizing the shift 
labels (c.f. Ref. 24), the following pure shift tensor equations 
(I=/=r): 

t/Jjp.t/Ji] [I,r]¢® w = Al.r¢[I,r] Jj'V]w, 

t/J}p.t/Ji} [/,r] ¢ ® w = AI.r¢[I,r] Y"v}w, 

where 

t/Jjp.t/Ji] = (11-/2) (ifl:t/Ji - t/J~t/Jj), 

¢Jj'V] = (1-/2) (ifI:/ - ¢'/!) 

(3la) 

(3lb) 

are antisymmetric inJ.L and v (and thus symmetric in i andj ) 
whilst 

t/J}p.t/Jt = (1I-/2)(ifl:t/Ji + t/J~t/Jj), 
¢Y"v} = (l/-/2){ifIt + ¢'/!) 

are symmetric inJ.L and v (and thus anti-symmetric in i and 
j ). The I =/= r shift components of the above tensors are then 
given by 

J'[I r]Lu,v] = J,lp.,v]p [I r]k.q 'f' : kJ 'f'kq S, lj 

= ¢[I:r] Jj'v] + ¢[r:1 ] Jj"'], 
4[1 r]{p,v} = J,{p.,v}p [I r]k.q 
'f/ "} 'f'kq A , IJ 

= ¢[I:r]Y"V} + ¢[r:1 ] Y"V} , 
where P S [/,r], P A [I,r] denote the appropriate gl (m) second 
rank symmetric and antisymmetric tensor projections, re
specti vely, 34 

The states (31 a) are either identically zero or else span 
the irreducible gl( m) Ell gl (n) submodule of V( A) with 
highest weight Ao = A - (Er - 8) ) - (EI - 82), whilst the 
states (31 b) are either zero or else span the irreducible 
gl(m) Ell glen) submodule with highest weight 
Ao = A - (Er - 8) - (EI - 81 ), 

We write the above equations in the unified form 

ifl:t/Ji[l,r] ¢ ® w = AI,r ¢[ I,r ltvw, 

where 

¢[I,r ltV = 1iJk~P [I,r] ~q 

(32) 

with P[I,r] the symmetric or antisymmetric sc:;cond rank 
tensor projection of gl( m). 34 In the case that P[I,r] is sym
metric (resp. antisymmetric) the shift components in Eq, 
(32) are symmetric (resp, antisymmetric) in iandj and thus 
antisymmetric (resp, symmetric) in J.L and v: when I = r the 
projection P[ r,r] is automatically symmetric34 so that the 
tensor (32) is symmetric in i andj. 

In general if we have a product of generators 

then we have a resolution into shift components 

where P[ a] denotes a k th-rank irreducible tensor projec
tion,34 which effects the following shifts on the 
gl(m) Ell gl(n) representation labels: 

t/J[a]~'" '~'VEVo(A - air + (w», VEVo (A). (33) 

Here ris the highest weight of an irreducible k th-rank tensor 
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representation of gl (n), whose corresponding Young dia
gram [r] determines the symmetry on the indices J.L 1 , • , • J.L k , 

and where a is necessarily a gl(m) weight in the irreducible 
gl (m) module given by the conjugate Young diagram [r] T, 

In particular, since the Young diagram [r] T cannot have 
more than n columns, the components of the shift weight a 
must satisfy 

m 

o,ar,n,(l,r,m), L a r = k. (34) 
r= 1 

Our aim now is to prove, by induction, that 

t/J[a]~,·.·.t¢® w = A~ ¢[a]~'·.·.;~·w 

(35) 

where the selection factors A~ are given by the following 
product of "atypicality factors": 

m ~, 

A~ = II II (A + p,Er - 811.)' (36) 
r=lp.=1 

In view ofEq. (34) the products in Eq. (36) are always well 
defined. 

To prove Eq. (35) inductively we have, using Eq. 
(22b), 

." ... 1,[ a ]Ill" 'Pk'J, A .,1J.l-:iJII·· 'Ill.. P [a ]jl" 'j,., 'f'i'f' i,"'i, 'f' ® w = ~ 'f'i 'l'1,"-j, ® i,"'i, W 

= A~ (li) + m - E)r~:.' :;:' 

Applying the gl(m) adjoint projector P[r] to the left we 
obtain 

t/J[r]~t/J[a]~>· '~'¢® w 

= A~ (li) + m - aT )¢[r:a]~~'·· ·~,w (37) 

where ¢[r:a] denote the primary shift components 
- • 11.11.,' "II., _ - q::il'p.,' "II., 1,"-j, 
t/J[r.aL""i, - P [rL'I''li'''-j, P [aL""i,· 

In this case [cf. Eq. (23)] we have ar = r - 1 - A ;, where 
A' now refers to the shifted gl (m) highest weight 
A' = A - a - Er • We may thus write, in view ofEq. (26), 

li) + m - ar = li) + m - r + a r + Ar 

= (A + p,Er - 8~,.+ 1) 

and substituting into Eq. (37) we arrive at 

.I'[r]/-,·I, [ a]p.,· . . p.'J, ® w = A J'[r:a]l1:p.,· . .p-'w. 
'f' l'f' 'I '\ 'f/ d + Er'f' "\ 'I.. 

Finally, by symmetrizing the gl(m) shift labels,28 we arrive 
at the pure shift tensor equation 

t/J[ a + Er ]~~'" <'¢® W = A~ H,¢[ a + Er ]~~'" '~'w, 
which establishes Eq. (35) by induction. 

The states (35) [or equivalently (33) ] are either identi
cally zero, which will occur if A~ = 0 or 

(38) 

is nondominant, or else they span a (possible multiple of 
the) irreducible gl (m) Ell gl( n) submodule of V( A) with 
highest weight Ao. It follows that the irreducible 
gl (m) Ell gl( n) modules occurring in V( A) have highest 
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weights of the form (38), where yis the highest weight of an 
irreducible k th-rank tensor representation of gl(n) and tl. is 
a gl(m) (shift) weight in the gl(m) irrep. with highest 
weight y whose Young diagram [y) = [y) T is conjugate to 
[y). Theirreduciblegl(m) (BgI(n) module Vo(Ao) thenoc
curs in V( A) provided Ao is dominant and A.1 =I- O. In such a 
case the irreducible module Vo(Ao) may occur with multi
plicities (possibly zero) in V( A). Indeed if Ao is dominant 
andA.1 =1-0, then the mUltiplicity of Vo(Ao) in V(A) is given 
by 

mAO = mA~.1mr' 

where m A ~.1 is the multiplicity of the irreducible gl( m) 
module Vo(..1, - tl.) in the gl(m) tensor product 

Vo (A) ® Vt(y) 

and mr is the number of irreducible k th-rank gl(n) tensors 
of symmetry type y, which may be evaluated using standard 
Young diagram techniques.35 

In this way we may deduce the gl(mln) !gl(m) (B gl(n) 
branching rules (and thus characters) for the irreps of 
gl(mln) with highest weights of the special form 
A = (A IriJ). However we shall not pursue this any further 
here since it turns out that a more efficient procedure can be 
employed based on the Gel'fand-Tsetlin (GT) chain. 

IV. gl(mln)!gl(mln-1) BRANCHING RULES 

Perhaps the most surprising thing about the class of ir
reps V(..1, IriJ) we are considering is that they decompose into 
a direct sum of irreducible representations of gl (m I n - 1) of 
the same type. To see this we apply the PBW theorem and 
order the odd lowering generators t/I: with the operators t/I: 
( 1 <i < m) appearing on the right. With this ordering the 
operator Ii of Eq. (15) may be decomposed 

Ii = lio if (39) 

with 

m 

if = II rp~ 
i=l 

and where lio is the gl (m In - 1) analog of Ii: 
m n-l 

lio = II II tf/p. 
i= I p= I 

To write the tensors ofEq. (17) in gl(m) (B gl(n - 1) sym
metry adapted form, we also find it convenient to introduce 
the antisymmetric gl (m) tensors ifi, ... i, defined recursively 
according to 

rp~ifi = 8~if 

+ .,. + (-I)k~18tifi"i, , (40) 

With the above ordering the irreducible gl(mln) mod
ule V( A), A = (A lriJ), is generated by applying all odd low
ering gl(mln - 1) generators to states of the form 

rp~ ... t/I:. Ii ® w, WE Vo (A - 2p I ). ( 41 ) 
In other words V(A) is given by the gl(mln - 1) module 
generated by the states (41). We note, since the gl (n) com-
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ponent of the highest weight A is trivial, that the irreducible 
gl(m) (BgI(n) module Vo(A - 2pI) is also irreducible for 
the canonical subalgebra gl (m) (B gl (n - 1). 

On the other hand, we note that 

constitutes a contragradient antisymmetric tensor operator 
of gl (m) and hence we have the following resolution into 
antisymmetric shift components: 

rp~ rp~ = I rp[tl.) ~ ... ~ 
.1 

where the sum is over all weights 

tl. = €r, + €rz + ... + €r"I<r l <r2 < ... <rk<m 

in the anti-symmetric tensor representation of gl(m) and 
rp [ tl.) effects the shift 

..1,l<-/..1, - (€r, + ... + €rJ 

in the gl(m) representation labels. The above shift compo
nents are given explicitly by 

.1, [tl.) n ••. '! = .I,n .•• • I,n)' . P [tl. )j, .. ), 
'f/ 'I '" 'f/lJ 'f/h k 'I '". 

where P[ tl.) is the gl (m) k th-rank antisymmetric tensor 
projection34 as applied in Ref. 24. 

The vectors of Eq. (41) may thus be resolved into 
gl(m) (B gl(n - 1) symmetry adapted components 

rp7,"'rp7,Ii®w= I rp[tl.)7,"·7,Ii®w (42) 
.1 

with 

.1,[ A)n n J, A J,11 "n P [A)j""j, 
'f' L.l i,'''i,'f'®W= .1'f'j, "h ® L.l i""i,W, 

where in the above we have employed Eq. (35) and the selec
tion factor A.1 is given by [cf. Eq. (36») 

k 

A.1 = II (A + P'€" - 81 ). 

i= 1 

In terms of the tensors (40) the above action may alterna
tively be written 

where 

W.1 = ifj, .. 'j. ® P [tl. )~: ... ~: w. ( 44 ) 

In view of the special nature of antisymmetric tensors (c.f. 
Ref. 36, Appendix A) we note that the states (43) are either 
identically zero, for all WEVo(A - 2pI) and choice of indices 
1 <iI' i2 , ... , ik <m, or else they necessarily span an irreducible 
gl(m) (B gl(n - 1) module with highest weight 
Ao = (A - tl.lriJ). In view ofEq. (43) the latter case arises if 
and only if Ao is dominant and A.1 =1-0. 

We now claim that the states (43), if not zero, in fact 
generate an irreducible gl( min - 1) module with highest 
weight (A - tl.lriJ). To see this we note that the vectors W.1 of 
Eq. (44) must satisfy, for l<i<m, 1<,u <n 

t/l:W.1 = t/l:ifk · oj, ® P [tl. )~: ... ~~ W = 0, 

which follows because W belongs to a trivial one-dimensional 
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gl(n) module (so that E~w=O, Il<n). Thus all 
gl (m In - 1) odd lowering operators r/I: vanish on the states 
( 44) so that, from the modified induced module construc
tion of Eq. (14), the gl (m I n - 1) module generated by the 
states ( 43) is necessarily irreducible with gl (m I n - 1) high
est weight (A - .:lIm). 

In view of the resolution (42) is follows that the irredu
cible gl(mln) module V(A), A = (A 1m), is a direct sum of 
irreducible gl (m In - 1) modules with highest weights 

(A - .:lIm), .:l = Er + ... + Er , 
I k 

l<:r] <r2 < ... <rk<:m 

subject to the condition that A - .:l is gl( m) -dominant and 

k 

II (A + p,Er, - 8] ) #0, 
;=1 

each such module occurring exactly once. We thus arrive at 
the following result. 

Theorem 2: The highest weights of the irreducible 
gl(mln - 1) modules occurring in the irreducible gl(mln) 
module V(A), A = (A 1m), are of the form (Aolm), whereAo 
is a dominant weight of gl (m) satisfying A; - Ao EZ together 

) 

with 

A;>Ao,>A; - 1, (A + p,E; - 8]) #0, 

Ao, = Ai> (A + p,E; - 8] ) = 0, 

each such module occurring exactly once. • 
We remark that since A is gl(m) <9 glen) dominant we 

can have (A + p,E; - 8] ) = ° for at most one index i: note, 
in view ofEq. (26), that 

(A + p,E; - 8]) = A; + w + m - i. 

We note further that if (A + p,E; - 8 1 ) = ° for some index i 
then we must have for the gl(mln - 1) highest weights 
(Aolm) in Theorem 2, 

Ao} = Aj 

for any indexj < i such that (A,Ej - E;) = 0. This possibility 
is automatically taken into account in Theorem (2) by re
quiring that Ao be gl(m) dominant. In the case n = 1 the 
results of the above theorem agree with the gl (m 11 ) ! gl (m) 

branching rules previously obtained by Gould, Bracken, and 
Hughes. 28 

v. THE GT BASIS 

The results of the previous section demonstrate that the 
irreducible gl(mln) module V(A), with highest weight of 
the special form A = (A 1m), is necessarily a direct sum of 
irreducible modules for the canonical subalgebra 
gl(mln - 1) with highest weights (Aolm) of the same type. 
By repeated application of Theorem 2 it follows, from stan
dard arguments, that we may choose a basis for V( A) which 
is symmetry adapted to the canonical subalgebra chain 

gl(mln) :)gl(mln - 1):)'" :)gl(ml1) 

:)gl(m):)gl(m -1):)···:)gl(1). (45) 

The resulting GT basis states may be written 
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I 
(A») 
(A) OJ' 

where (A) denotes the pattern 

(A) = 

AI,m+n 

AI,m+n_1 

and (A) refers to a familiar gl(m) GT pattern 

AI,m ·····················Am,m 

Al,m-I·············· 'Am_l,m_1 

(A) = 

AI,2 A2,2 

AI,I 

(46a) 

(46b) 

(46c) 

The entries A ;,m + k of the upper pattern (A), corresponding 
to the rep. labels (Am + k 1m) of the canonical subalgebra 
gl(mlk) (0 < k < n), must satisfy A;J - Ak,/EZ together with 
the betweeness conditions (I <:i<:m) 

A;,m + k+ I >A;,m+ k>A;,m+ k+ I - 1, 

w + m - i + A;,m + k + I #0; 

A;,m + k = A;,m + k + I' W + m - i + A;,1n + k + I = 0, 

with 

A;,m+ k >A;+ I.m+ k' l<:i <m, 

which follows from the branching rule of Theorem 2. As 
usual the top row Am+ n = (A],m+ n, ... ,Am,m+n) ofthe pat
tern (A) determines the highest weight A = (Am + n 1m) of 
the irreducible gl( min) module concerned. 

We note that the GT states (46a) are uniquely deter
mined up to scalar multiples and are eigenstates ofthe Casi
mir invariants for each of the canonical subalgebras in the 
chain (45). In particular the state (46a) is an eigenstate of 
the first order invariant Il,m + k of the canonical subalgebra 
gl(mlk), O<:k<:n, with eigenvalue 

m 

kw + L A;,m+k' 
;~ I 

It follows that the state (46a) is a gl(mln) weight state of 
weight A' = (Vlll), where 

m 

Ilk =w+ L (A;,m+k -A;,m+k_I)' 1 <:k<:n 
;=1 

and, as usual, 
j j- I 

Vj = L A;J - L A;J-I' 1 <j<:m. 
;=1 ;= 1 

We may clearly choose an inner product on V(A) in 
which the above GT states are orthonormal. However such a 
choice of inner produce may not necessarily be most conven
ient. An alternative procedure is to adopt the approach of 
Ref. 29 and choose a symmetric non-degenerate sequilinear 
form (,) on V(A) under which we have the useful Hermiti
city conditions 
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(Ejv,w) = (v,E~w), (E~v,w) = (v,E;w), 

(t/J~v,w) = (v,t/l:w), for all v,WEV(A). 

Such a generalized inner product is not necessarily positive 
definite but nevertheless the GTstates (46a) are orthogonal 
under the form (,). Moreover the form (,) when restricted 
to all GT patterns with a fixed upper pattern (A), corre
sponding to a given irreducible gl (m) submodule, will either 
be positive or negative definite. If the form (,) is positive 
definite on all of VeAl, in which case it gives rise to an inner 
product, then V( A) is necessarily a type (1) *-representa
tion of gl(mln).29 

It would be of interest to determine the matrix elements 
of the gl ( min) generators in the G T basis (46), under the 
above mentioned form (,), and in particular to examine in 
detail the *-representations of gl (m In) with highest weights 
of the form (A I w ), since these are likely to be of great phys
ical interest (e.g., the interacting boson-fermion model of 
the nucleus); those highest weights corresponding to *-ir
reps can be obtained directly from the classification scheme 
of Gould and Zhang.37 

It would also be of interest to determine the lowest 
weights and characters of the irreducible gl(mln) modules 
V(A Iw). This can be done in the special case that V(A Iw) 
corresponds to a tensor irrep.13,15,38 of gl(mln), in which 
case w is necessarily real. From the results of Gould and 
Zhang,37 V(A Iw) corresponds to a contravariant tensor ir
rep. when (Am + W )El + and to a covariant tensor irrep, 
when one of the following conditions are satisfied 

Al + W = - k, m<kEl+ 
or 

Al +W= -k, (A,el -em_k) =0, O<k<m. 

For this class of irreps, and those obtained from them by 
tensor products with a one-dimensional irrep" the lowest 
weights are given explicitly by Gould and Zhang37 and the 
corresponding characters by the Serganova formula39.40 and 
it would clearly be of interest to determine analogous results 
for the remaining irreducible gl(mln) modules V(A Iw), In 
particular it would be of interest to determine which of the 
known character formulae,IO,22,23,39,4O if any, hold for the 
above class of irreducible gl(mln) modules. 
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In this paper, nonrelativistic elementary physical systems interacting with constant external 
electromagnetic fields are studied. The method is to construct a special kind of realizations 
of the Galilei group, which depend on the electromagnetic field. The linearization of 
this problem, which consists in obtaining these local realizations via the linear representations 
of another group, leads to a new representation group: the nonrelativistic Maxwell group. 
The study of the representations of this group and the related invariant equations 
completes this work. 

I. INTRODUCTION 

In a preceding paper,1 hereafter called I, we started the 
study, in a group-theoretical context, of elementary phys
ical systems interacting with external constant electromag
netic fields (emf). That work dealt with relativistic sys
tems, and here we present the nonrelativistic case. 

The origin of this group-theoretical treatment is the 
well-known paper by Wigner2 of 1939. There, the quantum 
elementary systems were put in correspondence with the 
semi unitary projective irreducible representations of the 
symmetry group of the physical system. Later, 
Hoogland3

-
5 showed that the interesting representations 

from a physical point of view in the space-time description 
were those that he characterized as locally operating rep
resentations (lor). The mathematical development of these 
representations can be found in several papers.6-1O These 
local representations allow us to obtain the differential 
equations that describe the free systems, but such a method 
is not so straightforward when one tries to study interact
ing systems because there does not exist a general formu
lation. 

In I we gave a group-theoretical description for the 
case of a constant emf, defining a new kind of local real
izations of the Poincare group P, which also depends on 
the emf fby 

(U(g)t/J)(g(x,f »=A(g;x,f )t/J(x,f), (1.1 ) 

where A is a Borel nonsingular matrix-valued function: the 
gauge matrix. There exists a group such that these realiza
tions can be obtained from some of its linear representa
tions. This new group, minimal in some sense, which ap
pears in this way is called the representation group,S,1I and 
in this case, it is known as the Maxwell group.12 The local 
representations of the Maxwell group are, in general, re
ducible, so to tum them into irreducible it is necessary to 
impose some extra conditions. These extra conditions will 
be written in the form of differential equations and char
acterize the interacting system. 

In the present work we extend this formulation to the 
Galilei group, although the theory is also valid for any 
other kinematical group. The first problem arises when one 

tries to write the emf that supports this kinematical group. 
In our case we have followed the paper by Le Bellac and 
Levy-Leblond13 where they make an exhaustive study of 
the Galilean electromagnetism. The results we are present
ing here are very close to the ones found in I, except that 
here there are two Galilean Maxwell groups, each of them 
related to the two limits of the Galilean electromagnetism, 
respectively. 

Finally, we wish to note that our two papers, I and this 
one, complete and participate the ideas of former 
attempts l2- 16 made to give a group-theoretical formulation 
of the electromagnetic interaction with elementary sys
tems. It must be remarked that Beckers and Hussin,16 
making use of the Schrader's method, obtained a nonrela
tivistic Maxwell group which also can be found in our 
derivation. 

The organization of this paper is as follows. In Sec. II 
we present a short review on the Galilei group, some of its 
finite-dimensional representations and the Galilean electro
magnetism. Section III presents the local realizations of the 
Galilei group and the construction of the nonrelativistic 
Maxwell groups. In Sec. IV we study exhaustively the ir
reducible representations of the Maxwell groups and ob
tain the Casimirs that label these irreducible representa
tions. We have computed the local representations of the 
Maxwell groups in Sec. V. In the next section we have 
derived some invariant equations for charged particles with 
spin 0 and ~ linked with certain local representations of the 
Maxwell group. The electromagnetic minimal coupling ap
pears in some of these representations in a natural way. 
Finally, we present some conclusions and remarks in Sec. 
VII. 

II. GALILEAN ELECTROMAGNETIC FIELDS 

The format of this section is in the nature of a review. 
First of all, we present some features about the Galilei 
group and study some of its finite representations which 
will be used later. The second part is devoted to the Gal
ilean electromagnetism. 
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A. The Galilei group 

The Galilei group G is the transformation group of the 
Newtonian space-time. It is a ten parameter Lie group 
whose composition law is 

gg'=. (b',a',v',R') (b,a,v,R) 

= (b' + b,a' + R'a + v'b,v' + R'v,R'R), (2.1 ) 

where a, b, and v denote the parameters of the space-time 
translations, and pure Galilean transformations, respec
tively; and R is a generic SO (3) rotation. Sometimes we 
will write the elements g=. (b,a,v,R) in the form g=. (a,A), 
where a stands for (b,a)ER4 and A for (V,R)EGO (the 
homogeneous Galilei group). The Galilei Lie algebra is 
defined by the following nonzero commutators: 

[J;,Jj] =€;jI~k> [J;,Kj] =€ijkKk, 

[J;'Pj] =€;jkPk, [K;.H] =p;. (2.1') 

where i, j, k = 1, 2, 3. The generators J; and K; correspond 
to the rotations around and inertial transformations across 
the i axis, respectively, and P and H to the space-time 
translations. 

The second cohomology group of G with values in 
U ( 1) is H2( G, U ( 1 » = R®Z2' Its connected part is associ
ated with the central extensions of the Galilei Lie algebra 
given by the above nonzero commutators and the new ones 
[K;.Pj ] = mfJ,f, I being a new generator that commutes 
with any generator of the Galilei Lie algebra. The coho
mology classes are labeled by [m,l], mER and lEZ2• A lift
ing of a generic class [m,1] is given by 

Wm !..(b',a',v',R'), (b,a,v,R» 

=WSO(3)/(R',R)exp{im(!bv,2 + v"R'a)} (2.2) 

where wSO(3)/is a factor system ofSO(3). This factor sys
tem lifts the class [I] which belongs to H2(SO (3), U (1 )) 
and is defined by 

wSO (3) /(R',R) = 1, 

wSO (3) _/(R',R) =a(R')a(R)a- 1 (R'R), (2.3 ) 

where a is a normalized Borel section from SO(3) to 
su ( 2 ). In the following, for the sake of simplicity, we will 
work with the universal covering group G* of G. So we put 
SU (2) instead of SO ( 3) and define the action of SU ( 2) on 
the space-time through the canonical homomorphism from 
SU (2) to SO ( 3 ). In doing so we do not need to bother 
anymore for the extension given by wSO (3) /(R,R'). How
ever, we will use the same notation for the elements of G* 
as well as those of G without risk of confusion. 

The homogeneous Galilei group Go is a semidirect 
product V0S0(3) [now V0SU(2)], where V::::: R3 is the 
subgroup of the Galilean inertial transformations. Two in
teresting finite-dimensional representations of Go are 11 + 
and D _. The first one is supported by the points of the 
space-time: 

11 + (v,R):(t,x) ..... (t,Rx + vt), (2.4 ) 
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while the derivation operators (a" V) transform under 
D_: 

D _ (v,R):(a"V) ..... (at - v·RV,RV). (2.5) 

In general, we can define the representations 11,t and D,t, 
AER* by 

11,t(v,R):(b,a) -+ (b,Ra + AVt), 

D,t(v,R):({3,a) ..... ({3 + AV"Ra,Ra). (2.6) 

The representations 11" are equivalent, and so are the Dk 
However, no 11" is equivalent to any D,," 

Given a pair of vectors under SU(2) (A,B), then the 
representation F ± acts on such a pair in the following way: 

F ± (v,R):(A,B) -+ (RA,RB±v /\RA), 

or, in general, F", AER*, can be defined by 

F,,(v,R):(A,B) -+ (RA,RB + AV /\RA). 

(2.7) 

(2.8) 

It is clear that the representations F" are equivalent for all 
the values of A. 

All the representations of Go so far defined, 11", D", and 
F" are reducible but not completely reducible. The contra
gredient representation of 11" is D _ ". Thus if (b,a) trans
forms under 11± and ({3,a) under D T , then {3b + a'a is a 
scalar. Here, F" and its contragredient representation are 
equivalent. In fact, if (A,B) supports the representation 
F", then (B,A) transforms under its contragredient repre
sentation. Therefore, when objects such as (A,B) and 
(A',B') are transformed under F ±, a scalar can be ob
tained in the following two ways: 

(i)A'B' + B'A', 

(ii)A·A'. (2.9) 

For the objects (b,a), (b',a'), supporting the represen
tations 11±, we have that «b,a)0(b,a'),a0a') transforms 
under F T , where a0a' = !(a/\a'), and (b,a)0(b',a') 
= t(ab' - a'b). Then, with a 11± object (b,a), and an 
F Tone (A,B) we can build two kinds of scalars: 

(i)(a0a')' A + «b,a)0(b',a'))' B, 

(ii)( (b,a)0(b',a') )·A. 
(2.10) 

Following the same arguments, other scalars can be ob
tained by means of D ± objects. 

B. The Galilean electromagnetism 

Some years ago, Le Bellac and Levy-Leblond 13 consid
ered a nonrelativistic electromagnetic theory in agreement 
with the Galilean relativity. They found two possible non
relativistic limits of the Maxwell equations: the magnetic 
limit (ml) and the electric limit (el). This Galilean elec
tromagnetism make use of the representations of Go that 
we have just studied: 11 ±, D ±, and F ±. A short description 
of both limits is given below. 

1. The magnetic limit 

The electromagnetic potential (emp), (tp,A), is a four
vector under the representation D±. Thus 
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(v,R):(tp,A) --+ (tp±v' RA,RA). (2.11) 

The electromagnetic field (emf) 1= (B,E), related to this 
potential is 

B=V /\A, E= - vtpOf=arA, (2.12) 

whence the emf transforms under F'I" as it is easy to check. 

2. The electric limit 

In this case, the emp is a a± type four-vector: 

(v,R): (tp,A) --+ (tp,RA ±vtp). 

The associated emf (E,B), is 

E= - Vtp, B=V /\A, 

which is an object which transforms under F ±. 

(2.13 ) 

(2.14 ) 

As it is well known, the physical objects are the emrs 
and not the emp's. Therefore, it is not necessary that the 
emp transforms itself under the Galilei group according to 
the laws (2.11) or (2.13), to be sure that the emf does it in 
the correct way. It is sufficient that a± I (g)(tp,A) and 
g(tp,A) differ in (tp',A') such that 

- Vtp' Of=atA' =0, V /\A'=O, (2.15) 

in the magnetic limit, or 

- Vtp'=O, V /\A'=O, (2.16) 

in the electric case. This kind of transformation will be 
called "up to a gauge transformation." 

On the other hand, if we want to include the parity 
operator P:(t,x) --+ (t, - x), as a symmetry, we need to fix 
how it has to be represented. In fact, there are two possible 
ways of enlarging the representations a, D, and F with P. 

(a) In agreement with the classical theory, E has a 
vectorial character, while B a pseudovectorial one. Thus 
we can write 

P:(E,B) --+ ( - E,B), (2.17) 

while, to be consistent, the transformation of the potential 
is 

P:(tp,A) --+ (tp, - A). 

(b) The other choice is given by 

P:(E,B) --+ (E, - B), 

P:(tp,A) --+ ( - tp,A). 

(2.17') 

(2.18 ) 

In this paper we will deal with constant emrs, and in 
this case for each limit we can choose the following poten
tials. 

(1) Magnetic limit: Let (B,E) be a constant emf, we 
can consider up to a gauge function the four potential 
(tp,A) given by 

tp= - !E'x, A=!(B/\x - Et). (2.19 ) 

If (B,E) transforms under F _, then (tp,A), so defined, 
does it under D +, as one can check straightforwardly. 

(2) Electric limit: Let (E,B) be a constant emf. Here, 
the four-potential can be defined, up to a gauge, by 
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(2.20) 

Thus, if (E,B) is an F ± object, the potential (tp,A) will be 
a a± object, up to a gauge transformation (tp',A'), which 
can never be reduced to zero. This is an important differ
ence between the ml and the el whenever the fields are 
constant. 

III. THE NONRELATIVISTIC MAXWELL GROUP 

As in our paper I for the Poincare group, the wave 
function describing an elementary system interacting with 
a constant emf, 10 will be denoted by t/J(x,lo), where xEX 
(space-time manifold). This wave function belongs to a 
Hilbert space Hfo' Let us take another observer and let g be 
the Galilean transformation relating both reference frames, 
then for this new observer the system will be described by 
t/J'(x,f), 'tJxEX with 1 = gfo where tl/ belongs to the 
Hilbert space Hf . Both descriptions must be physically 
equivalent, so we can write 

tl/(g(x,f »=(U(g)t/J)(g(x,f »=A(g;x,1 )t/J(x,f), 
(3.1 ) 

where (x,f ) belongs to the orbit ()(xo,Jo) of the origin point 
(xo,fo), and A is a Borel nonsingular matrix-valued func
tion, called gauge matrix, A:G X ()(xo,Jo) --+ GL(n,C). The 
set of transformations {U (g)} gEG is a generalization of the 
usual locally operating realizations. I

,3 In this case the 
transformations are functions of the constant emf as well as 
the space-time point. 

Some properties of these realizations come from the 
fact that the product of two of them must give another 
transformation up to a phase w depending in this case on 
the emf as well as on the group elements as usual, i.e., 

(U(g') U(g)t/J)(g'g(x,f» 

=w(g',g;/ )(U(g'g)t/J)(g'g(x,1 ». (3.2) 

This relationship leads to the following one for the associ
ated gauge matrices 

A(g';g(x,f»A(g;x,/) =w(g',g;/ )A(g'g;x,f). (3.3) 

The phase w is called a factor system of G and it is a Borel 
function w:G X G X () f--+ U (1 ) ,() f is the orbit of the emf! 
under the action of G. 

The associativity of these transformations allows us to 
prove that w is a two-cocycle, i.e., 

W(g3,g2Kl;/ )W(g2,gl;/ ) 

=W(g3,g2;gU )W(g~2,gl;/)' (3.4) 

Now we can define a relation of equivalence between 
local realizations. Two local realizations U and U' are lo
cally pseudoequivalent if there are: (i) a local operator 8 
defined in every Hf'tJ!E()fo' i.e., 

(8t/J) (x,f) =8(x,1 )t/J(x,f), 8:()(x,J) --+GL(n,C) 

being a Borel matrix-valued function and (ii) a Borel func
tionlt:G X ()f--+U(l) verifying 
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(U'(g)t{l)(g(x,1 »=A(g,1 )(SU(g)S-It{l)(g(x,1 ». 
(3.5) 

The gauge matrices associated to local pseudoequivalent 
realizations are related by 

A' (g;x,J ) =A(g,J )S(g(x,J »A (g;x,J )S - 1 (x,J ) 
(3.6) 

and the corresponding factor systems verify 

W'(g',g-,j) =w(g',g-,j)A(g',gf )A(g,/)A -l(g'g,j). 
(3.7) 

The relationship (3.7) defines a relation of equivalence 
among the factor systems of G. 

A. Factor systems of the Galilel group depending on 
a constant emf 

The Galilei group acts on the manifolds F and X X F, 
where F is the set of the constant emfs and X the space
time manifold. This action gives rise to orbits in both man
ifolds denoted by ()Io and ()(xo./o), respectively, where 10 
stands for (Eo,Bo) or (Bo,Eo) according to the limit of the 
emf. The isotopy groups of these orbits are rio for 10E() 10 
and r(xo./o) for (Xo,Jo)E()(xo'/o)' Borel sections 
s:()(xo./o) ~ G and r:() 10 ~ Go can be defined by 

s(x,J)=(x,A/ ), with (x,A/):(xo,Jo)~(x,J) (3.8) 

and 

(3.9) 

where xET4, A.t=Go. Thus, any gEG can be decomposed as 

g= (a,A) = (a,AYo)(O,y(g», (3.10) 

if we make use of the first section, and 

g= (a,A) = (O,AYo)(Adola,y(g», where y(g)Er(xo'/o) 
(3.10') 

when we try the second one. 
In order to compute the factor systems of the Galilei 

group depending on a constant emf, we will follow the 
same method used in I, so we will not give a thorough 
exposition and we will restrict ourselves to the main points. 
These are given in three steps. 

1. The orbits of the Galilean emf's and their little 
groups 

a. Magnetic limit. There are three nonzero kinds of or
bits: 14 

AA 

(I) (B,E) orbits. There exits a unique element (B,E) 
A A A A 

in each of these orbits such that B= (O,O,B), E= (O,O,E), 
fj ER +, E'ER*. They are four dimensional and their char
acterizing invariants are B2 = C1 > ° and B· E = C2=F0. 
The little group of a point (B,E) is generated by the space
time translations to~e!!Ier with J. B - K· E and K· B. For 
the particular emf (B,E) the two last generators are Jz and 

K z· 
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(II) (B,O) orbits. A characteristic element is 
B = (O,O.1h and E = 0, BER + . These orbits belong to the 
same strata of the orbits of the type I, but here B· E 
=C2=0. 

A A 

A (III) (O,E) orbits. We can choose B=O, E= (O,O,E), 
E ER + . The orbits are two dimensional, and their invariant 
is E2 = C3 > 0. The isotopy group of (O,E) is generated by 
the four space-time translation generators, J. E and K. If 
we take the point (O,E) then the generator J . E is propor
tional to Jz. 

b. Electric limit. 4 The results are similar to the magnetic 
case, if we interchange the roles of Band E. 

2. Extensions of the groups r f 
a. Magnetic limit.4 Type I and II orbits [1= (B,E)]. The 
group r l is T40r(xo,J)' where T4 is the group of the 
space-time translations, and r (xo.7) is generated by Jz and 
K z. The second cohomology group H2(r 7,U(1» is iso
morphic to R3

, which means that the space of equivalence 
classes of central extensions of r 7 by U ( 1) is three dimen
sional. A representative of each class of these central ex
tensions has the new nonvanishing commutators of its Lie 
algebra given by 

[H,Pz] = - E, [Px,Py ] =(3, 

[PvKz ] = - m, E,{3,mER* 

and a lifting of an element [E,{3,m ]EH2(r 7' U (1» is the 
following factor system belonging to Z2(r 7' U (1 »: 

wE,/J,m(g',g) =WE(g',g)W/J(g',g)Wm(g',g) , g',gEr 7' 

where 

WE(g',g) =exp{iE(b',a'z)0(vz) (b,az)}, 

w/J(g',g) =exp{i{3(a'10Rz81)}, 

where g', gEr 7' g== (b,a,vvRz), a = (al>az) == (al,aZ,a3), 
with (vz)(b,az) = (b,az + vp). 

Type III orbits [F=(O,E)]. Here, r7 
= T40r(xo,J)==T40(JvK) andH2(r7U(1»=R4. A lift
ing of an element [mll,ml,E,A]EH2(r/ ,U(2» is the follow
ing one: 

W mil ,ml,E,,, (g' ,g ) 

= Wmll (g',g )Wml (g' ,g )wE(g',g )w" (g',g) , 

where 

WE(g',g) =exp{iE[ (b',a'z)0(vz) (b,az) n, 
w" (g',g) =exp{iA [v'10RzVln, 

(3.11 ) 

(3.12) 

where g = (b,a,v,Rz)Er 7' a = (al,az), v = (Vl'Vz)' 
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According to the theory of locally operating realiza
tions the factor system WA cannot appear in this kind of 
realizations. Consequently, we will consider A = 0, i.e., 
WA = 1 in the sequel. The other parameters mil' ml' and E 

are related with the following nonzero Lie commutators: 

[Px,Kxl = [PY'Ky] = - ml> [Pz,Kz] = - mil' 

[H,Pz ] = - E. (3.13) 

b. Electric limit. The results are the same of the earlier case 
for the three types of orbits provided we interchange E and 
B. 

3. Factor systems of the whole Galilei group 

Now, we compute the factor systems w( I;g,g') of G 
using the factor systems of the isotopy groups r J and the 
properties which are given in I. Here, we quote two of such 
properties which are useful enough for our purposes 
(where we have changed slightly the notation with respect 
to I in order to simplify the final results): 

(i) w(/o;gr( I ),g'r( 1')) (3.14 ) 

=w( lo;g,[,(r( I )g'r( 1'»), 

with g, g'Er r, [,Er r and the normalized section 
10 10' 

r:G/r /0 ..... Goe G, 

(ii) w( I;g,g') =w( 10;A - I~,g'), 

where g, g'EG, 10= J, AjEGo such that A/lo = I and 
r(j) = Ai I. 

We distinguish between the two limits. 

a. Magnetic limit. Type I and II orbits. Here, we obtain 

w(A/;x,x') 

=w(/;A-Ix,A-Ix'), V/EF, VX,x'EX, VAEGO 
(3.15 ) 

i.e., w is a scalar in I and (x,x'). However, according to 
Sec. II, the possible independent scalars made out of I and 
(x,x') are 

(1) (x8x'}'B + «t,x}8(t',x'))'E, 

(2) «t,x}8(t',x'})'B, 

(3.16 ) 

where (t,x}8(t',x') = ~(xt' - x't). Thus a function of 
these scalars restricted to r J must agree up to equivalence 
with the exponents of the factor systems w€ and wp. This 
implies that this function must be linear in both scalars (I) 
and (2). Moreover, taking into account the parity, the only 
admissible scalar is given by (I) and we obtain that 

w( lo;x,x'} 

A A 

=exp{iq[ (x8x')' B + «t,x}8(t',x'})' E n, 
(3.17) 

whence, i~entifying th~ exponents of this equality we get 
that E=qE and {3 = qB. The real number q, which is a 
characteristic of the interacting system, will be called the 
electric charge. 
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Finally, the generic factor system originated by w€ and 
wp of r / is 

wi f,g,g'} =exp{iq[ (x8( v,R) s(t' ,x')), B 

+ «t,x)8(v,R) (t',x'»'E]), (3.18 ) 

with the implicit notation (v,R)s(t',x') = Rx' + vt'. The 
other factor system Wm corresponds to the restriction to 
r J of the well-known extension of the Galilei (3 + I) 
group given in Sec. I, and it is related with the mass of the 
system. However, another factor system wm,m' of G, equiv
alent to Wm can be written as 

wm,m'( I;g,g'} =exp{im(!v2b' + v'Ra') 

+ im'[hv'B}2b' + (v'B)(B'Ra') n. 
(3.19) 

The meaning of m' will be discussed later, in connection 
with the orbits of type III. 

Orbits III. The factor systems linked with the emf take 
the form (3.18) if we make B=O ({3 = 0), while the factor 
systems related with the masses mil and m I can be written 
in terms of m and m' as 

wm'( I;g,g') =exp{im'[hv'E}2b' + (v·E)(E·Ra') n· 
(3.20) 

The former corresponds to the known extension of G by 
U (1) (independent of the emf), and m' can be associated 
to an "anisotropic" mass of the system. 

b. Electric limit. For the orbits I' and II' we have two 
possible scalars as in (3.16) except that it must be inter
changed the roles of Band E. Following the same justifi
cation of the magnetic limit we obtain 

w( I;x,x'} =exp{iq«t,x}8(t',x'»'E} (3.21 ) 

and identifying this exponent with the two exponents of 
r J when (3.21) is restricted to this subgroup, we obtain 
{3 = 0 and E = qE. Thus the general expression of these 
factor systems are 

W'q( I;g,g'} = exp{iq [ (t,x}8(v,R )(t',x')]' E}, (3.22) 

in which it has lost any track of the magnetic field. The 
other factor system Wm is the corresponding one to the 
central extension of G by U (1 ). 

Orbits III'. We obtain similar results to the corre
sponding III orbits if we replace B by E and {3 by E, except 
that here the only surviving factor systems are w'mll and 

Wmi' 

The appearance of an anisotropic mass in orbits III 
and III' can be explained by the existence of a privileged 
direction defined by E or B, respectively. This kind of orbit 
has few signs of "electromagnetic character." There exists 
only an electric field E (III) or a magnetic field B (III'), 
which transform as vectors under rotations. This is not a 
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realistic situation if the true kinematical group is the Poin
care group. The Galilean electromagnetism was obtained 
by taking the magnetic limit (or electric limit) with 
IEI<qIBI(IBI<qIEI). However, if IBI =0 (lEI =0) the 
limit is not evidently correct. If we consider the electric 
field of orbit III as the limit of f(E,B) when B-+O, and 
take the same limit for the factor systems we do not get the 
factor system of the anisotropic mass. A similar reasoning 
applies to orbits III'. For all these reasons hereafter, we 
will not consider the anisotropic mass factor systems, and 
also the parameter q will be assumed to be independent of 
the emfs orbits. 

Note that the factor system Wm' also appears in orbits I 
and II (I' and II'), but this time the isotopy group is 
smaller and as a consequence, the equivalence being wider, 
wm',m is equivalent to W m. 

B. A representation group for the Galilei group: The 
non relativistic Maxwell group 

According to the two kinds of limits we can consider 
two possible Maxwell groups, one for each limit. 

1. The magnetic limit 

In the following we will choose q = 1. Let V(Oj) be 
the set of the real linear functions defined on the orbit OJ by 

[j,k] (B,E) =j·B + k·E, with [j,k]EV(Oj). (3.23) 

This function space has the structure of an Abelian Lie 
group (=R6

). We define the nonrelativistic Maxwell 
group for the magnetic limit M m as an extension of the 
extended Galilei group (m = 1) by V(Oj) with the follow
ing composition law: 

([j',k'],O',b',a',v',R') ([j,k],O,b,a,v,R) 

=([j',k'] + (v',R') [j,k] + WI (g',g) ,0' + 0 

+ W2(g',g),b' + b,a' + R'a+v'b,v' + R'v,R'R), 

(3.24 ) 

where g (b,a,v,R), « v,R) fj,k]) (B,E) 
=fj,k]«v,R) -I(B,E», 

WI (g',g) = [ - a'0(v',R')s(b,a), 

- (b',a')0(v',R')(b,a)], 

and 

W2(g',g) =!v,2b + v'·R'a. 

The Lie algebra is 17 dimensional and besides the Lie com
mutators of the Galilei group we have the following non
zero commutators: 

[KbPj ] =8;/, [Pi,Pj] = - EijlJ3k, [H,Pi] =Eb 

[Jb/3j ] = Eijk#k, [JbEj] = EijkEk> [KbEj] = - Eijk#k, 

(3.25) 

where /, fJ, and E are the generators associated to the sub
groups with parameters 0, j, and k, respectively. 
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2. The electric limit 

Following the same procedure of the earlier case, the 
nonrelativistic Maxwell group in the electric limit, M", is 
an extension of the extended Galilei group by the Abelian 
group V(Oj) of the functions k, defined by k(B,E)=k·E, 
with the composition law: 

(k',O',g') (k,O,g) 

=(k' + (v',R')k + WI (g',g) ,0' + 0 + W2(g',g),g'g) 

(3.26) 

with g', gEG, (v,R)k=Rk, 

WI (g',g) = - (b',a')0(v',R')(b,a) 

and 

W2(g',g) =!v,2b + v'·R'a. 

Its Lie algebra has 14 generators. The following Lie com
mutators together with the commutators of the Galilei 
group given in (2.1) constitute its nonzero commutators: 

(3.27) 

where / and E are the generators associated to the param
eters 0 and k, respectively. 

IV. THE IRREDUCIBLE REPRESENTATIONS OF THE 
MAXWELL GROUP 

In this section we will build up the irreducible repre
sentations of the two Maxwell groups Mm and Me follow
ing the Kirillov-Mackey method. In I, the interested 
reader can find a short explanation of this method and see 
how it works in the case of the relativistic Maxwell group. 

A. The magnetic limit: Mm 

1. The computation of the orbits 

The group M m can be decomposed as a semidirect 
product M m = N0H, where N = {( fj,k],O,b,a)} is a nilpo
tent group and H={(v,R)}. Let Jf/" be the Lie algebra 
associated to the group Nand Jf/"* the dual space of Jf/". 
The coadjoint action of N on Jf/"* is defined by 

(coadnA* ,A) 

= (A*,adn -IA), with AEff ,A*Eff*, and nEN. 

Let ([B,E],m,E,p) be the coordinates of a generic element 
of Jf/"* and n= ([i,k],O,b,a) EN. Then the coadjoint action 
of non Jf/"* is given by (A'* = coadnA*): 

[B',E'] = [B,E], m' =m, 

E'=E + E·a, p'=p - Eb + BAa. (4.1 ) 

This action splits Jf/"* into orbits that are classified accord
ing to the types of the emfs given in Sec. IlIA. 

(i) Parallel type (B,E). In this case the orbits 0 are 
four dimensional and are characterized by (B,E) and m. 
One of this kind of orbits will be denoted by O([B,E],m). 

(ii) Magnetic type (B). These orbits, O([B,E],m,E,PII) 
have dimension two. The invariants are (B,E), m, E, and 
p·B =PII. 
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(iii) Electric type (E). The invariants of these orbits 
are (O,E), m, and pAE = Pl' The orbits O([O,E],m,Pl) are 
two dimensional. 

(iv) Null type (B,E) = (0,0). Each ofthese orbits has 
only one point «O,O),m,E,p). 

Now, if we fix a point, u, in each orbit 0 and compute 
a maximal subalgebra % cff such that 
[%,%] CKer(u), then a unitary representation U of the 
Lie group K is given by 

(4.2) 

where Xu(k) = (u,k), being ke% the corresponding Lie 
algebra element associated to a group element of K. These 
representations induce unitary irreducible representations 
of N. If we take two points of a same orbit the induced 
representations linked to these two points are equivalent. 
Thus the equivalence classes of these unitary irreducible 
representations (uir) are in one-to-one correspondence 
with the orbits of JV* under the action of N. 

The group H acts on the set of classes of equivalence of 
the uir's of N, i.e., on the set of orbits 0 of ff* under N. 
The action of H splits the space of the orbits 0 into orbits 
that we will call superorbits. If we choose a representative 
of each orbit, this action is given by 

(v,R):( [B,E],m,E,p) 

-+ ([RB,RE - v ARB],m,E + !mv2 

md;dis; - v'Rp,Rp - my). 

(4.3) 

The classification of these superorbits is the following. 
(I) Superorbits of type (B,E). The invariants are m, 

B2 = C, > 0, B· E = C2+0. We denote these superorbits by 

8( [B,E],m) = U O( [B,E],m). 
8 2=CI >O 
8'E=C2~ 

The isotopy group of each of these orbits is two dimen
sional. In particular, the one of O([B,E],m) is generated by 

A A A :....... 

Jz and Kz (B = (O,O,B), E = (O,O,E». 
(II) Superorbits of type (B). Now the invariants are 

m, B2 = C, > 0, B·E = 0, and (P1l2/2m) - E = A, AeR. 
Thus these superorbits are five dimensional: 

8( [B,E],m,A) = U O( [B,E],m,E,PII)' 

8 2=CI >O 

8·E=O 

(PIl2/2m) - £=A. 

The isotopy ~o~p is one dimensional. In particular, for the 
element O( [B, E ],m,E,PII) the isotopy group is generated 
by Jz. 

(III) Superorbits of type (E). In this case the invari
ants are E2 and m. The dimension of these superorbits is 
four, whence the isotopy group of any of its orbits is two 
dimensional: 

8( [O,E],m) = U O( [O,E],m,Pl)' 
Pl,E2=CI' 
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The isotopy group of the characteristic element is gener
ated by Jz and Kz. 

20 The computation of the little groups 

The above classifications into orbits and superorbits 
will be useful in the computation of the "orbital invari
ants" that label the uir's of Mm. To complete the charac
terization of each uir of M m we now compute the genera
tors of the little group of an element belonging to each kind 
of superorbit. These generators will constitute the "little 
group invariants." Let ([B,E],m,E,p) be a generic point of 
a superorbit, the action of an element (v,R) of H on [B,E] 
is (v,R,)[B,E] = [RB,RE - v A B]. The action of an infin
itesimal transformation (v,a) is 

(v,a):[B,E] -+ [B + a AB,E + a AE - v AB]. (4.4) 

The solutions that leave invariant [B,E] are 

(i)a=O, vex:B, which correspond to the 

generator B· K, 

(ii) (a,v) ex: (B, - E), whose generator 

is BoJ-EoK. (4.5) 

Now, we analyze each superorbit in more detail. 

a. Superorbits of type (B,E). The infinitesimal action of the 
uniparametric subgroups generated by each of the genera
tors (4.5) is 

BoK:( [B,E],m,E,p) -+ ([B,E],m,E - Bop,p - mB) (4.6) 

BoJ - EoK:( [B,E],m,€,p) 

-+ ([B,E],m,E + Eop,p + B A p + mE). (4.7) 

The action of an element neN will be 

([j,k],O,b,a):( [B,E],m,€,p) 

-+ ([B,E],m,€ + Eoa,p - Eb + BAa). (4.8) 

If we require that the point remains invariant under such 
group actions, it follows from (4.6) and (4.8) that 

Bop=Eoa, 

mB= - Eb + BAa. 

(4.9) 

(4.10) 

Multiplying (4.10) by B we obtain b 
- (mB2) I ( E . B). Therefore, (4.10) is rewritten as 

(4.10') 

This means that a = aB + (3E A B. Putting this value of a 
in (4.9), we obtain a = (B·p)/(EoB). The substitution of 
these values of a and a in (4.10) give after some calcula
tions the result {3 = - ml (E' B). Thus finally 

a= [(Bop)/(EoB)]B - [ml(EoB) ]EAB. ( 4.11) 

The corresponding generator, v'K + (J.J + bH + aop, of 
the little group will be 

B2 Bop m 
BoK-mEoBH+EoBBoP-EoB (EAB)'P, (4.12) 
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that can be rewritten as 

i(BoP)2 (E,B,P) EoB .~ 
H + 2 + B2 - B2 BoK=I/\'I, 2mB m 

( 4.12') 

where iAI denotes its eigenvalue. Now requiring that (4.7) 
and (4.8) leave invariant one point and making a similar 
reasoning, we obtain the expression for the second gener-
ator 

- BoJ + EoK-mH + pop, (4.13 ) 

or 

(4.13') 

where iA2 is the eigenvalue. Both (4.12') and (4.13') are 
Casimirs that characterize the uir's of M. However, since a 
rotation of 21T must be represented by ± 1, the representa
tion of the operators BoK and BoJ - EoK have to assure 
this condition and then Al and A2 cannot be arbitrary real 
numbers. In fact it is easy to see that they are fixed by one 
real and one half-integer number. 

b. Superorbits o/type (B). In this case the isotopy group is 
one dimensional and its generator is computed from Eqs. 
(4.7) and (4.8) in a similar way to the above cases. We get 

(4.14 ) 

The eigenvalue A2 can take half-integer values only. We 
must recall that one of the orbital invariants for this case is 
E - P 12/2m, or in terms of generators: H 
+ i(PoB)il (2mB2) = iA" which has the same form as the 
invariant (4.12') of the previous superorbit. 

c. Superorbits 0/ type (E). Here, the isotopy group of any of 
its points is two dimensional. The generators of this isotopy 
group can be found in the same way as we did before for 
the superorbits of type I by replacing BoK by EoJ and 
BoJ - EoK by voK in (4.6), and the final result is 

H + Ip2/2m - (EoK)lm=iA'2, 

EoJ - (E,P,K)lm=iA'I' (4.15 ) 

In this case the remark made for the superorbits of type I 
about the semi-integer character of the eigenvalues of the 
rotation generator is also valid, but here it affects to A'I 
only. 

With respect to these results we are going to make the 
following remarks: (i) In all the three superorbits, the in
variant A2(AD has the same functional form. (ii) Never
theless, the invariant Al does not have the same form be
cause of the superorbits of type III. Its character is also 
different: for superorbits I and III it is a generator of the 
little group of a point, while in the case II is an orbital 
invariant. (iii) The physical meaning of these invariants 
will be shown in the next section, when we construct the 
local representations of the Maxwell group. 

B. The electric limit: Me 

This group Me also has the structure of a semidirect 
product: Me = N0H, where N={(k,e,b,a)} and 
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H={(v,R)}. Let (E,m,E,p) be a generic element of JV*. 
The coadjoint action of N over JV* is given by 

(k,e,b,a):(E,m,E,p) --+ (E,m,E + Eoa,p - Eb). (4.16) 

The action of the subgroup Hover JV* is the following one 

(v,R):(E,m,E,p) --+ (RE,m,E + !mv2 - v·Rp,Rp·mv). 
(4.17) 

The action of N on JV* splits it into the orbits: 

(i)E=O, then each orbit is a point (O,m,E,p). 

(ii)E=f:O, the invariants of one of these orbits are 

E,m,pAE=Pl' 

These orbits are two dimensional and are denoted by 
e(E,E,Pl)' 

The case (i) is not of interest because it reduces to a 
free system. As we said before in the magnetic case, the 
classes of equivalence of the induced representations of N 
are in a one-to-one correspondence with the orbits of JV* 
under N. The action of H in the set of orbits of JV* give 
rise to the superorbits. The invariants of this action for 
each superorbit are E2 and m. The results for the little 
group invariants in this case are the same as in the mag
netic superorbits of type III. Indeed, it is not possible to 
distinguish, by means of transformations, between an elec
tric field when B=O in the magnetic limit and an electric 
field in the electric limit. 

IV. THE LOCAL REALIZATIONS OF THE MAXWELL 
GROUP 

In this section we study in some detail the local real
izations of the magnetic Maxwell group Mm. 

The group M m can be considered as an extension of the 
Galilei group G by the Abelian group A, being 
A={(fj,k),e,O)} isomorphic to R7

, thus the following se
quence is exact 

(5.1) 

The action of M m on the manifold X X F is defined by 
g (x,/) =prg) (x,J), i.e., via the usual Galilean action, 
where g == (fj,k),e,g)EMm, gEG, and (x,/ )EXXF.:.. The 
isotopy group of a generic point (x,J) is r (x,J) 

= P - I (r (x,j) )..!.... and the corresponding one to the point 
/== (B,E)EFis r j = p - I(rj ), where r(x,J) and rjare the 
isotopy groups defined in Sec. III. A cross-section r from 
er ::" Mm/f j to Mm is defined by_r( /) = ([O,O),O,r( / », 
and a sectionsfrom e(x,j)=Mmlr (x,j) to Mm is given by 
S (x,J) = ([O,O),O,s(x,/ », being rand s the sections defined 
in (3.8) and (3.9). 

The construction of the local representations of the 
group M m is made by induction from th:..,. finite
dimensional representations of t~e subgroup r (xo.l ). 
Among these representations of r (x

o
' J) we choose the 

following ones defined by 

9([j,k),e,y)=exp{iq[(jojJ +koE) +me)}D(y), 
(5.2) 
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where rEr (Xo.J) and D is a matrix representation of 
r(x ,1 ). The g~neral expression of an induced representa
tiOI~ R of M m by a finite-dimensional representation a of 
r (xo.J ) is 

(R( g )tP)(g (x,J» 

=a( s - I(g (x,j»g s (x,J) )tP(x,j), (5.3) 

wheresis a normalized Borel cross section from ()(xo.J ) to 
Mm· 

This representation R is a local representation as it is 
easy to prove if one takes into account that 
a( s - I(g (x,J»g s (x,j» has the properties of the 
gauge matrices (3.3). On the other hand, the choice of the 
section s is not essential because different sections give rise 
to locally equivalent representations, as one can demon
strate following the theory of locally operating representa
tions.9 Moreover, if we take equivalent representations a 
and a' of r (x .J ), they induce locally equivalent represen
tations of M;. In fact, it can be shown that the induced 
representations from (5.2) are pseudoequivalent if and 
only if the representations D of r (xo' 1 ) are pseudoequiva
lent. 

If the representation D (of r (xO' 1 » is the restriction 
to r (xo' 1 ) of a matrix representation of the homogeneous 
Galilei group Go, then the induced representation R, (5.3), 
called covariant representation, takes the following expres
sion: 

(R( g )tP)(x,J) =exp{iq( [j,k] 1- (a8(v,R)s(t,x), 

(b,a)8(v,R)(t,x»I + im()} 

XD(v,R)tP(g- I (x,j ». (5.4 ) 

The matrix representation D will be chosen according to 
the spin of the free physical system. 

VI_INVARIANT EQUATIONS 

The local representations are not, in general, irreduc
ible representations and they contain a family of irreduc
ible representations labeled by the values of the Casimir 
operators. These Casimir operators give rise to differential 
equations for the wave functions tP that support the local 
representations. In the following we will consider the cases 
corresponding to spin 0 and 1/2. We will distinguish 
among the different types of superorbits of the magnetic 
limit. 

A_ Superorbits I and II 

The orbital invariants are B2 = CI > 0, B· E = C2 ( = 0 
on II) and the little-group invariants are given by (4.12') 
and (4.13') for I and (4.12') and (4.14) for II. We recall 
that the invariant (4.12') has orbital character for type II 
superorbits and in this case the two last terms of the left
hand side vanish. 

1_ Spin zero 

For spin 0 we must take D( v,R) = 1 in order to obtain 
the corresponding induced local representation. The ex
pressions for the infinitesimal generators are 
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p= - V + qi~BAx - qi~Et, 

(6.1 ) 

K;= - ta; + imx; + K;(B,E), 

where the operators Jij(B,E) and K;(B,E) act over the 
functions depending on the variables (B,E) in the follow
ing way: 

[K;(B,E),Ej ] = - EijkBk' [K;(B,E),Bj ] =0, (6.2) 

[Ji(B,E),K/B,E)] = EijkKk(B,E). 

In particular, the restrictions of these operators Ji(B,E) 
and K;(B,E) associated to the generators of the isotopy 
group r f act trivially over tP(x;B,E). If we replace the 
generators by their representations in the invariants we get 

[uar+q¢» - (-iV+qA)2/2m]tP(x;B,E) 

=A2tP(x;B,E) , 

[ua t + q¢» - (B' ( - lV + qA»2/2mB2 ]tP(x;B,E) 

=AltP(x;B,E), 

(6.3 ) 

(6.4 ) 

where ¢> = - !E-x and A = !(BAx - Et) are the 
components of the four-potential given in Sec. II. Here, we 
have taken into account the fact that B-K and B-J-E-K are 
the generators of the isotopy group of (B,E) and, thus, 
their corresponding terms J;(B,E) and K;(B,E) have 0 
eigenvalue and, consequently, we can omit them. 

Equation (6.3) corresponds to the minimal coupling of 
a particle of mass m and charge q with an elm potential 
(¢>,A). Equation (6.4) gives the energy along the direction 
of B. The addition of the same constant to AI and .12 gives 
a local representation pseudoequivalent to the original one. 
Its physical interpretation corresponds to a change of the 
origin of the potential. 

Consider a frame where the emfs Band E are both 
parallel to the z axis. Then Eq. (6.4) minus Eq. (6.3) give 

i(P} + P/)!2m + (ii-J)lm=iA2 - iAI (6.5) 

or 

( 6.5') 

This equation corresponds to the Landau levels for a par
ticle of mass m and charge q in an emf (H,E) along the z 
axis. In this case the difference AJ... - A2 is equal to (Blm )A, 
with A integer, since exp{21TJ-B} is to be represented by 
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+ 1. Moreover, the label A is physically meaningful be
cause there does not exist an operator performing the pseu
doequivalence between the realizations associated to dif
ferent A'S. Note that if (B,E) -0, Eq. (6.3) becomes the 
Schr6dinger equation for a free particle of mass m and spin 
O. 

2. Spin 112 

In this case we need to take the following representa
tion of Go [see (5.4)] which determines f (xo.J ): 

D(v,R) =DI/2(v,R) =exp{i~O"a}, (6.6) 

where R is a spatial rotation of angle a around the n axis, 
a = an and aj are the Pauli matrices. 

Now, the equation corresponding to the invariant A2 is 

[uat + ql/» - ( - iV + qA)2/2m 

+ (B·u)/2m)1/!(x;B,E) 

(6.7) 

The equation for the other invariant AI remains equal 
to (6.4) for spin O. Equation (6.7) contains the correct 
term of the interaction spin-magnetic field. This equation 
can be obtained from the Levy-Leblond l7,18 equation for 
spin ~ particles with the electromagnetic minimal coupling 
with four-vector potential (I/>,A). 

In the same way as in the case of spin 0, the addition to 
AI and A2 of a constant gives a pseudoequivalent local rep
resentation. The difference AI - A2 = A have discrete values 
only, which are related to inequivalent local representa
tions associated with the Landau levels for spin ~ particles. 
The equation of the Landau levels is 

[( - iax + qAx)2 + ( - iay + qAy)2]12m1/!(x; II, E) 
A A A 

= B (A± 1)/2m1/!(x,B, E), (6.8) 

where A is an odd integer, and the choice of ± 1 depends 
on the spin orientation (up or down). 

When (B,E)-(O,O) Eq. (6.7) becomes the usual 
Schr6dinger equation but, however, it is not possible to 
obtain by taking this limit the Uvy-Leblond's equation. 
We had a similar problem when we studied the (relativis
tic) Maxwell group in I. There we could not get the Dirac 
equation starting from Casimirs of the Maxwell group and 
taking the limit f~O. In order to get the Dirac equation 
(or, here, the Uvy-Leblond equation) it is necessary to 
look into the problem under a different point of view as it 
was discussed in the last part of Sec. VI of our preceding 
paper. About the connection between the Schr6dinger 
equation and the Levy-Leblond equation see, for instance, 
Ref. 18. 

B. Superorblts III 

Here, the orbital invariant is E2 = C I > 0 and the little 
group invariants are given by (4.15). The generators asso-
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ciated to the corresponding local representation have the 
following expressions: 

H= - at + ~IE·x, 
p= - V -~IEt, 

J j= - €ijk(XjJk - X~j) + Jj(E) + Sj, 

K= - tV + imx + K(E), 

€=iqE, 

(6.9) 

where Sj = 0 or ~iai whether the spin of the particle is 0 or 
1/2, respectively. Substituting (6.9) in (4.15) we get the 
equations 

[uat-ql/» - (-IV-qA)2/2m)1/!(x;E) 

=A' 21/!(x;E), 

~E·u1f!(x;E) =A' 11/!(x;E) , 

where I/> = - ~E·x and A = - ~Et. 

(6.10) 

(6.11 ) 

Equation (6.10) corresponds to the minimal coupling 
of the electric field interacting with the particle of mass m 
charge q and spin 0 or 1/2. The other equation (6.11) 
specifies the spin component along the direction of E. In 
this case, A'I takes only discrete values. The interaction is 
independent of the spin components and the addition of a 
constant to A' 2 is physically irrelevant. The second equ~
tion, (6.11), is algebraic and gives no additional informa
tion except for reminding us about the spinorial character 
of1/!. 

C. The electric limit 

We can make a study for the group Me similar to the 
above given for the group M m concerning local represen
tations and invariant equations. The results are formally 
equal to those given in Sec. VI B for the superorbits III of 
the ml, therefore, we will make only brief comment on this 
point. In Sec. II B the potential (I/>,A) is given by 
( - ~E·x, - ~Et) and in the ml E = - VI/> - atA. 
However, by means of a change of gauge we can get 
1/>' = - E·x, A' = 0, and E = - VI/>', just as it must be for 
the el. Thus this situation can be seen at the same time 
under both points of view: ml or el, there is no difference at 
all. In conclusion we can say that there is not an interac
tion properly of electric type, which involves E as well as 
B. This is explained if we observe that the operators 
(ap V) and the four potential (I/>,A) in the el do not trans
form in the same way under Go, and hence cannot be mixed 
to give interactions, except when A=O, and in this case we 
obtain a coincidence with the type III superorbits of the 
ml. 

VII. CONCLUSIONS 

With this paper about the nonrelativistic elementary 
particles interacting with external constant emfs, we have 
completed a study started in paper I. As in I we have 
employed a new kind of local realizations of the kinemat
ical group, here the Galilei group, which depend on the 
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emf, too. The Galilean electromagnetism is very different 
from the real relativistic electromagnetism. The existence 
of two limits, magnetic and electric, gives rise to the ap
pearance of two representation groups, one for each limit, 
both called nonrelativistic Maxwell groups: M m and Me. 
Making use of local representations of the Maxwell groups, 
we have obtained the invariant equations which describe 
interacting elementary systems. Some of these equations 
derived group theoretically, display the electromagnetic 
minimal coupling. 
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The algebraic cohomology and the spectral sequences for a Z2-graded Lie algebra are briefly 
reviewed. The reducibility property of a strongly semisimple Lie superalgebra is established. 
The role of second and third cohomologies in the deformation of a Lie superalgebra is 
discussed. Using spectral sequences, the second cohomology of the full BRS algebra is shown 
to be the ground field and the third cohomology being trivial implies that osp( 1,2) is the only 
graded Lie algebra obtained by deformation of the full BRS algebra. A similar analysis yields 
the superconformal algebra as a deformation of the super Poincare algebra. The 
superconformal algebra so derived contains so ( 4, 1) as the even part, ruling out the existence of 
negative curvature of a de Sitter universe! 

I. INTRODUCTION 

The algebraic cohomology ( Chevalley cohomology) of 
Z2-graded Lie algebras I has been generalized to Lie algebras 
with an arbitrary grading r (an Abelian group). 2.3 The 
Weyl reducibility criteria were examined for a certain class 
ofrestricted Z2-graded Lie algebras.4 In the present paper, 
we sharpen some of the earlier results. The Hochschild
Serre method of constructing spectral sequences facilitating 
the computation of cohomologies of Lie algebras5 is ex
tended to Z2-graded Lie algebras (Lie superalgebras). The 
connection of cohomologies with the deformation (contrac
tion) of Lie superalgebras is systematically analyzed. The 
deformations of Poisson Lie algebras of complex-valued 
smooth functions on a symplectic manifold has played a sig
nificant role in our factual understanding of quantization of 
classical systems.6 The present formulation can be analo
gously exploited for studying quantization of classical sys
tems. Here, we squarely confine ourselves to the study of 
deformations of Lie superalgebras and establish its kinship 
with second and third cohomologies. 

This paper is arranged as follows: In Sec. II, we briefly 
review the algebraic cohomology theory of a Zz-graded Lie 
algebra, L = Lo + L-f • Consider an Lo module M that is an 
Lo module afortiori. Therefore, if Lo and Mare finite dimen
sional and Lo is a semisimple Lie algebra, then M is a direct 
sum of highest weight modules of Lo. Then, under fairly 
general conditions on M, we prove that the first cohomology 
group H I (L,M) = {O}. 

In Sec. III, we prove that for a finite-dimensional strong 
semisimple Lie superalgebra L, Hi(L,M) = {a} for all ;-;;.0 
provided M L = {the L submodule of M annihilated by 
L} = {O}. 

The spectral sequence associated with a filtration with 
respect to a subalgebra of a Lie superalgebra is constructed 
in Sec. IV, following Hochschild-Serre's work on Lie alge
bra cohomology. 5 We then make use of spectral sequences to 

aJ Permanent address: Dept. of Physics, and Astrophysics, University of 
Delhi, Delhi-II 0007, India. 

prove a splitting theorem of direct computational interest. 
Let R be an ideal of L such that L / R is a strongly semisimple 
Lie superalgebra. Then 

Hn(L,M) =. ~ Hi(!::"',y) 
'+j=n R 

®(Hj(R,M»L, n=0,1,2, ... , 

where Y is the base field of L considered as a trivial L mod
ule and (Hj(R,M) )Lis a submodule of Hj(R,M) annihilated 
by L. 

In Sec. V, we briefly review some general results from 
the theory of deformations of algebraic structures on a Zz
graded vector space. 6

-
8 The third cohomology group of L 

yields the obstructions to the deformation of L. If the defor
mations of a Lie superalgebra are trivial then L is said to be 
rigid. The Inonu-Wigner (lW) contraction9 scheme is ex
tended to the case of Lie superalgebras and the connection 
between contraction and deformation8 is established. We 
also consider a generalization ofIW contraction that is pecu
liar to Lie superalgebras. 

In Sec. VI, we consider the application of the ideas de
veloped in previous sections to two cases of physical interest. 
The first is the case of contraction of B = osp(1,2) yielding 
the full BRS algebra A. We compute HZ(A,A) = Y (the 
base field of A) and H 3 (A,A) = {O} and therefore conclude 
that B is the only Lie superalgebra that can be contracted to 
A. The second example, considered in this section is the su
per-Poincare algebra which is obtained by the contraction of 
the super de Sitter algebra. This is the generalized IW con
traction mentioned above. From cohomological computa
tions it is concluded that the super de Sitter algebra is the 
only algebra that can be contracted to yield the super Poin
care algebra. As a further consequence, we also have that the 
contraction parameter in this case is identified with the cur
vature of a de Sitter universe and it must be positive. 

II. COHOMOLOGY OF A LIE SUPERALGEBRA 

Let L = Lo Ell LT be a Lie superalgebra. Then, for a,b, 
and eEL, we have 
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[a,b] = (_1) la 11 b l [b,a], 

L (- 1)la 11 cl[a,[b,c]] = O. 
cycl 

(l) 

(2) 

Here, [ , ] denotes the product in L and the map a ..... Ia I is the 
degree map of a homogeneous element aEL. The identity (2) 
is the graded Jacobi identity. An L module is a Z2-graded 
vector space with a bilinear map L X M ..... M written as 
(I,m) ..... I·m for I, II' and 12EL and meM such that 

I'Mj Mj+III' }=(),I, (3) 

[/1,12] . m = II' (l2,m) - ( - 1) 11,111,1/2' (II' m). (4) 

In (3), the sum} + III is taken mod 2. Hereafter, whenever 
the degree occurs, it will be implicitly assumed that it is the 
Z2 degree and all sums and products are taken mod 2 unless 
explicitly stated otherwise. 

The tensor powers Tn V, n = 1,2, ... of a Z2-graded vec
tor space are Z2 graded. The Z2 degree on Tn V is defined as 
follows 

For i=O, I, 

(T"V)i = {XI ® ••. ®x"ET"Vlxl,···,x"EV 

and 
i= IXII + ... + Ixnl}. (5) 

Hence, the tensor algebra TV = l:" T"V is graded by the 
group Z X Z2' where Z is the group of integers. 

Submodules, ideals, subspaces, etc. of graded algebras 
and spaces are defined as usual, but are required to be graded 
with the induced gradation. We also restrict the base field Y 
to &t, the field of reals or t, the complex field. The term 
"graded" will refer to the Z2 gradation and other gradin~ 
groups (e.g., Z) will be explicitly mentioned as and when 
they appear. 

Let V and W be graded vector spaces over Y. Let 
H( V, W) denote the space ofmorphisms V ..... W; H( V, W) is 
a graded vector space with H( V, W) 0 [resp. H( V, W) T ] con
sisting of all morphisms Vi ..... Wi [resp. Vi ..... Wi + I ]. The 
base field Y is trivially graded with Yo = Y and Y T = O. 
Then, the dual space V* = H( V,Y) is graded. Similarly, the 
space H( V, H(V, ... ,H( V, W» ... ), where Voccurs n times, 
is graded. Since H( V,H( V, ... H( V, W) ) ... ) is isomorphic to 
T"(V,W), the space of n-linear maps VX···XV ..... W, 
Tn( V, W) is also graded. 

Let L be a Lie superalgebra and Man L module. An n
linear (n>1) mapfLX" ·XL ..... Mis called graded alternat
ing if 

(6) 

Let C"(L,M} C T"(L,M) denote the subspace of n-linear 
graded alternating maps. By definition CO(L,M) = M and 

I 

(d(y'/)x = x· (y./) - d«y-/)x) 

= x· (y-/) - ( - 1)lxllyld(y'!x + Jiy,X]) 

=x·(y·/) -d<Jix,y]} - (_1)lxllyld(y-jx) 

C(L,M) = l:"C"(L,M). 
Lemma 1: C"(L,M) is an L module. 
Proof LetfEC" (L,M) and xEL. Then, the module oper

ation (xJ) ..... x-jis defined as follows: 

(x-j) (xI, ... ,x") = x-j(xl,. .. ,x") 

- LkJ(x, ... ,[x,xd···x"], (7) 
i 

where 

k
i 
= (_1)<lfl+lxtl +···+ lx;l)(lxl>. 

It is easily verified that x'jEC"(L,M) and the map 
(xJ) ..... x-jis bilinear. Also, the first condition in (3) is 
straightforward. To prove the second, let us define 
jxEC"-I(L,M) by 

jx (xl,···,xn _ 1) = ( - I) lfllx~(x,xl""'x"). (8) 

Then, 

(9) 

From (9), it follows that if the second condition in (3) is 
true in C"-I(L,M) then, it is true in C"(L,M). Since 
CO(L,M) = M and (3) holds by definition, it is true for all n 
by induction. 

The coboundary operator d: 
C"(L,M) ..... C"+ I (L,M) is an operator on C(L,M) with Z 
degree 1 and Z2 degree zero and satisfies the following prop
erties: 

d(x-j) = X' (dj), 

d(m)(x) =x'm( _1)lmllxl, 

and 

(lOa) 

( lOb) 

(11 ) 

where xEL and meMo We will define d inductively. It is al
ready defined on CO(L,M) = Mby (lOb). Equation (lOa) 
states that d is an L-module homomorphism and (11) is the 
crucial coboundary property. In the general terminology of 
homology theory, 10 d is also called a differential. 

Definition 1: Let d: C" - I (L,M) ..... C "(L,M) be given. 
Then, for xEL andjEC"(L,M), we define 

(dj}x = x-j - d(fx)· (l2) 

Lemma 1: The operator d defined inductively by ( 12) is 
a coboundary operator on C(L,M) , i.e., d satisfies (10) and 
(l1). 

Proof LetjECn(L,M). The fact that djEC" + I (L,M) 
follows from Definition 1 followed by an induction argu
ment. 

To prove (lOa), we assume its validity for n > 0 and 
show that it is true for n + 1. For n = 0, it is the module 
condition. Let gEC" + I (L,M) and x,yEL. Then, from (12) 
and (9) we have 

= ([x,y])'j-d<Jix,y]) + (_I)lx11yl(y·(x·/) -d(y-jx» 

= (d/)Ix,y] + (_1)lxllyl(y'(x'j-d(fx») = (d/)[x,y] + (_l)lxllyIY'(d/)x = (Y'd/)x' 
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Since, x is an arbitrary homogeneous element of L we have 
Y' (dj) = d(y-j) for allyeL, i.e., d is an L-module homomor
phism. 

Similarly, assuming the validity of (11) in C n - I (L,M), 
letjECn(L,M). Then 

(d 2j)x = X' (dj - d{(dj)x)) 

= x'dj - d(x·j + d(jx» 

= x'dj - d(x'j) = O. 

Hence, (11) is proved for all n. 
The operator d is given explicitly by 

dj(xo,""xn ) 

+ L avf( [XiJXj ] ,xo"",x;",.,xj, ... ,xn ), 
i<j 

wherejECn(L,M) and 

k
i 
= (_1)<lx"I+"'+lx1-,1+lfl)lxll+i 

(13) 

_ ( _ 1 )<Ixil + IXjl)(lx,,1 + ... + 1<1-,1) + Ix)<lxI+,1 + ... + Ixj -.I) + ij 
aij-

and the caret ,A, in (13) means that the corresponding argu
ments are to be omitted. In the literature,'-3 (13) is used to 
define d. However, we have adopted the inductive definition 
( 12) because of its general nature. 

The following is a technical result that will be used in 
proving certain isomorphisms later. 

Lemma 3: Let jEcn(L,M). For O<J<n, let fjECj 
(L, C n - j (L,M» be defined by setting 

fj (xl,···,xj ) (Xj + I ""'Xn ) = j(XIJ ... ,xn ). ( 14) 

Then, 

(dj) j + I (xo,""xj ) = d(Jj) (xo,""xj ) 

+ ( - l)j+ 'd(fj+ I (xo, ... ,xj » 
(15) 

Proof" First, we note that in the first term on the rhs of 
(15), the underlying module is cn -j(L,M) and in the sec
ond term it is M, and the symbol d is used for coboundary 
opeartors in both. The proof of (15) follows immediately 
from (13) and (14) and suitable rearrangement ofterms. 

Definition 2: Let M, N, and Pbe L modules. Here, M and 
N are said to be paired to P if there exists a bilinear map 
M X N -- P, given by (m,n) -- m !\ nEP such that, for xEL, 

x'(m!\n) =x'm!\n + (_I)lm 11x1m !\x·n. (16) 

The pairing of M and N to Pinduces a pairing of Ci(L,M) 
and Cj(L,M) to Ci+j(L,P). In fact, let jECi(L,M) and 
gECj(L,M). Then we definej!\g Ci+j(L,P): 

(j!\g) = L 
u(l) < ... < u(i) 
u(i + 1) <" .. < u(i + j) 

!\g(Xu(i+ I) "",xu(i+j»' (17) 

where aESi + j' the permutation group of i + j symbols, q' is 
the permutation induced by q on the subset of odd elements 
of the set {xI' ... 'X i + j } and 
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au = (_I)u+u'+lgl<lxu(l)I+···+xu(I)I). 

It can be checked from (17) that 

x'(j!\g) = x·j!\g + (_l)lxllf~!\x·g. 
Therefore, (f,g) --j!\g is a pairing. We also have 

(j!\g)x =fx!\g + ( - l)lfllx~!\gx' 

It follows from (17) and (18) that 

d(j!\g) = dj!\g + ( - 1 )1!\ dg. 

(18) 

(19) 

The most important example of pairing is the tensor 
product pairing of M and N to M ® N, where the module 
action is defined by (16). We therefore, have a pairing of 
Ci(L,M) and Cj(L,N) to Ci+j(L,M®N). 

Remark: In the literature on differential geometry the 
usual notations are slightly different. The correspondence is 
as follows. 

LetxEL andjEC(L,M) 

xf-Lx(j) 

and 

jx -ix (j), 

where Lx is the Lie derivative with respectto x (now consid
ered as a vector field) and ix is the interior multiplication by 
x. 

Definition 3: The cohomology groups are defined in the 
usual way: 

Hi(L,M) = KerdnCi(L,M) = Zi(L,M) . (20) 
ImdnC'(L,M) B'(L,M) 

Members of Z i(L,M) are called i cocycles and those of 
B i(L,M) i coboundaries. Since d is an L-module homomor
phism, Z i(L,M) and B i(L,M) are L submodules and hence 
Hi(L,M) is anL module. It follows from (19) that the pair
ing of M and N to M ® N induces naturally a pairing of 
Hi(L,M) and Hj(L,N) to Hi+j(L,M®N). Therefore, we 
have an L-module homomorphism: 

Hi(L,M) XHj(L,N) __ Hi+j(L,M®N). 

Let L = Lo Ea L) be a finite-dimensional Lie superalge
bra such that Lo is a semisimple Lie algebra. Let H be a 
Cartan subalgebra of Lo. Let M be a finite-dimensional L 
module and hence, an Lo module, a jortiori. Here L) is an Lo 
module with respect to the adjoint action. The semisimpli
city of Lo implies that any finite-dimensional Lo module is a 
direct sum of irreducible highest weight Lo modules II (the 
weights being considered relative to a root system for H). 
Thus suppose A. 1J ••• ,AkEH* are the highest weights of the Lo 
module L j . Similarly, let PI"",Pr be the highest weights in 
M, considered as an Lo module. If we denote by V( v) the 
highest weight module with highest weight v then, 

M=V(P,)+"'+V(Pr) (21) 

and 

(22) 

Now, we can prove the following theorem. 
Theorem 1: Let L be a Lie superalgebra such that Lo is 

semisimple. Let M be a finite-dimensional L module. Let 
{p,d = 1, ... ,r} be the highest weights in M (as an Lo mod-
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ule), with respect to a Cartan subalgebra H of Lo. Let 
{A;:i = l, ... ,k} be the highest weights inLT considered as an 
Lo module. Suppose, A; #/lj' Then, H I (L,M) = {O}. 

Proof Let Lo = H + L 0+ + L 0- be the decomposition 
ofLo' relative toH, whereL 0+ (resp. L 0- ) is thesubalgebra 
generated by + ve (resp. - ve) root vectors. Then xEL 0+ 

annihilates the maximal vectors. 
Supposefis a one-cocycle. Then 

df(x,y) = 0 

~f([x,y]) 

= ( - 1) Ix1lf1x-j(y) - ( - I) Iyl<lfl + IXlly-j(X). 
(23) 

We assume first thatfis even, i.e.,fEC I(L,M)o' Then, for 
x,yELo, (23) reduces to f([x,y]) = x'f(y) - y-j(x). 
Therefore by Whitehead's first lemma II there exists mEM 
such thatf(x) = x'm, for all xELo. Let UA EV(k) beamaxi
mal vector. Thenx'uAj = 0, ifxELt. N~w, we'put Uk fory 
in (17). Thus, we obtain ' 

x'f(uA) - uAJ(x) = 0, for all xEL 0+ 

~X-j(UA)-UAj'x'm=O, since x.uAj = [x,uAj ] =0, 

or 

x· [f(uA) - uAj'm] = O. 

Hence, L t annihilates the vector (f(uA) - uAj ·m)EM. 
Moreover, if hER, then 

fq h,uAj ]) = A; (h) 'f(uA) 

= h'f(uA) + A; (h)uAj'm - h'uAj'm 

~h'(f(UA) - uAj'm) 

=A;(h)'(f(uA) - uAj·m). 

Hence,f( U Aj) - u;'j . m is a maximal vector in M with weight 
A;. But, we have assumed that A; #/lj and the latter exhausts 
the weights of the maximal vectors in M. Therefore, 
f(u;.) = u;., ·m. 

Next, let a be a simple root of Lo relative to some base in 
the root system relative to H and let y _ aEL 0-' Then, 
[y_a,UA,]EVAj _ a, the weight space corresponding to the 
weight A; - a in V(A;). 

Using uA,_ a = [y _ a'uA,], we have 

f(uA,_ a) = Y _ a 'f(uA) - U;.,"y _ a (m) 

=y_a-j(uA) -UA,'y_a'(m) 

= [y _a,UA,]'m = UA,_a ·m. (24) 

Since the vectors (adY_a)s'···(adY_a,)S,·u;.., with a; 
simple roots and S; >0 generate the submodule V(A;) of LT , 

it is seen from (24) that by induction f( u) = U' m for all 
uEV(A;). But LT =~;V(A;). Hence,f(u) =u'm for all 
uEL). As it is already known thatf(x) = X' m, for all xELo, 
we see that every even one-cocycle is a coboundary. 

Now, let g be an odd one-cocycle. The cocycle condition 
for xELo and uEL) is 

g([x,u» = x·g(u) + u'g(x) (2Sa) 

and for x,yELo, 
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g([x,y» = x'g(y) - y-g(x). (2Sb) 

Using an argument as above we arrive at the conclusion that 
there is an element mlEMT such that g(x) = x'ml, for all 
xELo and g( u) = - U· mT, uELT. But, these are precisely 
the coboundary relations for odd elements of C I (L,M). 
Hence, we conclude that H I (L,M) = {O}. 
. C.0rolla'Y,: Let Land Mbe as in the theorem. Suppose LT 
IS ~n IrreducIble 1:0 module with highest weight A. Then, 
H (L,M) = {O}, If none of the highest weights in M (as an 
Lo .module) equalsA. In particular, for the adjoint represen
tatIon (~=L), 1!1(L.,L) = {O}, provided [LT' Lt]#O 
and the hIghest weIght 10 L) is not a maximal root in Lo. 

Proof The first assertion of the corollary follows direct
ly from the theorem. The second is proved as follows. 

In the proof of Theorem I, it was shown that iff is an 
even one-cocycle then f( u;.) - U;. . m must be a maximal 
v.ector in MT ( = LT in this case). For the adjoint representa
tl~n we have mELo such that for all xELo,f(x) = [x,m]. 
Smce, LT is an irreducible Lo module, U A (up to a scalar 
multiple) is the only maximal vector. Therefore, 
f(u A) - UA 'm = CU;., for some scalar c. 

For any u,v,ELT the cocyle condition gives 

f([u,v» = u-j(v) + v'f(u), 

or 

[U,v] . m = u'f(v) + v·f(u),·.' [u,v]ELo 
~ [u'm,v] + [u,v'm] = u'f(v) + v-j(u). (26) 

The last relation follows from the Jacobi identity and the fact 
that we are considering the adjoint representation. More
over, applying ad y _ a

j 
(a; a simple root) to U A' we get from 

(23) 

f(y -a, ·U;.) =f<[Y - aj,U;']) 

=Y-aj'f(uA) - U;. -j(Y-a,} 

=Y_aj·(u;.·m +CUA) - U'Y_a j' m 

= [Y_aj,uA]·m+c[Y_a;,u;.]. 

Successive applications of ad Y _ aj's and the fact that they 
generate LT lead to the conclusion that, for all uELT, 

f(u) = u'm + cu. (27) 

From (26) and (27) one gets 

[u'm,v] + [u,v'm] = [u'm,v] + [u,v'm] + 2c[u,v] 

i.e., 2c[u,v] = 0, for all u,v,ELT. 
Since [L) ,LT ] #0 by hypothesis, we conclude that 

C = O. Hence, every even one-cocycle is a coboundary and 
HI(L,L)o = {O}. 

Next, let g be an odd one-cocycle, 
i.e., g:Lo -LT and LT -Lo. 

Since it is given that the highest weight in L) is not a 
maximal root ( = highest weight in the adjoint representa
tion Lo on itself) w,e conclude from the theorem that 
HI (L,Lh = {a} and the corollary is proved. 

Remark: We recall the fact that in the adjoint represen
tation a one-cocycle is a derivation of L and a one-cobound
ary is an inner derivation. Then we have an immediate appli
cation of the preceding corollary: For the algebras B(m,n), 

K. C. Tripathy and M. K. Patra 2825 



                                                                                                                                    

D(m,n), F(4), and G(3) (see Ref. 12 for the classification 
scheme of Lie superalgebras) all derivations are inner since 
these algebras satisfy the conditions in the corollary. 

III. HIGHER-ORDER COHOMOLOGIES 

It is well-known that Hn(G,V) = {O}, for all n;;;oO, G a 
semisimple Lie algebra and V, a nontrivial Gmodule. II

•
13 In 

the case of Lie superalgebras, however, we have to impose 
the condition of strong semisimplicity to ensure the triviality 
of the cohomology modules. 

Definition: A Lie superalgebra L is defined to be strong
ly semisimple if all its modules are semisimple, i.e., all the 
nontrivial representations of L are completely reducible. We 
then have the following theorem. 

Theorem 2: Let L be a finite-dimensional strongly semi
simple Lie superalgebra and M a nontrivial finite-dimen
sional L module. Then, Hn(L,M) = {O}. 

Proof The module M can be split up into a direct sum of 
irreducible L modules and the projection maps n i:M -+ Mi' 
where Mi is an irreducible summand, commute with d. 
Thus, we can assume without loss of generality that M is an 
irreducible L module. 

In the context of representation theory, let ¢:L -+ End M 
be defined by x'm = ¢(x) 'm, then ¢ is an algebra homo
morphism. Since M is nontrivial, Q = Ker ¢ is either zero or 
a proper ideal of L. Let R be an ideal of L complementary to 
Q. The restriction of ¢ to R is an isomorphism. Then, we can 
work inside R and the arguments that follow hold good for 
OCR CL. Therefore, one can assume that ¢ is faithful. 

We next recall the definition of supertrace form. Let 
u=(;~) be an (m+n)X(m+n) matrix, where a is 
m X m and b an n X n matrix. The supertrace of u is defined 
as str u = tr a -tr b. Now, let {3:L XL-+Y be the bilinear 
form defined as {3(x,y) = str(¢(x) '¢(y». We note that{3is 
an even, supersymmetric, and associative bilinear form on L. 
Now, suppose L is strongly semisimple. Then, according to a 
theorem of Djokovic and Hochschild 14 L is a direct sum of 
semisimple Lie algebras and Lie superalgebras in the series 
B(O,n) [=osp(1,2n)]. Therefore, from the structure of 
B(O,n) it follows that {3 is nondegenerate, i.e., 
Ker{3={xELr{3(x,y) =OVxEL} =0. Let m=dimLo 

and n = dim LT' Let {uJr~ 1 and {vJ7~ 1 be bases inLo and 
L T , respectively, and {u'} and {v'} the corresponding dual 
bases with respect to {3. Define 

m n 

C = I ¢(U i )¢(ui
) - I ¢(v) ·¢(rI). (28) 

i~ 1 j~ 1 

Then, CEEnd Mcommutes with¢(x), forallxEL. Here, Cis 
a Casimir invariant. Since M is irreducible C = c/, c being 
some scalar (Schur lemma). But, 

Also, str C = str(cI) = c(p - q), where p = dim Mo and 
q = dim M T • From the structure of the strongly semisimple 
Lie superalgebrasl2 it is known that m =f.n. Hence, c=f.O and 
thus C is invertible. Therefore, we can show as in the case of 
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semisimple Lie algebras that for any n-cocycle J, C/ = dg, 
where gEcn-I(L,M). Since c is invertible /= d(C -Ig ) 
and hence Hn(L,M) = {o}, n = 1,2, .... 

IV. SPECTRAL SEQUENCES 

In this section we briefly consider the extension of the 
Hochschild-Serre method5 of constructing spectral se
quences by introducing a filtration with respect to a subalge
bra of a Lie algebra to the case of Lie supera1gebras. 

Let S be a subalgebra of L. Let An = cn(L,M), 
A = };nA n, and d be the coboundary operator. Then, {A,d} 
is a Z-graded differential L module. 1O A filtration on A is a 
family of submodules {A j} such that 

(1) ... ~Aj ~Aj+ 1 ... 

and 

(2) UAj =A. (29) 
J 

If the differential d preserves the filtration, then A is said to 
be a filtered, graded differential module. A particular filtra
tion with respect to the subalgebra is defined as follows: 

Aj =0 if j>n, 

=A if j<'O, 

and for 0 <j<.n, A "nAj consist of all n cochains that vanish 
if n - j + 1 arguments belong to S. We thus have a bounded, 
descending filtration A = Ao~A I'" ~Aj ~Aj + 1 ~ •••• 

Each submodule has intrinsic Zrgrading besides the usual Z 
grading. Let us denote A j.i = A i + jnAj . The filtration, de
fined above, gives rise to a spectral sequence,1O i.e., a family 
{Er,dJ of Z-bigraded modules, with d r having bidegree 
(r, - r + 1) and such that the cohomology module, 

H(Er)=Er+ l • (30) 

The differential operator d r (d; = 0) is induced by d. Omit
ting the details we mention the following well-known re
sult. 1O 

Theorem 3: Let 

Z~·q = {xEA MldxEA p+ r,q- r+ I}, 

B~·q = {xEA Mix = dy for some yEA p- r+ I.q+ r}, 

and 

E~·q = (Z~·q + Ap+ 1 )/B~·q + Ap+ I' (31) 

Further, let d r be the differential operator induced by don 

Er = IE~·q. 
p.q 

Then {E"dJ is a spectral sequence. Further, we have the 
following identifications. 

Let 

E~ = IE~·q, 
q 

Eg =ApIAp+ I' 

Ef =H(ApIAp+ I) = H(Eg). 

We also have E~·q-+E";,q, i.e., there exist natural isomor
phisms 
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(32) 

In (32), (H(A»p CH(A) is given by the filtration induced 
on H(A) by the filtration on A. 

We next note that x'Ap CAp for xES. The submodule 
A p.O = Ap nA p is the submodule of all p-linear mapsfL -+ M 
which vanish if one of the arguments of/belongs to S. We 
can therefore identify A p,O = CP(L IS,M), where L IS is a 
Zz-graded vector space. Hence, C p (L I S,M) is an S module. 

Let S;,q:A p,q -+cq(S,CP(L IS,M» be defined by setting 

S;,q (j) (xl,· .. ,xq ) (Y: + I , ... ,y; + q) 

=/(x1,· .. ,xq,Yq+ I , .. ·,Yp+ q)' (33) 

where x 1""'xqES and Y: + I , ... ,y; + q are the respective im
ages of Y q + I , ... ,y p + q EL under the canonical projection 
L-+L IS. Thefunction S;,q is well-defined since (33) is inde
pendent of the choice ofYq + I '''',Yp + q' This is because/van
ishes if any of the Yq + I , ... ,Yp + q belong to S. Moreover, 
A p + I C Ker s; + q and hence we have a family {s p,q} of map
pings 

Sp,q:A MIA p + I,q -+ cq(S,CP(L IS,M». (34) 

But, by definition, E b,q = A MIA p + I,q: Hence there exists a 
map ¢l:Eo-+C(S,C(L IS,M». We can now show that ¢l is an 
isomorphism. 

Let d, and do denote the coboundary operator on Sand 
Eo, respectively. 

Theorem 4: There is an isomorphism ¢l between the Z
bigraded modules Eo and C(S, C(L IS,M» such that 
¢l'do = ds '¢l. 

The fact that ¢l is an isomorphism can be shown by 
modifying the proof in Ref. 5 to take care of the intrinsic Zz 
degree. The relation ¢l' do = d, . ¢l follows from Lemma 3 and 
the definition of ¢l. 

Corollary: ¢l induces an isomorphism ¢ll = {<,b1,q} of each 
onto 

homogeneous component <,b1,q:Ef,q -+ Hq(S,CP(L IS,M». 

From the above theorem and its corollary we get the 
following identifications: 

E b'o =- C peL IS,M) 

and 

E f'O =-(C peL IS,M) )S, 

where the rhs is the subspace of C peL IS,M), annihilated by 
S. Suppose S = LfJ. Then, LIS = LT and Eg,o=-CP(LT,M) 
and Ef,o=-(CP(LT,M»Lo. 

Next, we suppose that S is an ideal. Then, Hn(S,M) is 
an LIS module. Let d LIS denote corresponding coboundary 
operator. There IS an isomorphism r: 

onto 

HP(S,Cq(L IS,M» -+ Cq(L IS,HP(S,M». Indeed, riscon

structed as follows. 
Let r' denote the vector space isomorphism from 

onto 

CP(S,Cq(LIS,M» -+ Cq(LIS,CP(S,M» defined by 

r'(f)(x;+ 1, ... ,X;+q)(YI'''·'Yp) 

= a(f(YI""'Yp »(x;+ I , ... ,x;+ q), 

where 
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(35) 

a = ( _ 1) (ly,1 + ... + IYpl)(lxt r "I + ... + Ixt I qll>, 

YI""'YpES and x; + I , ... ,x; + qEL IS. 

Further, we have the identity 

r'(d,/)(x;+ I , ... ,x;+ q) = dLls(r*(j) (x;+ I , ... ,x;+ q », 
which is a consequence of Lemma 3. Hence, r' induces the 
required isomorphism r on the corresponding cohomology 
modules. 

Theorem 5: Let S be an ideal in L. There is an isomor
phism tPI = {t/JI:.q} of EI onto C(L IS, H(S,M» with 

t/JI:,q:E f,q -+ C P(L I S,H q (S,M». 

If d l denotes the coboundary operator on EI then, 

t/JI:,q'd
l 
= (-l)qdLls.t/JI:,q. (36) 

Proof: Let t/JI:,q = r'<,b1,q where ¢ll = {¢lIM} is the iso
morphism given in the corollary to Theorem 4. To prove 
(36), let /EA P nA P + q be a representative of an element in 
Ef,q. Then d/EAp+ I' From Lemma 3 we have 

(d/) p + I (xo,· .. ,xp) = d(f,,) (xo,""xp) 

+ ( - 1)P + I'd(!" + I (xo, ... ,xp», 

where xo, .. "xpES. But then!" + I (xo,''''xp) = O. Further, we 
have, on passing to the quotients 

!" = ( - l)pqr(/) and (d/)p+ I = (-1)(P+ I)q·r(d/). 
(37) 

Equation (36) follows from (37) and Theorem 1. 
Corollary: There is an isomorphism tPz = {tM,q} from Ez 

onto HP(L IS, Hq(S,M». 
We now suppose that S is an ideal in L such that LIS is 

strongly semisimple. From Theorem 2, HZ(L IS,P) = {O} 
for any L IS module P. Therefore, there exists a subalgebra 
KCL such that L = K + )S, where K =-L IS (Levi decom
position) .11 

Theorem 6: Let L, S, and K be as above. Then 

The proof of the above theorem is' in several steps, we prove 
first the following lemmas. 

Lemma 4: 

HP(L IS, (Hq(S,M»K) =-HP(K,Y) ® (Hq(L IK,M»K. 

We note that HP(LIS,(Hq(S,M»K) 
=-HP(K,(Hq(S,M»K). Now, let R = (Hq(S,M»K. The K 
operators are zero on R. Moreover, we can identify 
CP(K,R) =-CP(K,Y) ®R. But since K acts trivially on 
R,HP(K,R) =-HP(K,Y) ®R. Hence, we prove the lemma if 
we can show that R = (Hq(S,M»K=-(Hq(LIK,M»K. This 
is done as follows: H(S,M) is an L module annihilated by S. 
Therefore, (H(S,M»K=-(H(S,M»L. Now, we have a K
module decomposition Cq(S,M) = d(Cq- I (S,M) $ U). 
Therefore, if the cohomology class of / belongs to 
(Hq(S,M»Lthenx'/Ed(Cq- I (S,M», forallxEK. But Uisa 
K submodule. Hence, x'/= O. Now, let cq-I(S,M) 
= Z q - I (S,M) $ V be a K-module decomposition. Then, 

writing g = h + kEC q - I (S,M), where kE V and 
hEZq-I(S,M), suppose dgE(Cq(S,M»K. Then 
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X'gEZq- I (S,M), for allxEK. We thus havex'k = O. More
over, dg=dk and hence Bq(S,M) =d«Cq-I(S,M»K). 
Now, we can identify (Cq(S,M»K with Cq(L IK,M) in a 
natural fashion and we have just shown that 

(Hq(S,M»K = (Cq(S,M»Knzq(S,M) . 
d«C q- I (S,M»K) 

Thus Hq(S,M) = (Hq(L IK,M»K and the lemma is 
proved. 

Lemma 5: There exists a homomorphism 

t:H(K,Y) ®(H(LIK,M»K into H(L,M). 

Proof: First, we prove that the restriction homomor
phism H(L,Y) -+H(K,Y) is onto. Let 1T be the projection 
homorphism of L onto K, corresponding to the decomposi
tion L = K + ) Sand let/EZn(K,Y). Let gEZn(L,M) be 
defined as g(xl, ... ,xn ) = 1(1T(XI ), ... ,1T(Xn». The restriction 
ofgtoK coincides with! Now, sinceKis strongly semisim
pIe H(K,Y) is isomorphic to the exterior algebra over a 
subspace of H(K,Y) spanned by primitive elements. This 
fact can be demonstrated as in the case of ordinary Lie alge
bras. 15 This, together with fact that the restriction homo
morphism is onto implies that there is an injective graded 
algebra homomorphism a:H(K,Y) -+H(L,Y) inverse to 
the restriction homomorphism. Let v denote the natural ho
momorphism (H(LIK,M»K-+H(L,M) and let A denote 
thepairingofH(L,Y) andH(L,M) toH(L,M) induced by 
the tensor product pairing of Y and M to M. Let t denote 
the map H(K,Y) ®H(LIK,M)K-+H(L,M) defined by 
t(u ® v) = a(u) I\. v(v). 

ProololTheorem 6: The homomorphism t in Lemma 5 
is an isomorphism onto H(L,M). This is seen as follows. 

From Theorem 5, and Lemma 4, we have an isomor
phism tll:E ~,q -+ H P(L IS,H q (S,M» =H P(K,Y) 
X (H q (L I K,M»K. Let Ibe a p cocycle for L in Y which 
belongs to the cohomology class a(u), where uEHP(K,Y) 
and t is the map defined in Lemma 5. Similarly, let g be a q 
cocycle in the class v( v). Then, II\. g is a (p + q) cocycle 
belonging to the cohomology class of t(u ® v). Therefore, 
Il\.g determines an element h in E~,q such that 
t/J' (h) = u ® v. Since t/J is an isomorphism onto, E ~,q consists 
of sums of elements such as h above. Thus every elment of 
E ~,q has a representative in A p,q which is a cocycle. The co
boundary operator d2 on E2 is induced by d and since dh = 0, 
we conclude that d2 is zero on E2• Consequently, 
E3 =H(E2) = E2 and every element of E3 is represented by a 
cocycle. Hence, by the same arguments we conclude 
E2=E3=" 'Eoo ' i.e., Ep.q=E~,qandll\.gisarepresentative 
cocycle of hEE p,q under this correspondence. 

Also, H n (L,M) is a finite-dimensional space and there
fore, from (32) we get 

Hn(L,M)= L EP,q 
00' 

p+q=n 
where the sum is a vector space direct sum. Moreover, by 
choosing a suitable basis for H n(L,M) we get linear isomor-

onto 

phism a:H(L,M) -+ E which is identity on (Hn(L,M»pl 

(Hn+ I (L,M»p + I and a(t(u ® v» is the element in EP;,q 
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that corresponds to h. Hence, a·t is an isomorphism onto 
E 00 • Since a is a linear isomorphism t is an isomorphism. 
Theorem 6 is an immediate consequence of this fact. 

v. DEFORMATION AND CONTRACTION 

In this section, Gerstenhaber's theory of deformation of 
algebraic structures 7 on a given vector space is extended to 
cover Z2-graded structures. Let L = Lo Gl L) be a finite-di
mensional Lie superalgebra over a field Y and let Vbe the 
underlying vector space, i.e., L = {v, [ , ]}. Let P[..1.] be the 
polynomial ring over Y in the indeterminate A.. Let k denote 
the field of fractions of P[ A. ]. Let Vk = V ® k be the exten
sion of V. Any bilinear map V X V -+ V can be uniquely ex
tended to a bilinear map Vk X Vk -+ Vk • Suppose there is an 
even 16 bilinear map f Vk X Vk -+ Vk expressible in the form 

fA (a,b) = L A. '/,.(a,b) 
r=O 

= [a,b] + L ..1.'/,.(a,b), (38) 
r= I 

where, each/,.: V X V -+ V is an even bilinear map. Suppose 
further that (a,b) -+ fA (a,b) define a Lie superalgebra struc
ture on Vk. Then, we say that {Vk fA} is a one-parameter 
family of deformations of L. The bilinear map IA must satisfy 
(1) and (2). In terms of coefficients /,., we have 

/,.(a,b) = ( - 1) Ia11 b:.r,.(b,a), (39) 

L L (_1) Ia11 c!.t;.(f.(a,b),e)=0. (40) 
cycl. r+ s= n 

Equation (39) states thatlr EC 2 (L,L)o, where L acts on 
itself via the adjoint action. The conditions (40) are known 
as integrability conditions. For n = 1, (40) reduces to 

L (- 1) Ia11 cl{f;([a,b ],e) + [fl(a,b),e] = O. (41) 
cycl. 

But, the left-hand side of the above equation is equal to 
- d/l, where d is the coboundary operator on C(L,L). 

Hence, the first (n = 1) integrability condition states that/l 
must be a two-cocycle. An element/EZ 2 (L,L) is said to be 
integrable if it is the first term/l of a one-parameter deforma
tion series (38). Putting n = 2 in (36) we get, 

L ( - 1)la 11 cl{j;([a,b ],e) + [fl(a,b),e]} 
cycl. 

= L (- 1)lallc~l(fl(a,b),e» 
eyel. 

or 

- dJ;(a,b,e) = L( - 1)Iallc~(.t;(a,b),e». (42) 

The rhs of ( 42) is a three-cocycle if II is a two-cocycle and 
the condition requires that this three-cocycle must be a co
boundary, In general, we have 

din (a,b,e) = L L (- 1)Iallc~<'tj(a,b),e), (43) 
cycl. i + j= n 

iJ<n 

We can show that the rhs of (43) is a three-cocycle provided 
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the}; 's satisfy the integrability condition of i < n. This is 
done by appropriate modification of Gerstenhaber's 
proof,6,7 to take care ofthe Z2 grading. Therefore, we con
clude that if H 3 (L,L) = {a}, then any two cocycle is inte
grable. However, this condition is not necessary. The coho
mology class of the three-cocycle in the rhs of ( 42) is called 
the first obstruction to integrability. 

Definition: Let {fA} and {gA} be two deformations of L. 
Let 

(44) 

be an invertible element in End (Vk ), such that tPsEEnd(v). 
The deformations {fA} and {gA} are said to be equivalent if, 
for a,b,c,E V, 

(45) 

A family of deformation {gA} is defined to be trivial if it is 
equivalent to the identity deformation [i.e.,}; = ° for all 
i> ° in (38) ] . A Lie superalgebra is defined to be rigid, if all 
its deformations are trivial. 

Proposition 1 (Ref. 7): If H 2 (L,L) = {a}, then Lis rig-
id. 

Proof Let {fA} be a one-parameter family of deforma
tions such that, 

I;. (a,b) = [a,b] +A'in(a,b) + "', 
i.e. /" (n;;;.1) is the first nonzero term in this development. 
Then, 

din = L L (- 1)lallc~(./j(a,b),c) = 0. 
eye!. i+j= n 

ij<n 

Hence,ln is a two-cocycle. Since H 2 (L,L) = {O}, there is a 
one-cochain g such thatln = dg. Let tP (A) = 1 + Ag. Then it 
is verified that 

tPA-I(h(tP(A)X,tP(A) 'y» 

= [x,y] +A n+ 'f~+ I (x,y) + ... 
wherex,yeVand/~ + I ,f~+2'"'' are the two-cochains defin
ing a deformation {fA} that is equivalent to {fA}. Since we 
can show that I ~ + I (like In) is a two-cocycle we prove the 
proposition by induction. 

Let us now briefly discuss a geometric interpretation of 
deformations. We choose some fixed basis on V. Then, any 
Lie superalgebra structure on V (or Vk ) is characterized by 
a set of structure constants with respect to a fixed basis. The 
graded Jacobi identities are equivalent to certain polynomial 
equations in several variables. Following Gerstenhaber,7.8 
one considers the algebraic manifold T defined by the solu
tions of these polynomial equations. Each point on T repre
sents a Lie superalgebra, given by the structure constants 
obtained as solutions of the aforementioned equations, with 
a fixed basis. A one parameter deformation, given by (38), is 
an analytic curve (A-I;. beingapolynomialfunction) on T. 

Contraction: Let tPA = U + AV, where u and v are even 
linear mappings,16 V-V such that tPA is invertible if A ;60, 
and for A = 0, tPo = u is singular. Let us further assume that 
for all x,ye V the limit 
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[x,y), = lim tPA- I [tPA (X),tPA (y)] 
A_O 

(46) 

exists. Then (x,y) - [x,y]' defines a new superalgebra struc
ture on V. Let us denote L ' = { v, [ , ] '}. Here, L ' is said to be 
a contraction of L. The conditions for the existence of the 
limit in ( 46) are known for the case of ordinary Lie algebra.9 

Let us now suppose that K is a subspace of Vand S is a 
subspace complementary to K. Let tPA = IK + Als , where 
IK (resp. Is) is the projection operator onto K (resp. S). It is 
a straightforward matter to show that the limit in (46) exists 
if and only if K is a subalgebra of L. The resulting contraction 
is called Inonu-Wigner (IW)9 contraction. This definition 
of IW contraction is identical to that for ordinary Lie alge
bras. We define a generalized IW contraction for Lie super
algebras as follows. 

Let L, K, and Sbe as above. We have 

(47) 

where the rhs is a direct sum (internal) of subspaces. Let I Kii' 

IK" Is,;, and Is, denote the projection operators onto the 
respective subspaces in (47). Let 

(48) 

[x,y), = lim [x,y] A = lim tPA- I [tPA (X),tPA (y)]. (49) 
A-O A_O 

The limit in (49) exists since on expansion we get 

[x,Y];. =fo(x,y) + All (x,y) +A 2.t;(X,y) 

+ A %(x,y) + A %(x,y), (50) 

where};'s (i = 0,1,2,3,4) are bilinear maps V xV - V and 
lo(x,y) = [x,y), defines the new Lie superalgebra structure 
on V, Comparing (50) and (38) we see that L is a one
parameter deformation of L'. Moreover, from (49), we see 
that for A ;60 the deformation is trivial. Therefore, to find 
out all the Lie superalgebras that can be contracted to a given 
Lie algebra L " we look for the possible one-parameter defor
mations of L '. 

VI. ILLUSTRATION 

We apply the results of the previous sections to two Lie 
superalgebras which are of physical interest. 

(a) Let B = osp(1,2) [or graded su(2)] spanned by 
J ± ,J3eBo and V ± 112eBT (Ref. 17). Thecommutationrela
tions are 

[ J3, V ± 112] = ± V ± 112' 

[ J + 'VII2 ] = [J _ ,V _ 112] = 0, 

[ J + ,V _ 112] = V1I2 ' and [J _ ,VI12 ] = V _ 112 • 

(51) 

The even part, Bo = su(2). We also have 

[ V1I2 ' V _ 112] = ¥ +, [ V _ 1/2' V _ 1/2] = - ¥ _ 
and 

[VII2'V -112] = - ¥3' (52) 

Referring to (46) weletu = lBo and v = In, be the respective 
projection operators. The contraction is of IW type. Let the 
contracted algebra be A. Instead of introducing a new 
bracket, we replace VII2 and V _ 112 by a and p, respectively, 
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and use the same bracket, [ ,] to denote the Lie superalgebra 
product in A and B. Thus, as elements of the underlying 
vector space, V ± 1/2 are identical to a and P, respectively, 
but the product relations are different. The equations (51) 
remain intact in A (with a and P written in place of V ± 1/2 ) 

but Eq. (52) reduces to 

[a,a] = [P,P] = [a,p] =0. (53) 

Therefore, A = {J ± ,J3 ,a,{3} is the "full BRS algebra." This 
is the algebra of infinitesimal generators of global transfor
mations that leave the Yang-Mills' Lagrangian in the Lan
dau gauge invariant. '8 The subalgebra of A, generated by 
{J3,a,{3} is isomorphic to the BRS algebra. 

Now, we address ourselves to the following question. 
What are the algebras that can be contracted to the full BRS 
algebra A? For this purpose, we look for possible deforma
tions of A. Consequently, we have to compute H 2 (A,A)o, 
since the first coefficient f, in the deformation series (38) 
must be a two-cocycle, determined up to a coboundary. We 
also compute H 3(A,A) to find out the obstructions to the 
deformation. 

Computation ofH 2( A,A): The odd subspace AT of A is an 
ideal of A. Moreover, A/AT "",A(j is a simple Lie algebra and 
hence strongly semisimple, a fortiori. Therefore, Theorem 6 
is applicable. We have, 

HZ(A,A) "'" L H;(A(j,Y) X (Hj(AT,A»A. (54) 
;+j=2 
;J>O 

In (54) we haveH '(A(j,Y) = H2(A(j,Y) = {O}, sinceA(j 
is strongly semisimple. Moreover, we have to compute only 
the even part'6 of HZ(A,A). Thus 

HZ(A,A) "",Ho(A(j,Y) X (Hz(AT,A(j »A 

= YX(Hz(AT,A(j»A 

"",(Hz(AT,Ao »A. (55) 

Next, we note that B z(AT,A(j) = {O} since AT is Abelian 
and hence, 

(56) 

LetjE(ZZ(AT,A(j »A, i.e.,f:AT XAT -+A(j is a two-cocycle. In 
general, f has the form 

and 

f(a,a) = a,J + + azJ _ + a3J3, 

f(P,P) = b,J + + bzJ _ + b3J3, 

f(a,p) = c,J + + czJ _ + C3J3, (57) 

where a,b,ceY, the base field. 

and 

The cocycle condition implies 

df(a,a,a) = 3a·f(a·a) = 0 

df(P,P,P) = 3p·f(P,P) = 0, 

df(a,a,{3) = 2a-j(a,p) + p-j(a,a) = 0, 

df(a,p,p) = 2p-j(a,p) + a-j(p,p) = O. (58) 

Substituting (57) for Fin (58), we find that the only non
zero coefficients are a" b2 , and c3• Moreover, 
bz = c3 = - a l. Hence,f has the following form: 
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f(a,a) = aJ +' f(P,{3) = - aJ _ , 

and f(a,p) = - aJ3, (59) 

where a is a arbitrary scalar. We can also check that f is 
annihilated by A, i.e., x-jis a coboundary for all xeA. Let us 
extendf to A XA, by requiring thatfbe given (59) for the 
arguments belonging to AT XAT andfis zero otherwise. 

Computation of H YA,A): Using Theorem 6 and the fact 
that (Ho(AT,A»A = 0 we get 

H\A,A)(j "",Ho(Ao, ) X(H 3(AT,A)(j)A 

"",(H 3(AT,AT »A. (60) 

Now, CZ(AT,A)o is the space of symmetric bilinear maps 
AT XAT -+A(j and dim CZ(AT,A(j) = dim 
(Sym.(AT ®AT »XdimAo = 9. Similarly, C 3 (AT,AT) is the 
space of symmetric functions AT XAT XAT -+AT. This space 
has dimension = 8. The coboundary operator d maps 
C Z(AT,Ao)-+C 3 (AT,AT) and dim (Kerd) 
= dim ZZ(AT,A(j) = 1, by the preceding computation [cf. 
(59)]. This implies that H3(AT,AT) = {O}. Hence, every 
two-cocycle is integrable. But, the only even'6 two-cocycle 
(up to a scalar multiple) is given by (59). Therefore, putting 
a =! in (59) we denote the corresponding function by fl' 
We have,fI:A(j XAoeO andh:A(j XAT -+0 and restriction of 
h to AT XAT is given by (59) with a =!. We see that 
f,Y; (x,y),z) = 0 for all x,y,zeA. Hence, we can assume that 
fz =J; = ... = Oin (38). We have a first-order deformation 
with 

h =fa+Ah, (61) 

where fa is the original multiplication on A and we get an 
algebra that is isomorphic to osp ( 1,2). As osp ( 1,2) is known 
to be strongly semisimple'9 [·.·osp(1,2) =B(O,I) no 
further nontrivial deformation is possible (cf. Proposition 
1 ) ]. We therefore, conclude that osp ( 1,2) is the only algebra 
that can be contracted to the full BRS algebra. 

(b) The super Poincare algebra. Let L denote the super 
Poincare algebra. We wish to determine all the nonisomor
phic Lie superalgebras that can be contracted to L. Thus we 
have to determine the possible deformations of L. Let V be 
the underlying vector space and Y the base field of L. 

Here, Lo is the Poincare algebra. Let us write 
L(j =D+ )P, where D=R' fBR z with R '"",R z"",su(2), 
+ ) denotes the semidirect sum and P = {P"PZ,P3,P4}' is the 

ideal generated by infinitesimal translation operators. Also, 
D is the Lorentz algebra. Let {h;,x;,y; Ii = 1,2} be the basis 
for R; with the commutation relations given by 
[h"xd = 2x1,[h"YI] = - 2YI,[x"yd = hi' etc. A acts on 
P in the adjoint representation with highest weight J.l, such 
that J.l(h;) = 1; LT = {a;.p; Ii = I,2}. The a/s (resp. P;) 
span an R ' module (resp. R Z module) in the adjoint repre
sentation: e.g., [hl,al ] = aI' [hl,az] = a z, etc., and 
[R I,P;] = [R z,a;] = 0, i = 1,2 and [P,LT ] = O. Finally, 
we have 

and 

[a"Pd = PI' [a"pz] = Pz, 

[a2,PI] = P3' 
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The basis used for the super Poincare algebra L, differs from 
the one found in the literature. We have avoided the 'dot' 
notation. 20 We are also reminded that, in (62) [ , ] is the 
anticommutator since we have used this bracket for the 
gradedcomputator. B = PEaL) (vector space direct sum) is 
an ideal in L. The quotient algebra L / B =.D is strongly semi
simple (".. it is a semisimple Lie algebra). Therefore, 
Theorem 6 can be used to compute the cohomology groups. 
We will omit the lengthy details of calculations that will 
appear else.where. 21 The final results are mentioned below. 

Now, H 2 (L,L)o =.YXY and a typical representative 
cocycle,J1 is given by 

II(al,al ) = 2bx l , II(a2,a2) = - 2bYI, 

J; (a l ,a2 ) = bh l , 

II (PI,PI) = 2cx2, II (Pd32) = - 2CY2' 

and 

J; (PI,P2) = - ch2, 

where a,b,c,eY. Further, 

J;(P3,a l ) = - bPI' 

J; (PI,a2) = - bPI' 

J;(P2,PI) = -cal' 

II (PI,P2) = cal' 

II (P4,a l ) = - bP2' 

II (PI,a2) = bP2' 

II (P4,PI) = -ca2, 

II (P3,PI) = ca2, 

(63) 

(64) 

andll is zero on all other elements of L XL. Now, let us 
recall that R I and R 2 are not independent but conjugates of 
each other (dotted and undotted spinors!) and let Y = R, 
the real field. Then, c = Ii = b in (63) and (64). 

The computation of H 3 (L,L) is more involved but, it 
can be shown to be nonzero. However, II is integrable and 
the integrability conditions determine /Z, the second-order 
coefficient in the deformation series (38). Thus, 

and 

/z(PI,P2) = ax l , /z(PI,P3) = ax2, 

/z(PI,P4) = - (a/2) (hI + h2), 

/z(P2,P3) = (a/2) (hI - h3), 

/z(P2,P4) = - aY2' 

/z(P3,P4) = - aYI' 

where a = b 2
• 

(65) 

Hence, we have a second-order deformation of the super 
Poincare algebra, 

IA(x,y) = [x,y] + All [x,y] +A 2/z(X,y), (66) 

where x,ye VIA defines a new Lie superalgebra structure on 
V. 

The scalar b in (63) and (64) can be taken as the defor
mation parameter. Then, from (66) (with A = b) we obtain 
the commutation relation for the new Lie superalgebra Ton 
the vector space V. From Eqs. (61)-(66) one identifies T 
with the super de Sitter algebra and b 2 is now identified with 
scalar curvature of a de Sitter universe. Moreover, we can 
also conclude that the super de Sitter algebra is the only Lie 
superalgebra (up to an isomorphism) that can be contracted 
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to the super Poincare algebra. The corresponding contrac
tion is the generalized IW contraction discussed at the end of 
the previous section. Unlike the nonsupersymmetric case, 8 

where both so(4,1) and so(3,2) can be contracted to yield 
the Poincare algebra, we have here a unique algebra T such 
that To =. so ( 4,1) only. The curvature b 2 is positive and 
hence, rules out negative gravity! 
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Note on asymptotic series expansions for the derivative of the Hurwitz zeta 
function and related functions 

s. Rudaz 
School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota 55455 
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Asymptotic series for the Hurwitz zeta function, its derivative, and related functions 
(including the Riemann zeta function of odd integer argument) are derived as an illustration 
of a simple, direct method of broad applicability, inspired by the calculus of finite differences. 

I. INTRODUCTION 

The Hurwitz zeta function is defined for a#O, - 1, 
- 2, ... , and Re s> 1 by the series 

00 1 
;(s,a) = L ' 

n~O (n + a)S 

for which it is readily seen that 

;(s,a+ 1) -;(s,a) = _a- s
, 

a 
- ;(s,a) = - s;(s + l,a). 
aa 

(1) 

(2) 

(3) 

When a = 1, the Hurwitz zeta function reduces to the Rie
mann zeta function, ;(s, 1) = ;(s). The values of ;(s,a) and 
its derivative (a las);(s,a) =;' (s,a) for s = - n, with in
teger n;>O often arise in calculations of quantum effects in 
field and string theories through the method of zeta-function 
regularization. 1-3 Some time ago, Elizalde4 derived an 
asymptotic expansion for;' ( - n,a) when a is large that is 
extremely useful in the computation of effective actions in 
nontrivial backgrounds: The method used, similar to the 
conventional one that follows from Watson's lemma using 
Laplace's method, starts with Hermite's integral representa
tion for ;(s,a) (Ref. 5, p. 26) and is quite laborious. The 
purpose of this paper is to describe a simpler derivation of 
this result, using a method that is quite direct and also allows 
for the recovery of a number of classical results, as well as 
being applicable to a variety of other problems. 

II. METHOD 

The basic formula is obtained through a very simple 
observation, inspired by standard methods of the calculus of 
finite differences (see Ref. 6 for a comprehensive treat
ment): Let /(t) be a sufficiently differentiable function and 
consider the integral 

f dtf'(t) =/(1) -/(0). (4) 

Recall now that the Bernoulli polynomials B n (t) (Ref. 5, p. 
36 and Ref. 6, pp. 17-23) are uniquely determined by the 
identity, for integer n > 0, 

iX+ 1 dt Bn (t) = x n , 

from which the all-important property 

B ~ (t) = nBn _ 1 (t) (5) 

follows, as well as the relation Bn (x + 1) - Bn (x) 
= nxn-I. One readily sees that Bo (t) = 1, BI (t) = t -!, 

B2 (t) = t 2 - t + -1, B3 (t) = t 3 - ~t2 + !t, etc., and that 
for n;>2, Bn (1) = Bn (0) =Bn with Bn the well-known Ber
noulli numbers. It is also easy to see, directly from their 
definition, that B n (1 - t) = ( - 1) n B n (t) whence B2n + 1 

= o for n>O. 
Returning now to Eq. (4), write using Eq. (5), 

f dt/'(t) = f dtf'(t)B; (t) 

= ~ (f'O) + 1'(0» 
2 

1 i l 

- - dtf" (t)B ~ (t). 
2 0 

(6) 

Upon integrating by parts, continuing this process indefi
nitely results, after a simple rearrangement, in 

/'(0) =a(O) -~a'(O) + i (- ~)k Bka(k)(O), (7) 
2 k~2 k. 

where a(t) =/(t+ 1) -/(t). Note that in this equation 
the infinite series is to be more properly understood as a sum 
over k terminating at some arbitrarily chosen finite N, to
gether with an integral formula for the remainder R N + I • 

To apply this formula to the Hurwitz zeta function and 
its derivative, we next show that the properties (2) and (3) 
can be extended to the entire complex s plane. The Hurwitz 
zeta function can be extended as a meromorphic function to 
the entire complex s plane by means of the contour integral 
(Ref. 5, p. 25) 

;(s,a) = _ r(1 ~S) r (_z)s-Ie-az dz, (8) 
2m Jc 1 - e- Z 

where the contour C forms a loop around the positive real 
axis. Using this representation one has 

;(s,a+ 1) -;(s,a) = ~ (-z)'-Ie-azdz ro s) i . 
2m c 

= _ a- s, (9) 

upon using the reflection formula for the gamma function 
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r(s) r( 1 - s) = 11' csc 11'S, because with the above choice of 
contour, 

-L (-z)S-le - z dz=2isin11's r(s) 

is just Hankel's representation for the gamma function. As 
to the other relation, note that 

a {;( ) _ r(1-s) i (-z)Se-
az

d - s,a - - z 
aa 211'i c 1 - e- Z 

= - s{;(s + l,a), (to) 

by virtue of the functional relation for the gamma function 
r(1 + s) = sr(s). 

With these results in hand, and as a first application of 
(7), let us quickly derive an asymptotic expansion for 
(;(s,a) , valid for larg al <11'. Putf(t) = {;(s,a + t) and then 
from (9) and (10) one has immediately 1'(0) 
= -s{;(s+ 1,a), a(O) = -a-', and a(k)(O) 
= (-I)k+l(s)ka-s-\ where (S)k =s(s+ 1) 
... (s + k - 1) = r(s + k)/r(s) is Pochhammer's symbol 
(rising factorial function). Now one has, directly from (7), 

the asymptotic expansion (Ref. 5, p. 48) 

{;(s+ l,a) =+a-'+ ~ a- s- I 

1 co B 
+ " k () -,-k - ~ - s ka . 

s k=2 k! 
(11 ) 

This derivation has been fairly easy, and in any event is 
simpler and more direct than that suggested in Erdelyi's 
compendium. 5 When s = - n for integer n > 0, the series 
(11) terminates and with (-n)k=(-I)kn!/(n-k)! 
one finds 

n{;( I - n,a) = - an + 1.- nan - I 

2 

- ± (_1)k(n)Bkan- k. (12) 
k=2 k 

Recalling that B I = - 112 and that for otherwise odd k, 
B k = 0, this reduces to the well-known result (Ref. 5, p. 27) 

{;(1-n,a) = _1.- ± (nk)Bkan- k = -1.- Bn (a) 
n k=O n 

(13) 

in terms of Bernoulli polynomials. 
We now turn, after these preliminaries, to the problem 

at hand, namely, the derintion of the asymptotic expansion 
for {; '(s,a) = (a las){;(s,a) as it follows using again formula 
(7). Note that while one could consider simply differentiat
ing Eq. (11) term by term, such a procedure is not generally 
valid and would have to be justified. Instead, we proceed 
directly, putting f(t) = (;'(s,a + t) whence it follows 
that f'(t) = - s{;'(s + 1,a + t) - {;(s + 1,a + t) and 
a (t) = (a + t) - s log a + t. After a simple calculation us
ing Leibniz' rule and Eq. (11), one finds by Eq. (7) 

(;'(s+ l,a) = -{;(s+ 1,a)loga 

- (1/s) [(;(s + 1,a) - !a-S-Il 

1 co k-I (s). 
+- I Bk I J. a- s

-
k

• 

s k=2 j=O Jl(k-J) 
(14) 
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It is straightforward to check that this is also the result that 
follows from term-by-term differentiation of ( 11 ), a proce
dure which is thus justified a posteriori. 

Now set s = - n for integer n > 0 in (14). This be
comes, with ( - n)j = ( - 1 )jr(n + 1)/r(n + 1 - j), 

(;'(1 - n,a) = - {;(1 - n,a)log a 

+ (lin) [(;(1 - n,a) - !an - I] 

- 1.- f B k f (n) ( - 1)j an - k 
n k=2 j=O j k-j , 

(15) 

with M=min (n,k-l). When n=l, M=min 
(l,k - 1) = 1 for all k and one can use the identity 

n (n) ( _ l)j ( - 1)nn! 

/~o j k-j = k(k-1)"'(k-n) 

to directly obtain, using ( 13 ), 

(16) 

1 00 Bk 
(;'(O,a) =aloga-a--Ioga+ I a l - k. 

2 k=2k(k-l) 

as 

(17) 

When n > 1, the double sum in (15) can be reexpressed 

00 M n k-l 00 n 

II=II+II 
k=2j=O k=2j=O k=n+lj=O 

and again using (13) and (16) one has the generalformula, 
for n > 1, 

1 n k - I (n) ( - l)j n _ k -- I Bk I . --. a 
n k=2 j=O J k-J 

00 

+(_1)n-l(n-l)! I 
k=n+1 

Bk n-k x--------a . 
k(k-1)"'(k-n) 

(18) 

Explicitly, one has for example for n = 2 and 3 the expres
sions, 

(20) 

and so on. In a slightly more transparent notation, Eq. (18) 
is precisely Elizalde's asymptotic expansion4 for large lal, 
larg al < 11'. 

Quite apart from its application in the calculation of 
effective actions in quantum field and string theories, for
mula (18) can be used to obtain asymptotic series for the 
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Riemann zeta function of odd positive integer argument. In
deed, put s = - 2n + E (with integer n > 0) in the func
tional equation for the Riemann zeta function 
t(s) = t(s,1), namely (Ref. 5, p. 35), 

t( 1 - s) = 2(21T) ~ T(s)t(s)cos 1Ts/2. 

Now taking the limit E-+O and noting that t( - 2n) = 0, it 
readily follows that 

t(2n + 1) = [2(21T)2n/(2n)!] ( _1)nt'( - 2n). (21) 

Taking t I ( - 2n) = t I ( - 2n,l) in this equation one gets 
an asymptotic series for t( 2n + 1), with integer n > 0, name
ly, 

t(2n + 1) 
( _ 1)n+ I (21T)2n 

(2n + I)! 

X [1 + 2 2'i I kil (2n :- 1) ( - I )j~k ] 
k=2j=O ] k-J 

+ ( _ 1)n2(21T)2n 

00 B 
X I k (22) 

k=2n+2k(k-1)"'(k-2n-l) . 

For example, one gets for t( 3), 

~ 00 B 
t(3)- -- 8~ I k (23) 

9 k=4k(k-l)(k-2)(k-3) 

Here the symbol" - " has its usual meaning in this context, 
namely, that the first n terms of the asymptotic series on the 
right-hand side ofEq. (23) yield an approximation to t(3) 
with an error less than the magnitude of the (n + 1 )th term. 
Under these conditions, the best approximation to t( 3) is 
obtained by keeping five terms in the series, with the result 
1.2014. In view of the fact that the Bernoulli numbers alter
nate in sign, it is sensible to average this with the result of 
keeping only four terms in the series, which yields the mean 
approximation 1.2020, to be compared with the tabulated 
value of t( 3) = 1.20205690'" . 

III. IN LIEU OF A CONCLUSION 

We conclude with some expository remarks, illustrating 
some further applications of Eq. (7). The logarithm of the 
gamma function satisfies the finite difference equation 

log rea + 1) -log rca) = log a. 

Now put f' (t) = log rca + t) and then a'(r) = log a + t. 
Integrating, it follows that a(O) = a log a - a + c where c 
is an integration constant, and one has immediately from (7) 

log rc a) = a log a - a + c - ~log a 

(24) 
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An additional piece of information is required to determine 
c: This can be done by inserting Legendre's duplication for
mula 

into Eq. (24) and matching terms not depending on a. The 
result is 

c = pog 21T. (25) 

With this, (24) is just Stirling's asymptotic expansion for the 
logarithm ofthe gamma function (Ref. 5, p. 47). Note that 
differentiating (9) with respect to s and setting s = 0 yields 

t'(O,a+ 1) -t'(O,a) = log a, 

while from (9) and (10) one also finds that 

d 2 

-t'(O,a) = t(2,a) >0. 
da2 

Precisely the same equations apply with t I (0,0) replaced by 
log rea) and are the basis of Artin's proof of the uniqueness 
of the gamma function. 7 It thus follows that t' (O,a) and 
log r (a) can differ at most by an additive constant. In fact, 
by comparing the asymptotic expansions ( 17) and (24), and 
given (25), we recover the result 

log rea) = t' (O,a) + 110g 21T 

a classical formula due to Lerch (Ref. 8, p. 271). Finally, 
setting a = 1, one also sees that t I (0) = - !log 21T. 

ACKNOWLEDGMENTS 

This work was supported in part by the Department of 
Energy, under contract DE-AC-02-83ER-40105 and by a 
Presidential Young Investigator Award. 

I A. Salam and J. Strathdee, Nucl. Phys. B 90,203 (1975). 
'J. S. Dowker and R. Critchley, Phys. Rev. D 13, 3224 (1976). 
's. w. Hawking, Commun. Math. Phys. 55,133 (1977). 
4E. Elizalde, Math. Comput. 47, 347 (l98~). 
; Higher Transcendental Functions, edited by A. Erdelyi (McGraw-Hill, 
New York, 1953), Vol. I. 

('N. E. Norlund, Vorlesungen fiber DiJferenzenrechnung (Springer, Berlin, 
1924). 

7 E. Artin, Einfuhrung in die Theorie der Gammafunktion (Teubner, Leip
zig, 1931). 

x E. T. Whittaker and G. N. Watson, A Course of Modern Analysis (Cam
bridge V.P., Cambridge, 1969), 4th ed. 

S. Rudaz 2834 



                                                                                                                                    

Integrable Hamiltonian systems related to the polynomial eigenvalue 
problem 

Yunbo Zeng and Yishen Li 
Department of Mathematics. University of Science and Technology of China. Hefei. 230026. People's 
Republic of China 

(Received 18 January 1990; accepted for publication 20 June 1990) 

The independent integrals of motion in involution for the Hamiltonian system related to the 
second-order polynomial eigenvalue problem are constructed by using relevant recursion 
formula. The hierarchy of Hamiltonian systems obtained from the above problem and the time 
part of the Lax pair are shown to be completely integrable and they are shown to commute 
with each other. Furthermore, their solution solves the evolution equation associated with the 
Lax pair. 

I. INTRODUCTION 

There are some ways to restrict infinite-dimensional in
tegrable Hamiltonian systems to finite-dimensional invar
iant submanifolds of their phase space in order to obtain 
finite-dimensional integrable Hamiltonian systems (see, for 
example, Refs. 1-5). We have proposed in Refs. 6 and 7 a 
straightforward way to obtain a hierarchy of finite-dimen
sional integrable Hamiltonian systems by restricting a hier
archy of integrable evolution equations to the invariant sub
space oftheir recursion operator. The independent integrals 
of motion for these Hamiltonian systems can be constructed 
by using the recursion formula related to the associated 
eigenvalue problem, and can be shown to be in involution. 
Thus all of these systems are completely integrable Hamilto
nian systems in the sense of Liouville8 and commute with 
each other. The solution to these Hamiltonian systems 
solves the evolution equation. 

In the present paper, we consider the second-order poly
nomial eigenvalue problem given by (2.1). We first obtain a 
natural constraint on potential by restricting it on the linear 
space spanned by the eigenfunctions of the recursion opera
tor in Sec. II. Under this constraint condition, the system 
stemming from the eigenvalue problem becomes a Hamilto
nian system. In Sec. III, by using the relevant recursion for
mula, the integrals of the motion for this system can be con
structed and shown to be in involution. Thus this 
Hamiltonian system is completely integrable in the sense of 
Liouville. Finally, in Sec. IV, the systems obtained from the 
time part of the Lax pair are found to be completely integra
ble and commute with each other. 

II. THE CONSTRAINT ON POTENTIAL 

Consider the second7orcier polynomial eigenvalue prob
lem9,10 

m-I 

<Pxx + L A iUi<p = A m<p, (2.1) 
;=0 

in which isospectral flows are shown to possess (m + 1) 
compatible Hamiltonian structures. II The time evolution 
equation for <p is taken to be 

<PI" = -!B ~n)<p + B (n)<px, 

where 

(2.2) 

n 

B (n) = L bkA n - \ bo = 1, 
k=O 

Rk = (R iO), ... ,R im 
- 2),2bk + I ) T, U = (UO, ... ,um _ I) T, 

(

0 ... 0 

L= 1 .. ·0 
0 .. ·1 

Jo = AD 2 + Uo - !D - I UOx ' 

Ji = Ui -!D -I Uix , i = 1, ... ,m - 1. 

(2.3a) 

(2.3b) 

Here, D = a/ax, the integral constant of the integral 
operator D - I appearing in L is defined to be zero. Then the 
hierarchy of evolution equations, 10, II deduced from the solv
ability condition of (2.1) and (2.2), can be rewritten as 

u I" = DL nu. (2.4) 

Also, from the solvability condition, it is found II that b k 

satisfies 
m-I 

bk = L Jibk - m + i> (2.5) 
;=0 

and if <p is a solution of (2.1 ), then 
m-I 

D L A iJi<p2 = A m(<p2)x' (2.6) 
;=0 

By using (2.6) another recursion formula for bk with
outtheintegral operator D -I can be found. Rewrite (2.6) as 

m-I 

D h A iJiP=A mpx' (2.7) 
;=0 

Inserting the expansion 
oc 

P= L PjA- j (2.8) 
j=O 

into (2.7), we find that Pj satisfy same relationship (2.5) as 
bj do. Multiplying both sides of (2.7) by Pand integrating it 
once yield 

1 m-I 

PxxP--(Px )2+2 L A iUip2=U mp2+C. 
2 i=O 

(2.9) 

Set Po = 1, C = - U m. By substituting (2.8) into 
(2.9), we find that Pj = bj , 
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I k I k-I 
bk+ m =-4 L bjxxbk_j --8 L bjxbk_j.x 

j=1 j=1 
1m-I k+i 

+- L Ui L bjbk+ i _ j 
2 i=O j=O 
I k+m-I -- L bjbk+ m_ j , k= 1,2,00.. (2.IOb) 
2 j=1 

We now consider the following system instead of (2.1 ) : 

m-I 
¢j:x::x: + L A 5Ui¢j = A j¢l' j = 1,.00,N, (2.11 ) 

;=0 

where Aj#Ak when j#k. It is found from (2.6) that if 
q = (ql,.ooqN) T = (¢I,.OO'¢N) T is a solution of (2.11), then 
we have 

DL'I1j = Aj 'l1jx , j= 1,00.,N, 

where 
,TI _ ('TI(O) ,TIO) lTI(m-I»T Tj - Tj ,Tj ,00.,Tj , 

m-I 
'11(0) = Am - 1",2 _ ~ A i- IJ.",2, 

J J 'l'J .t:., J l'I'j 

i=1 
k-I 

'I1(m - k) = A ~ - 1",2 _ ~ A ~ - I - iJ ."'~ 
. j J 'l'j .t:., J m - I 'l'J ' 

i= I 

(2.12a) 

Throughout this paper no boundary condition on U and 
q is imposed. Thus (2.12a) leads to 

m-I 
L'I1j = Aj 'l1j + L Piei' (2.13a) 

i=O 
where Pi are some constants, eo = (1,0'00.,0) T,oo.,em _ I 
= (0'00.,0,1) T. Notice that 

m-I m-2 I 
L i~O Piei = i~O Piei + I + '2 13m - I u, (2.13b) 

if we take 
N 

U = L 'I1j , (2.14a) 
j= I 

we find from (2.13) that the linear space M spanned by 
{'I11,00., '11 N,eO,oo.em _ I} is the invariant subspace of L. This 
property plays important role in our approach. 

Proposition 1: The constraint on potential obtained from 
(2.14a) is of the form 

k 

Um _ k = L aj L (N'q,q)'" (AIJq,q), 
j = I I, + ... + Ij = k - j 

k = I, ... ,m, (2.14b) 

where Ii >0, (.,.) is the inner product in RN, and 

ao = - I, 

a. = - j+ I a'_I = (-1)j-1 j+ I, J·=0,1,2, .... 
J q J q 

A = diag(AI, ... ,A.N)' 

Proof: It is clear that (2.14b) holds for k = 1. From 
(2.12b) (2.12b) and (2.14a), we have by induction that 

k-I k-I k-I-i I _I
k

-
J 

k-J-i 
Um_k = (A q,q) - i~1 um_i(A q,q) +'2D i~1 um_i.x(A q,q) 

i 

X L aj L j(A/'q,q) x (A/'q,q)" . (AIJq,q). 
j = I I, + ... + IJ = i - j 

By using the following identities: 
k i k k-j 
L (Ak-iq,q) L ajri.j = L aj L (Nq,q)rk_ i.j , 
i=1 j=1 j=1 i=O 

(2.15a) 

k I L (Nq,q) L (A/'q,q) x (A/'q,q)'" (A lq,q) 
i=O ~+"'+~=k-i 

=_I_D L (A/'q,q)"'(AIJ+'q,q), 
j+ I 1,+"'+IJ+,=k 

(2.15b) 

we obtain 
k-I . 2 

U - (A k - Iq q) + ~ - J - a 
m-k- , i~1 2(j+1) j 

X L (A/'q,q)'" (AIJ+ 'q,q) 
1,+···+I.i+,=k-l-j 

which leads to (2.14b) immediately. 
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III. THE HAMILTONIAN SYSTEM OBTAINED FROM THE 
EIGENVALUE PROBLEM 

Substituting (2.14b) into (2.11) and using (2.15) gives 

Pjx = - i ai L (A/'q,q)'" (A/'q,q)A ;'+ 'qj' 
i = 0 I. + ... + I; + I = m - ; 

(3.la) 

which can be written in canonical Hamiltonian system: 

aHO aHo 
Px = - aq , qx = ap , (3.tb) 

where 

P= (PI,oo"PN)T=(qlx,·oo,qNx)T, 

1 1 m -
Ho=- (P,p) +- L bi 

2 2 i=O 

Y. Zang and Y. Li 2836 



                                                                                                                                    

x L (A/'q,q)"'(A/;+lq,q) 
11 + ... + 1;+ 1 = m -; 

bo = -1, 

It is found from (3.2b) and (2.3b) immediately that 

bkl A =~(Ak-Iq,q) 
2 

- a· 1 - ( _ 1);-1 
b; = (i~ 1) = -Tb;-I = 2; i=0,1,2, .... 

1 k-I +- L C;(Ak-I-;q,q)+Ck, k;;;d. (3.3) 
2 ;=2 

(3.1c) 

Assuming that (p,q) solves (3.1), we have from (2.l2a) 
N 

DLul A = L Aj'lljx, 
j=1 

which yields 

Observe that C; are the constants of the motion for system 
(3.1). We now use (3.3) and the recursion formula (2.10) to 
calculate the independent constants of the motion for (3.1). 
First, by substituting (3.3) into (2.lOa) we can show by 
induction that 

N m-2 
Lul A = L Aj'llj + 2C2em_ 1 + L /3)l)eo 

j=1 ;=0 

where subscript A means to substitute (2.14) into the 
expression, and C;, /3 }k) are constants. Using (2.12a) and 
(2.13b) repeatedly, we get 

Inserting (3.3) into both sides of (2. lOb ) yields the fol
lowing lemma. 

Lemma: 

k N 

DL kulA = L C; L A;- ;'IIjX (Co = 1; C. = 0), 
;=0 j= I 

(3.2a) =Fk+m + L C;CjFI +2 L C;Fj 
k N ;+j+l=k+m ;+j=k+m 

Lkul A = L C; L A;-;'IIj L C;Cj , k = 1,2, ... , 
2 ;+j=k+m 

;=0 j= I 

m-2 
+2Ck+.em_ 1 + L /3?)e;. (3.2b) where i,j'/> 1, F. = F2 = ... = Fm = 0, 

;=0 

+~ ki 2 «Np,P)(Ak- 2-jq,q)_(Np,q)(Ak- 2-jp,q»] , k= 1,2, .... 
2 j=O 

Proof: It is clear that in order to get Fk + m we just need to replace bj (j> 1) in (2.lOb) by ~ (N - • q,q): 

Fk+m =-81 
ki 2 [(NPx,q) + (Np,p)] (Ak- 2-jq,q) + 41 

[(Ak-1px,q) + (Ak-1p,p)] 
j=O (I) (2) (3) (4) 

1 k-2. . 1 m-I k+;-2. .. -- L (Np,q) (Ak- 2-Jp,q) +- L U; L (Nq,q)(Ak+,-2-Jq,q) 
8 j=O (5) 8 ;=0 j=O (6) 

1 m-I.. 1 k+m-2 . . 1 + - L u;(Ak+,-lq,q) - - L (Nq,q)(Ak+m-2-Jq,q) - - (Ak - I + mq,q). 
2 ;=0 (7) 8 j=O (8) 2 (9) 

Then, 

(1)(3.1) _~ ki 2 i a; L (A/'q,q)"'(A/;q,q)(A/;+I+jq,q)(Ak-2-jq,q) 
8 j = 0 i = 0 I, + ... + I; + 1 = m - i 

( 2.15a) 1 m k - 2 I'. ======-- L a; L L (A/'q,q)"'(A,+I+Jq,q)(Ak-2-Jq,q) 
8 ; = 0 j = 0 I, + ... + I; + I = m - ; 

(2.14b) 1 m - I m -; I k +; - 2 . 

(6)= 8" ;~o j~1 aj I,+ ... +~m-;-j (A/'q,q)"'(Alq,q) I~O (Alq,q) (Ak+,-2-lq,q) 

(2.15a) 1 m I 
= - L a; L (A/'q,q)'" (A 'q,q) 

8 ; = • I, + ... + I; + I = m - ; 
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(1)+(6)+(8)=~ i a;_1 L· (A/'q,q)···(A/;q,q)(Ak-I+I;+'q,q). 
8 ;=1 1.+···+/j+t=m-i 

(3.6b) 

Similarly, we have 

(3) + (7) + (9) =~ i a; L (A/'q,q)"'(A/;q,q)(Ak-I+/H'q,q), 
4 ; = 0 I, + ... + I; + I = m - ; 

which together with (3.6a) and (3.6b) leads to (3.5). 
In a similar way, we can show (3.4) by a straightfor

ward calculation. 
It is clear from (3.4) by induction that Fk defined by 

(3.5) are also the integrals of motion for system (3.1), that 
is, if (p,q) satisfy (3.1), then 

dFk -=0. 
dx 

(3.7a) 

Also, a direct calculation shows that if (p,q) satisfies (3.1), 
then 

Set 

d aFk ----
dx ap 

I k - 2. . 
Gk =- L «Np,p)(Ak- 2 -'q,q) 

8 j=O 

_ (Np,q)(Ak- 2 -jp,q», 

Qk =Fk+m - Gk· 

(3.7b) 

It is known I that G k are in involution with respect to the 
ordinary Poisson bracket defined as 

{(,g} = ± (aj ag _ aj ag ). 
j = I apj aqj aqj apj 

Using the identity 
1 L (N+k+j-p,p)(Nq,q) 

;=0 

k 

+ L (Ap,p) (A/+ k+j- ;q,q) 
;=0 

1+ k+j 
= L (N+k+j-p,p)(Nq,q) 

;=0 

I+j-I - L (A/+ k+j- p,p) (Nq,q), j = 1,2, ... , 
;=1+1 

it can be shown by a straightforward calculation that 

{Qk,GJ + {Gk,Q/} + {Qk,QJ = O. 

Thus integrals of motion Fk are in involution. Since all 
Ak are distinct, the Vandermonde determinant of A\>" .. ,AN is 
not zero. Then it is easy to see that 

grad Fk = (aFk , ... , aFk , aFk , ... , aFk ), 
aql aqN api apN 

k = m + I, ... ,m + N, 
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are functionally independent. So we have the following prop
ositions. 

Proposition 2: The Hamiltonial system (3.1) is com
pletely integrable in the sense of Liouville.s 

Proposition 3: If (p,q) is a solution of (3.1), the u given 
by (2.14) satisfies a certain higher-order stationary equa
tion: 

N-I 
DL NU + L dk DL kU = 0, (3.8) 

k=O 

where constants dk are determined by AI, ... ,AN and 
CI,. .. ,CN· 

Proof: Set 
N 

(A-AI)"'(A-AN) =AN+ L gkAN-k. 
k=1 

Using (3.2a) and (2.15a) yields 
N N N k 
L dk DLkul A = L 'IIj" L dk L C;A;-; 

k=O j= I k=O ;=0 
N N k 

= L 'IIj" L Af-k L C;dN_ k+;· 
j= I k=O ;=0 

Take dN = I and 
k 

dN_ k = gk - L C;dN_ k+;, k = I, ... ,N. 
;= I 

Then it is easy to see that (3.8) holds. 

IV. THE HAMILTONIAN SYSTEMS OBTAINED FROM 
THE TIME PART 

It is found from (3.4) by induction that 

k 

Ck = L cj L Fm , •• 'Fmj , k = 1,2, ... , 
j=t m'+"'+mj=k 

( 4.la) 

where ml>I, ... ,mj>l, CI = I, C2 = 3/2, 
j-2 I j-I 

cj = L c1cj _ l _ I + 2cj _ 1 - - L clcj _ l , j = 2,3, .... 
1= I 2 1=1 

(4.lb) 

We now consider systems obtained from (2.2): 
"I,. - _lB(n)"I,. +B(n)"I,. B(n)-B(n)1 
'Pjtn - 2 j" 'Pj j 'Pj", j - A = Aj ' 

j=I, ... ,N. (4.2) 

Under the constraint condition (2.14) and (3.1), (4.2) be
comes, by using (3.3), (3.5), and (4.1), 

Y. Zeng and Y. Li 2838 



                                                                                                                                    

n 

- (Ak-1-Ip,q)qj) + L ).,j-kCkPj 
k=O 

=J... nil ck[n-±-I (An-k-I-1q,q»).,JPj 
2 k=O 1=0 

- (An- k-I-Ip,q»)., Jqj + U j- kpj ] + CnPj 

n aF =2 L C
k 

n-k+m+1 

k=0 apj 

(CO = 1,FI = ... =Fm =0) 

n 

=2 L C; L 
;=0 m.+···+m;+t=n+m+l 

=2~(±~ 
apj ;=0 i + 1 

X L Fm, "'Fmi+l) (mj >l), 
m.+···+mi+l=n+m+l 

which together with (3. 7b) implies that (4.2) can be written 
in canonical Hamiltonian form: 

aHn 
qtn = ap , Ptn = (4.3) 

with 

(4.4) 

where m l >l, ... ,m;+ I >1, FI = ... = Fm = 0, Co = 1. 
Proposition 4: The Hamiltonian systems (4.3) 

(n = 0,1, ... , called to = x) are completely integrable and 
commute with each other. If (p,q) satisfies (3.1) and (4.3) 
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(for fixed n, n> 1), then u given by (2.14) is a solution ofEq. 
(2.4). 

Proof Since Fk are in involution, it is clear from (4.4) 
that 

dFk } --= {Hn,Fk = 0, 
dtn 

Thus systems (4.3) (n = 0,1, ... ) are completely integra
ble and commute with each other. Observe that (2.4) is de
duced from the solvability condition of (2.11) and (4.2), 
(3.1) and (4.3) are obtained by substituting (2.14) into 
(2.11) and (4.2), respectively, it is easy to see that if (p,q) 
satisfies both (3.1) and (4.3) (for fixed n, n>l), then u 
given by (2.14) solves Eq. (2.4). 
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Using harmonic analysis techniquies, the covariant expression of Jacobi and Hermite 
polynomials on an n-dimensional space endowed with a metric g of signature (p +, q _) is 
given. The properties of these polynomials are studied and their relations with the 
hypergeometric function are given. 

I. INTRODUCTION 

For the needs of relativistic physics, especially statistical 
mechanics, and the quantum theory of a field on a curved 
space-time, we found it useful to build, in a covariant way, 
the special functions of mathematical physics. This work is 
essentially devoted to Jacobi and Hermite polynomials on an 
n-dimensional space endowed with a metric g of signature 
(p+, q-). 

We know indeed that a large number of special func
tions arise in a natural way in the groups representation the
ory through the zonal spherical functions on homogeneous 
spaces..ff = G /H, Gbeinganisometry groupof..ff andHan 
isotropy compact subgroup of a point SEJI. 

We will mainly use two properties of these zonal spheri
cal functions: (a) They can be expressed with the Gauss 
hypergeometric function: They are Jacobi polynomials of 
order k in the compact case, F ( - k, k + 2c - 1 ;c;sinz e) 
and of order k /2 in the noncom pact case, 

F( _!5... k + 2c - 1 .. _ hZ ) , ,c, s (U , 

2 2 

where e and (U are, respectively, the Euler angles of Cartan 
and Iwasawa decompositions. l 

(b) Up to a factor, the zonal spherical functions are, 
especially for the SO (n) group, the values taken by the har
monic projection of (xn )k on the isotropy sphere, Xn being 
the component of an x vector on the invariant vector by the 
isotropy group H. 

We first notice that Hermite and Jacobi polynomials 
(therefore especially Gegembauer, Legendre, and Tcheby
cheff ones) of degree k may be writtenZ 

[k/21 

Yk(x) = I Fk_2pXk-2P, 
p~O 

which lead us to look for a second-order differential equation 
admitting such polynomials as a particular solution. A sim
ple calculation gives 

dZy dy 
(1 - uxz) --Z - vx - + k [v + (k - 1) u]y = 0, 

dx dx 
where u and v are two real parameters and kEN. 

The associated particular solution (polynomial) is 

[kIZI( l)P r(k+l) 
Y~'V(x) = I -'-:------'- --"":"--'--'--

p~O 22pp!up r(k + 1 - 2p) 

r«v-u)/2u+k-p) k-2p 
X x , 

r«v - u)/2u + k) 

which, up to a factor, gives us the classical polynomials for 
certain values of parameters u and v. 

Examples: 

Hermite polynomials: Hk (x) = y~.l(X), 

Tchebycheffpolynomials: Tk(x) =2k - lYl· l (x), etc. 

Therefore, we reduce the analysis of classical polynomi
als to y~.V(x) ones.z In order to get the covariant formula
tion of the classical polynomials, we have adapted Vilenkin's 
method3 to the tensorial case. 

With the help of the Laplace-Beltrami operator and the 
isomorphism between homogeneous k degree polynomials 
and same degree symmetric tensors, we first get canonical 
decomposition of the symmetric tensor. In a covariant way, 
zonal spherical functions are expressed with the harmonic 
projection j;a,a,"'a, of xa,a""a, = xa,xa, .. ·xa,. The value of 

j;a,a""a, on one of the basic vectors is nothing else than 
Yl· n 

- 1 (x), up to the sign (due to the metrics), then we get 
immediately the covariant formulation of classical polyno
mials on an n-dimensional space endowed with a metric of 
any given signature. Z 

Our work runs as follows. 
( 1) In Sec. II, we will analyze the previous differential 

equation and give the general solution in a canonical way so 
that it can be reduced to the classical polynomials of first and 
second kinds. The relations with the hypergeometric func
tions are also established. 

(2) In Sec. III, we give the canonical decomposition of 
symmetric tensors from which we derive the covariant for
mulations of Sec. I polynomials. 

(3) In Sec. IV, we give without proof (as they come 
immediately from the previous sections' results), the scalar 
and tensorial properties of classical polynomials together 
with the equations they satisfy. 
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II. ZONAL SPHERICAL FUNCTIONS 

A. Fundamental equation 

,. Preliminaries (Ret 2) 

Let us consider the following second-order differential 
equation 

d 2y dy 
(1 - ux2

) --2 - vx - + k [v + (k - 1) u ]y = 0, (1 ) 
dx dx 

in which kEN and u and v are two real parameters such that 

v+ (2k-2p-l) u#O, when l.;;;p.;;;[k/2]. (2) 

In particular, this leads to u and v not equal to zero at the 
same time. 

With such a condition, Eq. (1) has a particular polyno
mial solution with the following form: 

[k121 
y = L fk _ 2pXk - 2P. 

p=o 

Coefficientsfk _ 2p satisfy the recursion formula 

(k-2p+ l)(k-2p+2)fk_2p+2 

= - 2p [v + (2k - 2p - 1) u] fk _ 2p' 

where l.;;;p.;;;[k/2]. (3) 

We define polynomials y~,V(x), particularly the solu
tion of ( 1) by settingfk = 1. Therefore, 

[k/21 ( I)P r(k + 1) 
y~.V(x) = L -

p=o 22pp!up r(k + 1 - 2p) 

X r[(v-u)/2u+k-p] Xk - 2p, (4) 

r[ (v - u) /2u + k ] 

Note: If v#O, we have by continuity 

lim y~'V(x) = y~,V(x) 
u-o 

[k121 (-I)P r(k+l) L X
k

- 2P. (5) 
= p=o 2Pp!vP r(k + 1 - 2p) 

Examples: (a) If u = 0, v = 1, ( 1 ) becomes the Hermite 
equation: 

d 2y dy 
--x-+ky=O, (6) 
dx2 dx 

and Hermite polynomials are exactly 

Hk(x) =y~,)(x) 

[k121 (_ IV r(k + 1) 
= L X

k
-

2p 
P = 0 2Pp! r( k + 1 - 2p) . 

(7) 

(b) If u = 1, v = 2, we recognize the Legendre equation 

(1-x2 ) d
2
y -2x dy +k(k+l)y=O, (8) 

dx2 dx 

with, consequently, the following particular solution: 

[kI21( I)P r(k+l) 
yl,2(x) = L ...:....--~----.:...---.:..~-

k p=o 22Pp! r(k + 1 - 2p) 

X r(~ + k - p) X k - 2P. (9) 
r(! + k) 
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2. General solution 

Let us now look for the general solution ofEq. (1) in a 
series expansion: 

00 

y= L apxP. 
p=o 

We immediately get the recursion formula 

(p+ l)(p+2)ap+2 

= (p - k)[v + (k - 1 + p)u]ap with p-;;,O, ( 10) 

Results are: (a) If u#O, the general solution of the 
equation 

(1 - ux2 ) d 2y _ vx dy + k [v + (k - 1) u ]y = 0, (11) 
dx2 dx 

is given by 

Y = a 1;'( _ ~ v + (k - 1)u . J.... UX2) 
0"' 2 ' 2u ' 2 ' 

in which F (a,b,c;t) is the Gauss hypergeometric function: 

F (a,b;c;t) = I r(a + p) r(b + p) r(c) ~ (12) 
p=o r(a) r(b) r(c + p) p! 

which is the solution of the differential equation 

t(1-t) d
2

y + [c- (a+b+ 1)t] dy -aby=O. (13) 
dt 2 dt 

(b) If v # 0, the general solution of the equation 

d 2y dy 
-- - vx - + k v y = ° 
dx2 dx 

is given by (14) 

( 
k 1 VX2) (1 - k 3 VX2) 

y=ao<l> -2;2;2 +a)x<l> -2-;2;2 ' 
in which <I> (a;c;t) is the Kummer function (confluent hyper
geometric function): 

<I>(a;c;t) = I r(a + p) r(c) t
P 

p=o r(a) r(c + p) p! 

solution of the equation 

[t d2; + (C-t)] dy -ay=O. 
dt dt 

3. First- and second-class solutions 

(a) We notice that if k is even, 

F(-~ v+ (k-l)u .J.... UX2) 
2 ' 2u ' 2 ' 

is a polynomial with the following form 

(15) 

(16) 

F( k v+ (k-l)u. 1. 2)_ [\S21 k-2p 
- -, ,- , ux - ~ ak _ 2p X • 

2 2u 2 p=o 

Using (10) we immediately verify that coefficients 
a k _ 2p satisfy the same recursion formula (3) as coefficients 
of polynomial y~,V(x). This leads to 
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F ( _ k v - u + k . ~ . UX2) 
'2u ' 2 ' 

= ( _ U)k r[ (v - u)/2u + 2k ]rq) Y~;:'(x) 
r[(v - u)/2u + k ]rq + k) 

and in the same way (17) 

xF ( - k v + U + k . 2. . UX2) 
'2u ' 2 ' 

r[ (v + u)/2u + 2k] rq) 
= ( _ U)k yu,u (x). 

r[ (v + u) /2u + k ] r q + k) 2k + I 

From that, the general solution of the equation 

(1 - ux2) d 2y _ vx dy + k [v + (k - I) u] y = 0 
dx2 dx 

may be written, ( 18) 

y = a y~,u(x) + b f!J~"'(x) 

in which Yt'(x) is the polynomial defined in (4), and 
f!J~'U(x) is a nonpolynomial defined by 

UJ u,k ( ) _ F ( 1 k v k. 3. 2) v2k X -x -- ,-+ ,-, ux , 
2 2u 2 

f!J~;:'+ I (x) = F( - ~ - k, _v_ + k; ~; uX2
). (19) 

2 2u 2 
(b) If v # 0, we get the relations 

<I> (_ k· ~. VX2) = ( _ 2V)k r(1 + k) yo,V(x), 
, 2' 2 r(1 + 2k) Zk 

x<l> (_ k; 2.; VX2) = ( _ 2V)k r(1 + k) Y~;:' + I (x). 
2 2 r(2 + 2k) 

Then the general solution of the equation 

d 2y dy 
-- - vx - + k v y = 0 
dx2 dx 

may be written, 

y = a y~V(x) + b f!J~V(x), 

in which y~,V(x) is the polynomial defined in 
f!J~'V(x) is a nonpolynomial defined by 

,.a ° V (1 k 3 VX2) 
VZk(X)=X<l> 2- ;2;2 ' 

UJO v (1 k 1 VX2) 
v Zk + I (x) = <I> - 2 - ; 2; 2 . 

(20) 

(21) 

(5), and 

(22) 

The general solution (18) of the particular case (21) is 
canonical in the following way. 

Lety(x) be a particular solution ofEq. (1). If it is poly
nomial, it can be brought down to y~,V(x), up to a given 
factor, and in the contrary case to f!J;:'V(x). We will name 
Yk,V(x) the first-class solution and f!J ~,U(x) the second-class 
solution. 

4. Application to the Hermite equation 

From previous results, the Hermite equation 

d 2y dy 
---x-+ky=O 
dx2 dx 

admits as a general solution (23) 
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y = a y~,I(X) + b f!J~,I(X). 

Therefore, (a) Hermite polynomials are shown as 

Hk (x) = y~,I(X), 

and we have 

H (x) = yo, I (x) = (_ ~)k r(2k + 1) 
Zk 2k 2 r(k+ 1) 

X<l> - k'-'-( 
1 X2) 

, 2 '2 ' 

H cz-O I (l)k r(2k + 2) 
2k+I(X)=Y2k+I(X)= -2 r(k+l) 

xx<l> ( _ k- 2. . X2) . 
, 2 ' 2 

(b) Hermite functions are 

h2k (x) = (_2)kr(k+ 1)f!J~}(x) 

= ( _ 2)kr(k + 1 )x<l> (~_ k. 2.. X2) 
2 ' 2 '2 ' 

hZk + I (x) = - ( - 2)kr(k + 1) f!J~} + I (x) 

(23) 

(24) 

(25) 

= _ ( _ 2)kr(k + 1)<1> ( _ ~ _ k. ~ . X2) . 
2 '2 ' 2 

(26) 

B. Zonal spherical functions 

Let us consider below Eq. ( 1 ) with u = 1 and v = n - 1, 
n integer;;;o2. We will set 

Zin)(x) =YL,II-I(X), Yi")(x) = f!JL,n-l(x), (27) 

leading to the following result. 
The equation 

2 d 2y dy 
(1 - x ) - - (n - 1)x - + k(k + n - 2)y = 0 

dx2 dx 

admits as a general solution (28) 

y = aZ in) (x) + b Yin) (x). 

From (4), the first solution is 

[k12) (-I)P r(k+l) 
z(n)(x) = I --'--'--'--

k P~O 22Pp! r(k + 1 - 2p) 

x _r..:;[...:..( n_-_2....:.).:...-/2~+_k_-~p.:!...] Xk - 2p, 
r[ (n - 2)/2 + k] 

and with (17) we get 

F -k --+k'-'X ( 
n-2 1 2) 
'2 ' 2 ' 

(29) 

= ( _ 1)k r[ (n - 2)/2 + 2k ] r(!) Z ~k) (x), 
r[(n - 2)/2 + k ]r(! + k) 

XF(-k ~+k.2.'X2) 
, 2 ' 2 ' 

r(n/2 + 2k)r(~) 
= ( - 1)k . Z~k)+ I (x). (30) 

r(n/2 + k)r(~ + k) 

The second-class solution is given by 
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Y(Il)(x) =xF --k'--+k--'x2 
(

1 n-l 3 ) 
2k 2' 2 ' 2' , 

U'(Il) () _ F( 1 k. n - 1 k. 1 . 2) 
J 2k+l X - --- ,--+ ,-,X . 

222 
(31) 

c. Other relations with the hypergeometric function 

(a) In the hypergeometric function (13), let us take 
t = (1 + €x)/2, where € = ± 1. It becomes 

d 2y 
(1 - x 2) --2 - [(a + b + 1)x + (a + b + 1 - 2c)€] 

dx 

X dy -aby=O, 
dx 

which will be Eq. (28) if a = - k;b = k + n - 2; c 
= (n - 1)/2. We then infer that 

F( _ k k + n _ 2. n - 1 . 1 + ex) 
, '2' 2 

( 
€)k r(2k + n - 2)r[ (n - 1)/2] 

= - 2" r(k + n - 2)r[ (n - 1)/2 + k] 

xZl.n)(x) (if n>2) 

= ( _ 2€) k r[ (n - 2) /2 + k ] r( n - 2) 
r[ (n - 2)/2]r(n - 2 + k) 

XZl.n)(x) (if n>3). 

(32) 

(b) In a similar way, taking t = (1 - x 2
) in (13), we get 

the general solution (28) in the following form: 

_ F ( k k + n - 2 . n - 1 .1 2) 
y-a -2"' 2 '-2-'-x 

+bxF --, ,--,I-x, (
l-k k+n-l.n-l. 2) 
222 

(33) 

which gives, in particular, for the first-class solution (poly
nomial), 

F( _ k n - 2 + k. n - 1 '1 _ X2) 
'2 '2' 

r[ (n - 2)/2 + 2k] r[ (n - 1 )/2] z(n)(x), 
r[ (n - 2)/2 + k ] r[ (n - 1 )/2 + k ] 2k 

XF( - k ~ + k- n - 1 ·1 _ X2) 
'2 '2' 

r(n/2) + 2k)r[(n -1)/2] z(n) () (34) 
r(n/2+k)r[(n-1)/2+k] 2k+l x . 

D. Application to classical polynomials 

Using harmonic analysis technics on homogeneous 
spaces, we get the zonal spherical functions in terms of the 
hypergeometric functions. I 

In the compact case, the zonal functions are Jacobi poly
nomials of order k: 

Jdx) = F [ - k,k + n - 2;(n - 1 )/2;(1 - x)/2] (35) 

and in the noncom pact case, Jacobi polynomicals of order 
k/2: 

k/2 (X) =F -- '--'I-x . J (
k k + n - 2 n - 1 2) 
2 ' 2 '2' 

(36) 
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From the previous results, it appears that all these func
tions may be brought down to first-class functions (29) or 
second-class ones (31 ). 

E. Examples 

1. Gegembauer polynomials 

On an n-dimensional space (n > 3), they are defined by4 

C l.n ~ 2)/2(X) = (- €)kr(k + n - 2) 
r(k + 1)r(n - 2) 

XF( _ k,n _ 2 + k. n - 1 .1 + ex) 
, 2 ' 2 

(€= ±1), (37) 

from which we get, by use of the preceding transformations, 

c(n~2)/2(x)= 2kr[(n-2)/2+k] z(n)(x), (38) 
k r(k + 1)r[ (n _ 2)/2] n 

C (Il~2)12()_ r(2k+n-2) 2k x - ----''---'----'---
r(2k + 1)r(n - 2) 

X F -k--+k---'I-x ( 
n-2 n-l 2) 
'2 '2' , 

c(n~2)12(x) = r(2k + n - 1) 
2k + I r(2k + 2)r(n _ 2) 

XxF ( - k ~ + k· n - 1 '1 _ X2) 
'2 '2' , (39) 

c(n~2)/2(x) = (-I)kr[(n - 2)/2 + k] 
2k r(k + 1)r[ (n - 2)/2] 

( k n - 2 1 2) 
xF - '-2-+k;2";x , 

c(n~2)12(x) = (- l)k(2k + n - 2)r[ (n - 2)/2 + k] 
2k + I r( k + 1) r[ (n - 2) /2 ] 

2. Legendre polynomials 

Legendre polynomials, Px (x) are the Gegembauer 
polynomials when n = 3. Then 

Pk(x) = Cl12(x). (41) 

3. Tchebycheff polynomials 

Tchebycheff polynomials correspond to the case when 
n = 2, and are defined by4 

Tdx) = ( ~ €)kF( - k,k;~[1 + €x/2]) (€ = ± 1), (42) 

then 

(43) 

T2k (x) = F( - k,k;~;1 - x 2) = ( - 1 )kF( - k,k;~;X2), 

TZk + I (x) = xF( - k,k + 1;!;1 - x 2) (44) 

= ( - 1 )k(2k + l)xF( - k,k + q;x2). 

F. Second-class functions case 

For the corresponding second-class functions, we can 
get similar relations. They will be detailed in a later paper. 
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In the case of the Tchebycheff functions (of second 
class); tk (x), they are linked to the first-class polynomials 
Tdx) by 

III. GEOMETRICAL INTERPRETATION 

A. Canonical decomposition of symmetric tensors (Ref. 
2) 

1. Definitions 

(a) We consider the n-dimensional space En (n finite) 
endowed with a metric of signature (p+,q_) withp + q = n. 
Afterwards, only Green indices will have the tensorial char
acter. For the metric tensor, we have 

{ 

0, if a=l=f3, 
gaP and ~P = + 1, if a = f3 = 1,2, ... ,p, (46) 

- 1, if a =f3= p + 1,p + 2, ... ,n 
and 

gaAg/3A = ~ and gaP~P = n, ( 47) 

where 8~ stands for the Kronecker symbol. 
Here, En will be referred to as a reference frame {ea } 

such that (ea,ep ) = gaP' For all xEEn, we then have the 
fundamental quadratic form 

r = gapxaxf3. 

(b) Let %in) (x) be the space of homogeneous polyno
mials of degree k with n variables (xl,x2, ... ,xn) components 
of a vector xEEn. 

We know that %in)(x) is isomorphic to the space 
SE : k of symmetric tensors built on En. Therefore, 

dimension of %iN)(x) = dimension of SE .. k 

= r(,k + n)/r(k + I)r(n). 
Iffk (x)E%in ) (x), we will denotefa,a, ··a, as the corre

sponding symmetric tensor. 
IfxEEn, we define 

xQ,a:!···ul.. = XU1xa:! •• ·xa ". 

If P and Q are two symmetric tensors, we note 
[Pp,Qq t,a, ... ap + q is their symmetric product; and if I is an 

integer, [pp,lgt,a, ... apt 
21 represents the tensor obtained by 

the symmetric product between the tensor P of order p and I 
and the time metric tensor g. Particularly, [Xk ,Ig] a,a,·· ·a, + 21 

is, up to a change of notation, the Pichon-Marie tensor. 
We will take 

[Xo,Og] = 1 and [Xk_ 2/,lg] =0, ifk<2/. 
r"J 

(c) Let %inl(x) be the space of homogenous and har-
monic polynomials of degree k with n variables; 5f'1n) ~ is 
a subspace of %i n) (x), and is isomorphic to the space SE : k 

of symmetric and harmonic tensors. We have 
r"J f'J 

dimension of %in) (x) = dimension of SE : k 
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(n + 2k - 2)r(n + k - 2) 

r(k + I)r(n - I) 
If qa,a, ... a,eSE:\ we have Aqa,a,.·.a, = 0, A being the 

Laplace-Beltrami operator, A = ~paaP' with 

a a2 

aa = -, aaP = ,etc. 
axa axa axp 

To simplify writing, we take 

aa=~AaA' aaP=~Ag/3J1.aAJ1.,etc. 

2. Useful relations 

Let us indicate now some relations are useful after
wards. 
a. Euler relations: For the symmetric tensor Xa,a,···a, 

= xa,xa, .. 'xa" it is easy to get the Euler relation 

XAaA (Xa,a,···ak) = kXa,a,···a" 

that we can generalize to 

A, A,··· A'a (Xa,a, ... a,) x x X A,A, ... ,1,' 

= [r(k + I)/r(k + 1 - t) ]Xa,a,···a,. 

(48) 

Then we define the Euler operator D, of order t by 

D A A,··· A'a , = x 'x· X ,1,,1, ... A,' (49) 

so that 

D, = (Xa,a, ... a,) = [r(k + I)/r(k + 1 _ t) ]Xa,a, ... a,. 

(50) 

h. Expression of aA,A, ... A, (rt): With r = gapxaxP, we have 
aA (r') = 2tr'- 2XA , and by recurrence we get 

t [S/21 2s- Pr'-2s+2p 
aA,A, ... A, (r) = ru + 1) I 

. p=o ru+ 1-s+p) 

X [Xs_ 2p,pg] A,A,···A,· (51) 

c. Expression of Am (22
'): With the previous relation, we 

first have 

aA,A, (r') = 2t(2t - 2)r'-4XA,A, + 2tr,-2gA ,A, 

and 

(52) 

(we remind the reader that n is the dimension of the space) . 
By recurrence, we end up with 

Am(r') = 22mru + l)r(nI2) + t) r'-2m. (53) 
ru+ I-m)r[(nI2) +t-m] 

d. Expression of Am [r'fk (x)] with fk (x)E%in)(x): If 
fk (x)E%iN)(x), we first have 

A[r1dx )] = A (r')fk (x) 

+ 2a A(r')aA [fdx» + rtA[fk (x)]. 

Using (53) and the Euler relation (50), we get by recur
rence: 

(54) 
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with a = n/2 + k + t. 
e. Expression of am (RQ): If Rand Q are two symmetric tensors (a zero-order tensor being considered as a scalar), we have 

a{RQ) = (aR)Q + 2{a AR) (a,tQ) + R{aQ). 

By recurrence and using the Leibnitz formula for a product we have 

f. Expression of a m{Xa,aO···ak): With the help of the Laplace
Beltrami operator a = g:rf3aaf3 , we easily get for the symmet
ric tensor xa,a,·· ·ak = xa'xa,·· ·ak: 

am{xa,a,···ak) = 2mr{m + 1) [Xk_ 2m ,mgt,a, ... a., (56) 

which gives the meaning of the tensor [Xk_ 2m,mgt,a, ... ak 

which was introduced by Pichon-Marie during the calcula
tion of moments of the distribution function of a relativistic 
ftuid. 5 

B. Remarks 

(a) Relation (56) is not dependent on the dimension n 
of the space. Let us then take n = 1. Assuming gil = + 1, 
we have 

__ r_{:.....k_+_1...:...)_ Xk - 2m 
dX2m r{k + 1 - 2m) 

= 2m r{m + I)Axk
-

2m, 

where A is the number of terms of the tensor 
[Xk _ 2m ,mg]a,a, ... ak • We deduce 

A =_1_ r{k+ 1) 
2m r{m + 1)r(k + 1 - 2m) 

(57) 

(b) In the same way, for n = 1 and ~ = x 2
, relation 

(53) gives 

rO+2t) = 22m r(t+1)rq+t) 
r(I + 2t- 2m) r(I +t-m)rq+t-m) 

(58) 

Also, relations (51), (54), and (56) lead immediately 
to other properties of the gamma function. 

C. Canonical decomposition of symmetric tensors 

We know that the space %in
) (x) of homogeneous poly

nomials of degree k with n variables is a direct sum of the 
space %in

) (x) of homogeneous and harmonic polynomials 
of degree k with n variables, and of the space ~ % i n2 2 (x) of 
~fk _ 2 (x) form polynomials whenfk _ 2 (X)E%in2 2 (x): 

%in) (x) = %in) (x) $ ~ %i~ 2 (x), 

so that all polynomialsfk (x)E%in)(x) have a unique de
composition in the following form: 

fk(X) =lk(X) +~fk-2(X), 

where 

Ik (x)E%in) (x) 

and 

fk _ 2 (X)E%in2 2 (x) 
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and wherelk (x) is the harmonic projection offk (x). 
Continuing the previous decomposition, we get 

[k121 
%(n){x) = $ ~%(n) (59) 

k P~O k-2p' 

and consequently, all homogeneous polynomialsfk (x) have 
a unique decomposition: 

[k121 
fk(X) = L ~Plk_2P(X), 

p~O 

where 

Ik _ 2p (x)E%in2 2p (x). (60) 

1. Canonical decomposition of homogeneous 
polynomials 

To obtain the harmonic componentslk _ 2p (x) offk (x), 
let us apply m times the Laplace operator on the two 
members of (60): 

[k121 
am[fk(X)] = L am[~Plk_2P(X)]. 

p~O 

Using (54) and the fact that Ik _ 2p (x) is harmonic, we 
get 

a m[ ~Plk _ 2p (x) ] 

22mr[p + 1)r(n/2) + k - p] 

r(p+ I-m)r[(n/2) +k-p-m] 

X ~P - 2"'fk _ 2p (x) 

and then the canonical decomposition offk (x)E%in){x): 

[k121 
fk(X) = L ~Plk_2P(X) 

p~O 

[k121 ( _ 1)t- p 

=L 
t~p 

X [(n - 2)/2 + k - 2Pl r[ (n - 2)/2 + k - p - t] 

r(p + 1)r(t + 1 - p)r(n/2 + k - p) 

x~t-2pat[fk(X)]. (61) 

This last relation gives the harmonic componentlk (x) 
offk (x) in the following form: 

- [k121 (-I)P r[{n-2)/2+k-p] 
/; (x) - '" 

k - p~o 22pp! r[ (n - 2)/2 + k ] 

x~pap[fk(X)]. (62) 
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In particular, the harmonic projection of Xk is 

(xk)=[II (-IV r(k+l) 
P~O 22Pp! r(k + 1 - 2p) 

r[ (n - 2) /2 + k + p] .2p k - 2p X r X . 
r[ (n - 2)/2 + k ] 

(63) 

which is nothing more than zin) (x) = y}n - 1 (x) on the 
isometric sphere (r = 1), polynomial solution of Eq. (28). 

2. Application of symmetric tensors 

Let us then use the isomorphism between spaces 
Yin) (x) and SE : k: Ifjk (x)EYin

) (x), letja,a""ak be the 
corresponding tensor. With the Laplace-Beltrami operator, 
relation ( 61) is transposed immediately to the tensorial case. 
In particular, the harmonic projection ofja,a,·· 'ak is given by 

r,a""ak= [II (-I)P r[(n-2)/2+k-p] 
P~O 22Pp! r[(n-2)/2+k] 

xrPll.P(fa,a,···ak). (64) 

Using the Pichon-MarIe tensor (56), the harmonic pro
jection of the tensor xa,a""ak = xa,xa, .. 'xak is 

xa,a""ak = [II (- IV r[ (n - 2)/2 + k - p] 
p~O 2P r[(n-2)/2+k] 

X .2P [X ]a,a""ak r k-2p,pg . (65) 

These results are applicable on a space endowed with a 
metric g of any type. 

Relations (64) and (65) are, respectively, the covariant 
expressions of (62) and (63). 

D. Application to classical polynomials (Ref. 2) 

1. Covariant expression of zonal spherical functions 

On the isotropic sphere (r = 1), relation (65) leads im
mediately to the covariant expression of zonal spherical 
functions zi n) (x) : 

Za,a""ak _ [~I (- 1)P r[ (n - 2)/2 + k - p] 
(n) - P~o 2P r[ (n - 2)/2 + k ] 

X [Xk_ 2P ,pgr,a""a., (66) 

whose value on an axis ea (a = a 1 = a 2 = ... = a k ) is 
nothing more than zin ) (x) up to the sign due to the signature 
of the gaP metric. 

[k!21 

Y (x) = ~ F X k -
2p 

k £.. k - 2p 
P~O 

There exists a symmetric tensor 

(67) 

that we can understand as the covariant expression of 
y k (x). Afterwards, we will assume that the polynomial 
y k (x) is the projection of ya,a,·· 'ak on ea such that 

gaa = + 1. 
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Then the transformation leading from the polynomial 
y k (x) to its covariant form consists only in changing in 
y k (x) each x term by a symmetric tensor of the same de
gree, multiplying by the tensor metric g as many times as 
necessary to obtain a tensor of order k, and in symmetrizing 
the while by dividing by the number of terms obtained. 

Example: Let Y2(X) = 1 - x 2. Its covariant expres
sion is 

(68) 

In particular, in the Minkowski hyperboloid case, (68) 
is the space projector. 

We will callT this transformation. We then have 

T(Xk-2p) = 2
P
p!r(k + 1 - 2p) [X ]a,a""a .. (69) 

r(k + 1) k- 2p,pg 

The T transformation is obviously linear: If 
[k - 2pI21 

q () ~ q k - 2p - 2t .] k-2p X = £.. oJ k-2p-2tX , 
t~O 

we will call [Y k _ 2p,pg r,a, .. 'ak the tensor obtained by a 
symmetrized product of tensor ya,a,·· 'ak - 2p [which is the 
covariant expression of Y k _ 2p (x)] and p time the metric 
tensor g. 

2. Covariant expression of fundamental equatIon 

With projector (68), and Euler operators (51 ), the fun
damental equation (28) of zonal functions may be written 

[(~p- xaxP)aaP - (n - 1 )xaaa + k(k + n - 2)] 

(70) 

or 

[ll- D2 - (n - 1)D1 + k(k + n - 2) ]Z~~~,···a. = O. 
(71) 

The operator 

L = ll- D2 - (n - 1 )D1 + k(k + n - 2) (72) 

is an invariant differential operator on the homogeneous 
space J( = G / H (Ref. 6). 

3. Application to classical polynomials 

As the classical polynomials from Sec. I are proportion
al to the zonal spherical functions z(~)' we immediately ob
tain their covariant expression with the help of the T trans
formation. 
Hermite polynomials: 

[k121 
Ha,a""ak = I (_1)P[Xk_ 2P ,pg]a,a""ak. (73) 

p~O 

Gegembauer polynomials: 

2 r(k + 1)r[ (n - 2)/2] 

X ~~~( _1)P2k
-

pr(n ~ 2 + k _p) 
X [X

k
_ 2p ,pg]a,a, "ak 

Tchebycheff polynomials: 

J. C. Lucquiaud 
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1 (k12l (kl2l (k12l 
Ta,a,·· ·ak = __ L ( _ 1)P2k - t - P 

r(k) p=o 
Yk(x) = L Fk_2pXk-2p= L Ak_2PY~'~2p(X), 

X r(k - ) [X ] a,a,·· ·ak p k-2p,pg (k :;60). 
(75) 

p=o p=o 

with 

A = f _1_r(k+ 1-2p+2t) 
k-2p ,=0 22't!u' r(k+I-2p) 

In a general way, all polynomials from Sec. I (particu
larly those being expressed with the hypergeometric func
tion) can be written in a covariant form. 

X r[ (v + u) /2u + k - 2p] F 
r[(v+u)/2u+k-2p+t] k-2p+2,' 

IV. PROPERTIES OF CLASSICAL POLYNOMIALS 

A. Scalar case 

F = f (-1)' r(k+ 1-2p+2t) 
k-2p ,~o 22't!u' r(k+I-2p) 

1. Y';V(x) polynomials r[ (v - u)/2u + k - 2p + t] A 
X k-2p+2" 

r[ (v - u) /2u + k - 2p + 2t ] 
(kl2l ( I)P r(k + 1) 

Y%'V (x) = L -'----'- ---'-----'---'---
p=o 22pp!up r(k + 1 - 2p) 

X r[ (v - u) /2u + k - p] Xk - 2p 

r[ (v - u)/2u + k ] 

is a particular solution of 

d 2y dy 
(1 - UX2)--2 - VX - + k [v + (k - 1)u]y = O. 

dx dx 

Recurrence formulas: 

Particularly, 
(kl2l 

y~,b(X) = L Bk_2PY~'~2p(X) 
p=o 

with 

1 r(k+1) P (_1)' 

22p r(k + 1 - 2p) ,~o t!(rt)! a'uP·' 

(k+ l)[v+ (k-l)u]Y%'V(x) 

= [v+ (2k-l)u] 

X r[ (b - a)/2a + k - t]r[ (v + u)/2u + k - 2~ 

r[ (b - a)/2a + k]r[ (v + u)/2u + k - p - t] 

X[v+ (2k+ l)ul[xY%'';.-dx) -Y~':2(X)]. 

(k+ 1)(1_uX2)y~,V+4U(X) -vxy~,:~2U(X) 

and (Nielsen formulas): 

(kl2l 1 r(k+l) 

+ [v+ (k+ l)u]Y%':2(x) =0. 
Xk - L -----'----'--

p=o 22pp!uP r(k + 1 - 2p) 

Derivation formula: r[ (v + u)/2u + k - 2p] qu,v () 

dPY%,V(x) r(k+l) 
_-'--'--'-_ Yu,v + 2PU( ) 

dxP r(k+ I-p) k-p x. 

X vk2X. 
r[ (v + u) /2u + k - p] - p 

Transformation formula: 
Multiplication formula: 

Any polynomials 
(k12l 

Yk(x) = L Fk_2pXk-2p 
p=o 

(kl2l 
yu"V'(x)yu"V'(x) = ~ G ya,b () k, k, .£.. k-2p k-2p X 

p=o 

can be expressed with the [Y%'~ 2p (x) ]0<P.;;(kI2 1 by with k = k t + k2' and 

G k 2 = _1_ p { (- 1)' r (k + 1 - 2t) r[ (a + b) /2a + k - 2p] 1 
- P 22p ,~o (p-t)!aP-' r(k+ 1-2p) r[(a+b)/2a+k-p-t] m,+~,=, m t!m2!u;"'u;" 

X r(kt +1) r(k2+1) r[(Vt-Ut)/2Ut+kt-mtlr[(V2-U2)/2u2+k2-m2]}, 

r(kt + 1 - 2m t) r(k2 + 1 - 2m2) r[ (v t + u t)/2u t + kt]r[ (v2 - u2)/2u2 + k 2] 

which gives for polynomials of the same kind (u,v): 
(kl2l 

y~:V(x)y~:V(x) = L Gk_2pY%'~2p(X) 
- p=o 

with k = k t + k2' and 

G
k 

2 =_1_ p {(-1)' r(k+I-2t) r[(v+u)/2u+k-2p] _1_ r(k t +l) 
- p 22Pup ,~o (p-t)! r(k+I-2p) r[(v+u)/2u+k-p-t] m,+~,=,mt!m2! r(kt +I-2mt) 

X r(k2 + 1) r[ (v - u)/2u + k t - md r[ (v - u)/2u + k2 - m 2] } . 

r(k2 + 1 - 2m2) r[ (v - u)/2u + kd r[ (v - u)/2u + k 2] 
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2. Hermite polynomials 

Hdx) = y~,I(X) 

[k121 (_ I)P r(k + 1) 
~ X

k
-

2p 

= p=o 2Pp! r(k + 1 - 2p) 

is a particular solution of 

d 2y dy 
---x-+ky=O. 
dx2 dx 

Recurrence formula: 

Hk+ 2 (x) - xHk+ 1 (x) + (k + 1)Hk (x) = O. 

Derivation formula: 

r(k+l) H
k

_ (x). 
r(k+l-p) P 

Transformation formula: 
[k121 [k121 

Yk(x) = ~ Fk_2pXk-2p= ~ Ak_2pHk_2P(X), 
p=o p=o 

with 

A = f _1_ r(k + 1 - 2p + 2t) F 
k-2p r~o 21t! r(k + 1 _ 2p) k-2p+2t' 

F = f (- 1) I r( k + 1 - 2p + 2t) A . 
k - 2p £.. 21 , r ( k 1 _ 2) k - 2p + 21 

1=0 t. + {J 

Particularly, 

. [k121 1 r(k + 1) 
Xk= ~ -- Hk 2 (x). 

p=o 2Pp! r(k + 1 - 2p) - p 

Multiplication formula: 
[k121 

Hk,(x)Hk,(x) = ~ Gk_2pHk_2p(X), 
p=o 

with k = kl + k2' and 

G =..!.. i { ( - 1) I r( k + 1 - 2t) 
k - 2p 2P 1=0 (p - t)! r( k + 1 - 2p) 

X ~ _1_ 
m, + m, = I m 1!m2! 

3. Gegembauer polynomials 

Cl (x) = 2kr(k + I) y12l+ I(X) 
k r(k + 1)r(p) k 

1 [kI2 1(_I)P2 k - 2p r(k+l-p) _ 
_ " Xk 2p 
- r(l) p~o p! r(k + 1 - 2p) , 

solution of 

(1 - x 2) d2~ _ (21 + 1)x dy + k(k + 2/)y = O. 
dx dx 

Recurrence formulas: 

(k+2)Ci+2(X) 

= 2(k + 1 + 1)xCi+ 1 (x) - (k + 2/)ci (x), 

4/(1+ 1)(1-x2)C~+2(x) -2/(1+ l)xci~\(x) 

+ (k+2/+2)(k+2)Ci+2(X) =0. 
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Transformation formulas: 
[k121 [k121 

Yk(x) = ~ Fk_2pXk-2P= ~ A k _ 2p C i_2P(X) 
p=o p=o 

with 

A = (k + 1 - 2p) r (I) 
k- 2p 2k - 2p 

f 1 r(k+ 1-2p+2t) F 
XI~022It! r(k+I+I-2p+t) k-2p+2r' 

2k -2p 
F =-------

k-2p r(l)r(k + 1 - 2p) 

p (_ 1)1 
X ~ r(k+I-2p+t)Ak_2p+2r' 

1=0 t! 

Particularly, 

Xk = r(k + 1)r(/) [II..!.. 
2k p=o p! 

X (k+I-2p) c l (x). 
r(k+l+l-p) k-2p 

Multiplication formula: 
[k121 

CUx)C~, (x) = ~ Gk _ 2PC~_2P (x) 
p=o 

with k = kl + k2' and 

G k _ 2p = I + k - 2p i { ( - 1) I __ r_(,-k_+,---I_-_2_t,-) _ 

r(/) 1=0 (p - t)! r(k + 1 + /- p - t) 

X ~ _1_ 
m,+m,=1 m 1!m2! 

4. Legendre polynomials 

Legendre polynomials Pk (x) are Gegembauer polyno
mials C~ (x) with / = 112: 

Pdx) = C)/2(X). 

5. Tchebycheff polynomials 

Tk(x) =2k - 1Yl,l(x) 

[k121 (_I)P2k-I-2p 
=k ~ 

p=o p! 

X r (k - p) Xk - 2p (k =1= 0) , 
r(k + 1 - 2p) 

solution of 

d 2 d (I - x 2
) -----.E.. - x 1 + k 2y = O. 

dx2 dx 

Recurrence formula: 

Tk + 2 (x) - 2xTk + 1 (x) + Tk (x) = O. 

Transformation formulas: 
[k121 [k/21 

Yk(x) = ~ Fk_2pXk-2P= ~ Ak_2pTk_2p(X), 
p=o p=o 

with 

J. C. Lucquiaud 2848 



                                                                                                                                    

1 P 1 
Ak 2 = ,,-- P 2k - I - 2p ~ 22't I 

'-0 . 

x r(k + 1 - 2p + 2t) F 
r(k + 1 - 2p + t) k-2p+2" 

2k- I - 2p p (_1)' 
Fk - 2p = L -'--'-

r(k+ 1-2p) ,=0 t! 

X (k - 2p + 2t)r(k - 2p + t)A k_ 2p + 2,. 

Particularly, 

k _ 1 [kl2] 1 r(k + 1) 
x --- " - Tk _ 2p (X) 

2k- 1 p~o p! r(k+ I-p) 

(with To = p. 
Multiplication formula: 

[k/2] 
Tk,(x)Tk,(x) = L Gk_2pTk_2P(X), 

p=o 

with k = kl + k2' and 

G k _ 2p = k I k2 ± { ( -1)' r (k + 1 - 2t) 
2 ,=0 (p - t)! r(k + 1 - P - t) 

X L _1_ 
m, + m, =, m l!m2! 

X r(kl - m l)r(k2 - m2) } 
r(kl + 1 - 2ml )r(k2 + 1 - 2m2) . 

B. Covariant expressions 

With the help of the 1'transformation defined in Sec. III, 
we immediately obtain the covariant expressions of previous 
formulas. As l' is a linear transformation, coefficients A, B, 
and G appearing, respectively, in transforniation and multi
plication formulas are the same as in the scalar case. 

1. y~.V(x) polynomials 

ya,a""ak _ [~2] (_ 1)P r[ (v - u)/2u + k - p] 
(u.v) - p~o 2PuP r[ (v - u)/2u + k] 

X [Xk_ 2p ,pg]a,a""ak 

solution of 

{a - uD2 - vDI + k [v + (k - 1)u]}y~~~:;··ak = O. 

Recurrence formula: 

2[v + (k - l)u] [y~.v,gr,a, ... ak+2 

= [v + (2k - 1) u][ v + (2k + 1) u] 

X {[ y~.~ I ,x] a,a," 'ak + 2 

- (k + 2)Y':,a""ak+2} (u.v) . 

Transformation formulas: 

ya,a""ak = [~2] F 2Pp!r(k + 1 - 2p) 
~ k-2p k 
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p=o r( + 1) 

= [k/2] A 2Pp!r(k + 1 - 2p) 
p~o k-2p r(k+ 1) 

X [yu.v ] a,a," 'ak k-2p,pg . 
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and 

Particularly, 

ya,a''''ak = [~2] B 2Pp!r(k + 1- 2p) 
(a.b) p~o k-2p r(k + 1) 

X [ yu.v ]a,a""ak k- 2p,pg . 

xa,a""ak = [r] _1_ r[ (v + u)/2u + k - 2p] 
p=o 2PuP r[ (v + u)/2u + k - p] 

X [y~.~ 2p,pg r,a, .. ·ak. 

Multiplication formula: 

= [kl2] G 2Pp!r(k + 1 - 2p) 
p~o k-2p r(k+l) 

X [y~.~ 2p,pg r,a, ... a., 
where k = kl + k2. 

2. Hermite polynomials 

[kl2] 
Ha,a''''ak = " ( _ I)P[X ]a,a""ak 

~ k-2p,pg 
p=o 

solution of 

(a - DI + k)Ha,a''''ak = O. 
i 

Recurrence formulas: 

2[H ]a,a''''ak+2 - [H ]a,a""ak+2 k,g - k+ I'X 

Transformation formula: 

ya,a''''ak = [~] F 2Pp!r(k + 1 - 2p) 
~ k-2p 

p=o r(k+ 1) 

X [Xk_ 2p ,pg]a,a''''ak 

= [k12] A 2Pp!r(k + 1 - 2p) 
p~o k-2p r(k + 1) 

X [Hk _ 2P,pg] a,a,"·ak. 

Particularly, 
[k12] 

X a,a""ak _ " [H ]a,a''''ak - ~ k-2p,pg . 
p=o 

Multiplication formula: 

(H H )a,a''''ak = [~] G 2Pp!r(k + 1 - 2p) 
k, k, p~o k-2p r(k + 1) 

3. Gegenbauer polynomials 

1 [k12] 
Ca,a, .. 'ak - L (- 1)p 

I - r(k + 1)r(/) p=o 

solution of 
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{a - D2 - (21 + 1 )D. + k(k + 2/)}C7,a,. 'a, = o. 

Recurrence formula: 

2(k + 2/) [C~,gr,a, ... a, + 2 

=2(k+l+ l)(k+ 1)[C~+.,Xr,a,. .. ak+2 

_ (k + l)(k + 2)2C~;~,···a, , '. 
Transformation formula: 

ya,a""a, = [~2] F 2Pp!r(k + 1 - 2p) 
£.. k - 2p 

p=o r(k + I) 
X [Xk_ 2p ,pg]a,a""a, 

= [kI2] A 2Pp!r(k + 1 - 2p) 
p~o k-2p r(k + 1) 

X [C~_2p,pgr,a, ... a,. 

Particularly, 

Xa,a""a, = r(l) [I] (k + 1- 2p)r(k + 1 - 2p) 
p=o 2k- pr(k+l+ I-p) 

[
' ] ala~" oa" X C k - 2p,pg - . 

Multiplication formula: 

[k12[ 2P 'r(k + 1 - 2 ) 
(C' C' )a,a""a, = '" G. p. P 

k, k, p~o k-2p r(k+l) 

where k = k. + k2. 

4. Tchebycheff polynomials 

1 [k12] 
Ta,a,·· 'a, = __ L (- l)P2k - • - P 

r(k) p=o 

Xr(k - p) [Xk_p,pgt,a""a., 

where k #0. This has a solution of 

(a - D2 - D. + k 2)Ta,a""a, = O. 

Recurrence formula: 
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'. 

2[ Tk,g]a,a,. "aH 2 = 2(k + 1) [Tk + • ,X] a,a,"'a, + 2 

- (k + l)(k + 2)Ta,a""aH2. 

Transformation formula: 

ya,a,"'a, = [~2] F 2Pp!r(k + 1 - 2p) 
£.. k-2p k p=o r( +1) 

X [Xk_ 2p ,pg]a,a""a, 

= [k12] A . 2Pp!r(k + 1 - 2p) 
p~o k-2p r(k+1) 

X [Tk_ 2p ,pg]a,a""a,. 

Particularly, 

Xa,a,"'a, = _1_ [~] 2Pr(k + 1 - 2p) 
2k-. p~o r(k+ 1) 

X [Tk_ 2p ,pg]a,a""a,. 

Multiplication formula: 

[k12[ 2P 'r(k + 1 - 2p) ( T. T. ) a, a,' .. a, = '" G. --,-p'---,---,-_-"--,-
k, k, P~o k-2p r(k+ 1) 

X [Tk_ 2P ,pg]a,a""a" 

where k = k. + k2. 
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The complete integrability of the variable coefficient version of a KdV equation via the 
Painleve approach is analyzed. Through the Painleve-Backlund equations, its auto-Backlund 
transformation, Lax pairs, symmetry, strong symmetry, bilinear form, and analytic solutions 
are obtained. 

I. INTRODUCTION 

The variable coefficient version of a KdV equation is 

U, + a(t)uux + {3(t)uxxx = 0, (1.1 ) 

which describes the breaking phenomena of soliton-like 
waves in a varied depth shallow-water tunnel. Many authors 
have studied this equation analytically and numerically (see 
Refs. 1-6). Abellanas and Galind04 showed the existence of 
a change of variables, which transforms any nonautonomous 
KdV -type equations with local nontrivial conserved densi
ties of arbitrary higher order into autonomous KdV-type 
equations. So, Eq. (1.1) may be solved from the solutions of 
a corresponding autonomous KdV-type equation. But as 
mentioned in Ref. 3, such change does not preserve the 
boundedness conditions. Therefore, certain effective meth
ods fail in this case. Recently, some authors used the Painle
ve approach for Eq. (1.1). By such analysis, Joshi3 conclud
ed that Eq. (1.1) has Painleve property only when 

(3(t) = a(t) [aD ,- la(t) + b ]. (1.2) 

The above constraint relation is the same as the result ob
tained by Grimshaw. 2 On the other hand, Nirmale et al.6 

considered the special case with a(t) = aotY , 

(3(t) = (3ot 2y + I. They showed its Painleve property, auto-

Backlund transformation, and Lax pairs, meanwhile they 
got some exact solutions by similarity transformation. 

In this paper, we use the Painleve approach? to analyze 
the complete integrability and analytic solutions. We obtain 
its auto-Backlund transformation, Lax-pairs, symmetry, 
strong symmetry, and bilinear form. All these results are 
delivered in Sec. II. In Sec. III, we follow the idea of ConteS 

to construct its analytic solutions by the Painleve-Backlund 
equations. 

II. COMPLETE INTEGRABILITY 

We say that Eq. (1.1) possesses the Painleveproperty, if 
the following Lorentz series expansion 

'" 
U= L uAJ-p (2.1) 

j=O 

is single valued about the movable solution singular mani
fold 4> = 0, that is, p is a positive integer, 4> is analytic and 
noncharacteristic (4)x4>, =1=0); all recursion relations for uj 

are self-consistent and there are enough free functions in 
(2.1) in the sense of Cauchy-Kowalevskia theorem.? 

By substituting (2.1) into (1.1) and analyzing leading 
parts, we find p = 2, and the following recursion relation: 

Uj _ 3" + (j - 4 )Uj _ 24>, + a(t)Cto Uj _ d Uk _ I,x + (k - 2)(uk 4>x)] ) + (3(t) [Uj _ 3.xxx + 3(j - 4 )uj _ 2.xAx 

+ 3(j - 4 )uj _ 2,Axx + (j - 4 )uj _ 24>xxx + 3(j - 4) (j - 3 )uj _ I,A! + 3(j - 4) (j - 3 )uj _ 14>Axx 

+ (j-4)(j-3)(j-2)uj 4>!] =0. (2.2) 

Clearly, we have for j = 0, 

Uo = - t>(t)4>~, (2.3) 

with 

t>(t) = 12{3(t)la(t) = 12 [aD ,- la(t) + b ], 

and thus (2.2) becomes: 
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(j + 1) (j - 4) (j - 6){J(t)t/J!uj = - uj _ 3.t - (j - 4)uj _ 2t/Jt - a(t)(jI,1 uj _ k (Uk _ I.x + (k - 2)uk t/Jx) + UoUj _ I.X) 
k=1 

- {J(t){Uj _ 3.xxx + 3(j - 4)uj _ 2.xxt/Jx + 3(j - 4)uj _ 2.xt/Jxx 

+ (j - 4)uj _ 2t/Jxxx + 3(j - 4) (j - 3)uj _ I.A! + 3(j - 4) (j - 3)uj _ 1 t/JxAx} = O. 
(2.4) 

The resonance points are - 1,4, and 6. The pointj = - 1 
corresponds to the arbitrary singular function t/J. Expression 
(2.4) holds automatically forj = 4. While the compatability 
forj = 6 leads to constraint condition (1.2) that was given in 
Ref. 3 by reduction t/J = x + "'( t). But for delivering its com
plete integrability and constructing analytic solutions, we 
cannot use such reduction. 

We now putj = 1,2,3 in (2.4) and get 

UI = 8(t)t/Jxx' (2.5) 

t/JAt + a(t)t/J!u2 + {J(t)( 4t/JAxxx - 3t/J!x) = 0, (2.6) 

and 

8'(t) 2 
t/Jxt + a(t)t/Jxx u2 + {J(t)t/Jxxxx + -- t/Jx - a(t)t/Jx u3 = O. 

8(t) 
(2.7) 

Proposition 1: Equation (1.1) has the auto-Backlund 
transformation in the form: 

U = 12[ aD t-Ia(t) + b ]D! (In t/J) + U2' (2.8) 

where U and U2 satisfy Eq. (1.1), and t/J satisfies 

t/JXt/J1 + {J(t) (4t/JAxxx - 3t/J!x) + a(t)t/J!u2 = 0, (2.9) 

a(t) 
t/JXI + {J(t)t/Jxxxx + t/Jx + a(t)t/Jxx u2 = O. (2.10) 

DI-Ia(t) 

Proof: Set arbitrary functions U4 = U6 = 0 and demand 
U3 = O. Then we have from (2.4) thatuj = 0, VI~3,andthus 

U = uoit/J2 + ul/t/J + U2 = 8(t)D!(In t/J) + U2, 

whichisjust (2.8). Next by letting U3 = Oin (2.7), we obtain 
(2.10). • 

One may doubt about the compatability ofEqs. (2.9), 
(2.10), and (1.1). Indeed the former two lead to the third. 
This will be explained in the following proposition. 

Proposition 2: Equation (1.1) has the Lax pairs 

"'xx = --l-[a(t)u- 8'(t) x+A(t)]"', (2.11) 
6{3(t) 8(t) 

"'I = - ~ [a(t)U + 2 8'(t) x - U(t) ] "'x , 
3 8(t) 

+ ~ [a(t)Ux + 2 8'(t) ] "', 
6 8(t) 

(2.12) 

where A (t) is the spectral function of ( 1.1 ). 
Proof: We shall use the "Schwarzian derivative-scatter

ing" method. Eliminating U2 in Eqs. (2.9) and (2.10), we 
obtain 

Dx [A + {J(t){t/J:X} + 8'(t) x] = 0, 
t/Jx 8(t) 

where 
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(2.13 ) 

which is called Schwarzian derivative. Thus 

A + {J(t){t/J:X} + 8'(t) X=A(t). (2.14) 
t/Jx 8(t) 

Now let 

(2.15 ) 

where we ask "'I and "'2 to satisfy the same second scattering 
problem: 

"'xx = U"', 

"'I = V"'x + W"'. 
Then (2.14) becomes 

V-2{J(t)U+ 8'(t) X=A(t). 
8(t) 

(2.16) 

(2.17) 

(2.18 ) 

On the other hand, the compatability of (2.16) and (2.17) 
shows 

Vt = Ux V+2UVx + Wxx , 

W= - Vx /2. 

Therefore, 

Ut = 6{3(t) UUx - {3(t) Uxxx 

(2.19) 

(2.20) 

- 8'(t) xU + A(t) U - 2 8'(t) U. (2.21) 
8(t) x x 8(t) 

Furthermore, let 

U = - [a (t)/6{3(t) ]u + Y(x,t), 

where U satisifies Eq. (1.1). Then 

y=_l_ [8'(t) X-A(t)] 
6{3(t) 8(t) 

and thus 

U= --l-[a(t)u- 8'(t) X+A(t)]. 
6{3(t) 8(t) 

So from (2.19) and (2.20), we have 

V = - ~ [a(t)U + 2 8'(t) x - U(t)] 
3 8(t) 

and 

(2.22) 

(2.23) 

(2.24) 

(2.25) 

(2.26) 

Hence, the Lax pairs (2.11) and (2.12) are obtained. • 
Proposition 3: Equation (1.1) has the symmetry 

U I = 8(t)t/Jxx (2.27) 

and strong symmetry operator 
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R =P(t)D; +2. [a(t)U - c5'(t) x] 
3 c5(t) 

_ ~ [a(t)U - c5'(t) ] D -I. 
3 x c5(t) x 

(2.28) 

In addition, if we take K 0 = Uo to be the first symmetry, then 
we have a family of symmetries: 

Kn = R n[Ko], n = 0,1,2,... . (2.29) 

Proof: The idea of the proof is due to Strampp.9 By sub
stituting 

u = uol ¢l + u JifJ + U2 

into (1.1) and analyzing the coefficient of the term ifJ - I, we 
discover that u 1 satisfies the linearized equation of ( 1.1 ): 

T, + [a(t)(uDx +ux ) +P(t)D!]T=O, (2.30) 

which indicates that u 1 = c5 (t) ifJ xx is a symmetry of ( 1.1 ) . 
use of (2.5), (2.15), (2.11) and (2.12), (2.30) turns to an
other form 

{P(t)D; + 2. [a(t)u - c5'(t) x] 
3 c5(t) 

- ~[a(t)ux - c5'(t) D x-I]}T= H(A)T, 
3 c5(t) 

(2.31) 

which implies that the left hand is a strong symmetry opera
tor. Then it is easy to get the conclusion (2.29). • 

Proposition 4: Equation (1.1) has the bilinear form: 

(7x,7 - 7 x 7,) + P(t) (77xxxx - 47xxx 7 x + 3r;x) 

c5' (t) 
+--77 =0. 

c5(t) x 

In addition, if we set 

u(n) = c5(t)D; (In 7n ) 

and rewrite (2.8) as 

u(n) = c5(t)D; (In ifJn) + u(n-I), 

then 

and thus 

(2.32) 

(2.33) 

(2.34) 

(2.35) 

(2.36) 

Proof: It is easy to verify (2.32) by substituting (2.33) 
into ( 1.1 ). The rest ofthe proof is clear. • 

III. ANALYTIC SOLUTIONS 

We have introduced the Schwarzian derivative 

(3.1 ) 

which is invariant under the homographic transformation. 
In this section, we give another homographic invariant 

(3.2) 

which is called velocity dimension. If we adapt "minus 
square transformation:" 

ifJx = V- 2
, (3.3) 

then Eqs. (3.1) and (3.2) lead to 
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Vxx + (S/2)V=0, 

V, +ZVx -!ZxV=O. 

(3.4) 

(3.5) 

The above system is linear for V when Sand Z are known. By 
substituting (3.1) and (3.2) into (1.1), (2.9), and (2.10), 
we shall get the expressions of Sand Z that are called Painle
ve-Backlund equations. Next from such equations, we can 
deliver the explicit expression of V, ifJ, as well as u2• For 
convenience, we define 

Q = - ifJxxl2ifJx' (3.6) 

We get from (2.9) and (2.10) that 

U2 = [l/a(t)] [Z - 4P(t)S - 12p(t)Q2] (3.7) 

and 

15' (t) 
Zx = P(t)Sx + -- . 

c5(t) 
(3.8) 

On the other hand, by substituting (3.7) into (1.1), we find 
that 

Z - 48 - a'(t) (Z - 48) 
, , a(t) 

+ (Z - 48) (Zx - 48x ) + P(t)Zxxx 

- 4P(t)8xxx - 183\8 + Q [128xx - 12P(t)Zxx] 

+ 12P(t)Q2[Zx - 8x 
_ 1 + a'(t) ] = 0, 

P(t) a(t) 

where8=p(t)S. We multiply (3.8) by (QQx _Q2) and 
put the result and the above equation together. Then 

Z -48 - a'(t) (Z-48) 
, , a(t) 

+ (Z - 48) (Zx - 48x ) + P(t)Zxxx 

- 4P<t)8xxx - 188x8 = o. (3.9) 

Furthermore, the compatability condition of (3.1) and 
(3.2) leads to 

8, +P(t)Zxxx +2Zx8+Z8x - [P'(t)IP(t)]8=0. 
(3.10) 

We now try to solve Eqs. (3.8)-(3.10). We have from (3.8) 
that 

15' (t) 
Z = 8 + --x + y(t), 

c5(t) 
(3.11) 

where y(t) is an arbitrary function. Thus (3.9) and (3.10) 
read 

(3.12) 

and 
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+ x[( 15' (t) )' + 15' (t) (15' (t) _ a' (t) )] 
t5(t) t5(t) t5(t) a(t) 

+ y'(t) + y(t)( c5'(t) _ a'(I)) = 0, 
t5(t) a(t) 

which gives 

8 + {3(t)8 + 38 8 + (2 c5'(t) _ {3'(t»)8 
, xxx x t5(t) {3(t) 

+ (t5'(t) x + y(t»)8x = 0 
c5(t) 

and 

x[( 15' (t) )' + 15' (t) (15' (t) _ a' (t) )] + y' (t) 
t5(t) t5(t) c5(t) a(t) 

+ y(t)(t5'(t) _ a'(I)) = O. 
t5(t) a(t) 

Obviously, (3.15) is equivalent to 

(
15' (t) )' + 15' (t) (15' (t) _ a' (t) ) = 0, 
15(1) t5(t) t5(t) a(t) 

y'(t) + y(t)( c5'(t) _ a'(t») = O. 
c5(t) a(t) 

(3.13 ) 

(3.14) 

(3.15 ) 

(3.16) 

(3.17) 

It is not easy to solve Eqs. (3.14), (3.16), and (3.17). 
We confine our discussion to some special cases. 

Case L' a = 0 in (1.2). In this case, t5(t) = b. Then, 
(3.16) becomes an identity and (3.17) leads to 

y(1) =/(x)a(t), (3.18 ) 

where / (x) is an arbitrary function. Thus we have from 
(3.14) that 

8, + {3(t)8xxx + 38x8 - a' (t) 8 + y(1)8x = o. 
a(t) 

(3.19 ) 

If we further let 8 = 8 ( t), then the above expression changes 
into 

8 - a'(t) 8=0 
'a(t) , 

which gives 

8=g(x)a(t), 

whereg(x) is an arbitrary function. Thus 

S=g(x)lb. 

From (3.11), 

Z = [((x) + g(x) ]a(t). 

(3.20) 

(3.21) 

(3.22) 

If g(x)lb and/ (x) + g(x) are constants, say - k ~/2 and 
Co, respectively, then 

S = - k U2, Z = coa( I). 

Thus (3.4) and (3.5) become 

Vxx -(Q/4)V=0, (3.23) 

v, + coa(t) Vx = O. (3.24) 

Therefore, 

V = Ae(I<,,I2)s + Be - (1<,,I2)s, 5 = x - coD ,-Ia(t) + do, 

(3.25) 

where A, B, and do are constants. Then from (3.3), 
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Ce(I<,,I2)S + De - (1<,,I2)s 

<P = Ae(I<,,I2)s + Be - (1<,,I2)s ' 

where C and D are arbitrary constants provided that 

CB-AD= lIko. 

Hence, (3.7) leads to 

(3.26) 

[
Ae(I<,,I2)S _ Be- (1<,,I2)S]2 

U2 = - 3bk ~ Ae(I<,,I2)s + Be _ (1<,,I2)s + 2bk ~ + co· 

(3.27) 

Using the auto-Backlund transformation (2.8), we find that 
the obtained solution u is the same as (3.27) provided that A 
and B are replaced by C and D. 

Similarly, we can look for other solutions of 8 and Z 
through (3.19) and (3.11), and get other analytic solutions. 

Case II: b = 0 in (1.2). In this case t5(t) = aD ,-Ia(t). 
Then (3.16) becomes an identity, and (3.17) reads 

y'(t) - y(t)( t5'(t»)' t5(t) = 0, 
c5(t) 15' (t) 

which leads to 

15' (t) 
y(t) =1I(x)--, 

t5(t) 
(3.28 ) 

where II (x) is an arbitrary function. If we take 8 = 8(t), 
then (3.14) becomes 

8, + 8 [t5'(t) _ a'(t)] = 0, 
t5(t) a(t) 

which is equivalent to 

8, - 8( t5'(t) )' ( c5(t) ) = O. 
c5(t) 15' (t) 

Hence, 

- 15' (t) 
S=gl(x)--, 

c5(t) 

where gl (x) is an arbitrary function. Thus 

S= [gl(x)lal[D,-la (t)]2 

and then 

(3.29) 

(3.30) 

Z= [(I(X) +gl(x) +xl[a(t)ID,-la(t)]. (3.31) 

Ifwe setii (x) + gl (x) = 0, gl (x)la = - k i 12 where kl is 
a constant, then 

S= - [kI/2D,-la(I)]2, Z= [a(t)ID,-la(l)]x. 

Therefore, (3.4) and (3.5) turn into 

Vxx - [k,/2D ,- 'a(t) ] 2 V = 0, (3.32) 

V, + [a(t)ID ,-Ia(t)] [xVx - ~ V] = O. (3.33 ) 

Hence, 

V = (A lek,1/12Dra(t) + Ble - k,1/12D ,- 'a(t) (D ,- la(t» 1/2, 

1/ =x, (3.34 ) 

where A I and Blare constants. Therefore 

C k,1/12D,-'a(t) +D -k+1//2D,-'a(t) 
<P = Ie Ie , 

A k,1/12D ,- 'a(t) + B - k,1/12D ,- 'a(t) 
Ie ,e 

(3.35 ) 

where C I and DI are arbitrary constants provided that 
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Finally, 

Similar to case I, by the auto-Backlund transformation, 
the obtained solution u is the same as (3.36). 
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In this paper, an algebraic method to obtain the solution of linear partial differential equations 
of the evolution type is discussed. The proposed method exploits the Lie differential operators 
and their matrix realization, to reduce the equation to an easily solvable generalized matrix 
form. Some applications to problems of specific interest are also discussed. 

I. INTRODUCTION 

Group theoretic methods have played an important role 
in the modern theory of special functions. From a historical 
point of view, the first deep work concerning the relationship 
between group representation theory and special functions is 
due to Cartan. \ A more detailed and systematic use, for 
computational purposes, can be found in the Wigner's pa
pers, whose elementary account is contained in his famous 
Princeton Lectures of 1955, which directly inspired the Tal
man book. 2 From that time, a number of milestones have 
been laid, the most noticeable of which is the Vilenkin 
work. 3 Both in Wigner's and Vilenkin's treatment, special 
functions are obtained as matrix elements of operators defin
ing irreducible group representations. 

The theory of special functions is strongly related to that 
of second-order ordinary differential equations. Lie-algebra
ic methods for computing eigenvalues and recurrence rela
tion has been developed indeed (see, e.g., the papers listed in 
Refs. 4). In this respect, it is worth stressing that Lie intro
duced the groups, bearing his name, exploring the deep rea
sons underlying the integrability by quadratures of ordinary 
differential equations. 

Algebraic methods dealing with partial differential 
equations (PD E) also have venerable roots. Schrodinger ap
plied the method of factorization to solve the time-indepen
dent Schrodinger equation,5 and Miller showed that this 
method is equivalent to the representation theory offour Lie 
algebras.6 Further examples can be found in the paper by 
Weisner7 and in a more systematic presentation in Miller's 
book.s 

More recently Lie-algebraic methods to obtain explicit 
solutions to PDE have been considered by Steinberg.9 In 
particular, in Ref. 9, an example generated by 

Q= L=a-+bx-+cx2 A {A a2 a 
ax2 ax 

+ a ~ + /3x + y;a,b,c,a,/3,yEc} (1.1) ax 
has been discussed. Steinberg presented algeb~ic recipes to 
solve all initial value problems for operators in Q. The goal of 
Ref. 9 was finding a solution for the following Cauchy prob
lem: 

aJ Also at ENEA, Dipartimento Fusione, eRE Frascati also at Diparti
mento di Elettronica, Universita di Roma, La Sapienza, Italy. 

a A 
- j(x,r) = Lj(x,r) , j(x,O) = g(x), at ( 1.2) 

A A 

whereg(x) is a sufficiently nice function andLEQ. The solu-
tion can be written in the form 

( 1.3) 
A 

Noticing that n is a Lie algebra under the bracket operation 
AA A.~ A.A."""':A."" 

[L,M] = LoM - MoL (L,MEQ) , one should be able to in-
terpre,t exp(Lr) as an element in the Lie group associated 
with Q. The method then ,l?roceeds as follows. A suitable 
basis for L with generators L j is chosen and ordering formu
las of Baker, Hausdorff, Campbell, and Zassenhaus lO

.\\ type 
are used to write the evolution operator iT in the form 

~ n ~ 

LT II L,Si( T) e = e , (1.4 ) 
;=1 

where Sj (r) are r-dependent functions linked to the coeffi
cients of ( 1.1 ) . 

The method proposed by Steinberg offered a unified 
framework to treat a wide class of Cauchy problems for lin
ear PDE that are not of classical type (like hyperbolic or 
parabolic), appearing in many classical and quantum prob
lems. In this paper, we will go a step further the method 
proposed in Ref. 9, presenting a technique computationally 
more powerful and easily generalizable to the explicitly time 
dependent and many variable cases. 

The idea underlying this paper is very simple and can be 
synthetized as follows: (1) Given a PDE of the type (1.2), 
we identify a basis for a Lie group G; (2) since a Lie group is 
isomorphic toa Lie matrix group G' (Ref. 12), we utilize the 
matrix realization of G to write the image of our PDE in G I, 
thus getting a straightforward solution for the characteristic 
ordering functions Sj ( r) appearing in (1.4); and (3) once 
those are obtained, we go back to the generators written in G 
and use simple operatorial rules to get the explicit solution of 
our PDE, acting as the evolution operator iT on the initial 
condition g(x). 

The method we propose has already been used in Ref. 13 
to solve the Helmholtz equation in the paraxial approxima
tion for wave propagation in selfoc media. Here, we will at
tempt a systematic description of the technique. 

II. EXPONENTIAL OPERATORS: SOME USEFUL 
FORMULAS 

As we have already stressed, the key point of our meth
od is the search for an ordered product of the type (1.4), 
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where L; fonn the basis of a Lie algebra. The generators L; 
can be written either in a matrix fonn or as differential oper
ators. In this section, we will recall a few notions relevant to 
matrix exponent operators and to the action of exponents of 
differential operators on a given functiong(x). We will limit 
ourselves to very elementary properties, the interested read
er is directed to Refs. 14-16 for a more complete treatment. 

It happens very often in many problems of classical and 
quantum mechanics that the exponential eOT must be evalu
ated and a is a n X n matrix, not necessarily Hennitian, with 
elements denoted byaij' 

The Taylor expansion 

F( A " ~ 1 a) = ea = ~ - (a)n 
n=O n! 

(2.1) 

is very often oflimited usefulness, unless a has peculiar prop
erties. This is indeed the case of the Pauli matrices u ± ' u3 

obeying the well-known identities 

eau + = (1 a) bU_ = (1 0) e2CU3 = (e
C 0) o 1 ' e b 1 ' 0 e- c • 

(2.2) 

It is therefore desirable to have F( a) in the closed fonn 
of a n X n matrix, rather than dealing with the not easily 
manageable infinite series (2.1). 

To reduce F( a) to a matrix fonn, we use the parameter 
differentiation technique equivalent to the Cayley-Hamil
ton theorem, but also useful for a time-dependent problem. 

The operator function F(a) acts on a n-dimensional 
vector space. Therefore, introducing a n-column vector 1\J 
and a parameter T, we can write 

~ 1\J( T) = a1\J( T), 
dT 

or, similarly, 

d n 

-d tP;(T) = L aijtP/T). 
T j=1 

(2.3 ) 

(2.4 ) 

The above equation is of the evolution type and its solu
tion can be cast in the fonn 

(2.5) 
A 

where A is a n X n matrix and tP( 0) are the initial conditions 
ofEq. (2.3). 

Substituting (2.5) in (2.3), one easily obtains 

d n 
-d Aij = L a;kAkj' Aij(O) = bij. (2.6) 

T k=; 

The system ofli9-,ear differential equations (2.6) entirely 
specifies the matrix A (T) and, needless to say, 

" A 
ea =A(1). (2.7) 

For the case of a 2 X 2 matrix, one explicitly obtains 

All = {~ (all - a22 ) sinh ( ~) + COSh( ~) }e(1I2lT
r

O, 

A12 _ A21 _ 2 . h(.f&) (1I2)Tril -----sm -e , 
a 12 a21 .f& 2 
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A22 = {- ~ (all - a22 )Sinh( ~) 

+ COSh( ~) }e(1I2)Tra, 

where 

Tra=a ll +a22 , !:J.= (all -a22)2+4a12a21' 

It is worth stressing that, as it must be, 

detA = eTro 

(2.8) 

(2.9) 

(2.10) 

Since a is a nondiagonal2 X 2 matrix with Tr a =1= 0 it must be 
treated as an element of U(2). 

Therefore eO can also be written as the following ordered 
product: 

eO = e2hu3egU +;U - e'i, 

where i is the unity matrix. 
Comparing (2.11) with (2.8), we obtain 

f - A fA A A . - (a" + a22) 
- 21 22' g = 12 22 e 

e -h-A -(1I2)(a,,+a22) 
- 22 e 

(2.11 ) 

(2.12) 

It might be worth stressing that if Tr a = 0 then 
det A = 1 and s = 0, so that the basis for A becomes SU (2). 

Equation (2.11 ) is just an ordered product, and the pro
cedure we have outlined can be utilized as an alternative 
method to derive ordered fonns. To give an example, we will 
derive within the present fonnalism the so-called Sack iden-

• A A 
tlty (see Ref. 11), namely, if J and K are operators and satis-
fy the following rule of commutation: 

AA A 

[J,K] =AJ, (2.13 ) 

then 

(2.14 ) 

An example of the algebra (2.13) is provided by the 
following matrix realization: 

J = (0 1) K = (0 0) o 0 ' 0 A . 
(2.15 ) 

Accordingly, we get 

;+K = (1 (l/A)(~ - 1») 
o ~ . (2.16) 

To recover the identity (2.14), we write 

; + K = eaJePKelii = (1 aePA.) o efM • (2.17) 

Comparing (2.17) and (2.16), the Sack identity immediate
ly follows. 

After having clarified how to handle with exponent ma
trix operators, it is worth, for further convenience, learning 
some things about the action of exponent operators in the 
coordinate representation on a function g(x). 

We consider the operator 

A m a 
Lk = ;~tPk.;(Xt, ... ,Xm) ax; +qdxt, .. ·,Xm ), (2.18) 

where Pk,; (x t , ••• ,xm ) and qk (XI , .•. ,xm) are analytic func
tions. If there exist some constants Crs I such that 
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A A m A. 

[L"Ls] = I C ~.sLI' (2.19) 
1= , 

we say that L k form a basis for a Lie algebra G isomorphic to 
some matrix Lie algebra G' (see Ref. 12). Defining further
more the linear combination 

A m A 

L (a) = I akLk, (2.20) 
k=1 

we are interested in the action of exp [tL (a)] on an analytic 
function g(x j ). It is almost straightforward to prove that 

exp[tL (a)]g(x j ) = v(t)g(Xj(t», (2.21) 

where X j (t) and v(t) are solutions of 

d m 
- X j (t) = I akPkAX, (t), ... ,Xm (t), 
dt k= I 

Xj(O) =xj, (2.22) 

d m 
- v(t) = v(t) I akqdX(t), v(O) = 1. 
dt k= I 

[The proof can be easily achieved by differentiating both 
sides of (2.21 ) with respect to t and by direct substitution of 
L (Q) in the final result. For a more detailed discussion, the 
reader is addressed to Ref. 12.] For illustrative purposes, we 
consider the following examples: 

eQ(dldX)g(X) = g(x + a) 

and 
(2.23) 

eQx(dldX)g(X) =g(eQx). (2.24) 

The first is trivial. The second follows from the fact that 

~x(a) = x(a) --+x(a) = eQx, v(O) = 1. 
da 

(2.25) 

In the hypothesis that eQx(d Idx) acts on a shifted function 
g(x + b) we get 

eQx(dldx)g(x) = g(eQx + b). (2.26) 

[The identity (2.26) can be easily proved, performing the 
change of variables y = x + b and then noticing that 
dy/ da = y - b.]. A further important relation is 

l(a 2Iax2) ( ) 1 J+oo { (X_ y )2} e g x = exp -
(41Tt) 112 _ 00 4t 

Xg(y)dy (t> 0). (2.27) 

The above relations are the minimal mathematical back
ground we need to deal with algebraic methods of solution of 
PDE and will be largely utilized in the next sections. 

III. MATRIX SOLUTIONS OF POE: THE TIME
INDEPENDENT CASE 

The method of solution we will utilize in the paper will 
be illustrated now with more details. 

We consider the following Cauchy problem: 

a A 

-/( r;xI , ... ,Xm) = L(x, , .. ·,xm )/( r;xI , ... ,xm ), 
ar (3.1) 

I( r,XI , ... ,xm) I 7'=0 = g(x i , ... ,xm), 

and 
A m a2 
L(x, , ... ,Xm) = A (XI , ... ,Xm) I ---+ B(x , '''',Xm ) 

jj= I ax; aXj 
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m m a 
x I XjXj + C(x, , ... ,Xm) I Xj'-

jj= I jj= I aXj 

m a 
+ D(x, '''''Xm ) I - + E(x , '''',Xm ) 

j= I aXj 

m 

X I Xj + F(x , , ... ,xm )· 
j= , 

(3.2) 

A A 

We identify the Lie algebraic basis for L with generators L j • 

Using the isomorphism with a matrix algebra, we write Lj in 
the correspondent m X m matrix form aj and cast Eq. (3.1) 
as 

(3.3 ) 

where a is an m X m matrix and fan m-column vector. Equa
tion (3.3) will be referred as the image equation of (3.1) in 
the matrix representation. 

The solution of (3.3) can be written in the form 
A 

fer) =A(r)f(O). (3.4) 

Here, A ( r) will be called the evolution matrix and since 

ii: /:Si(7') =A(r), (3.5) 
;=1 

one can easily evaluate the ordering functions Sj ( r). Fur
thermore, since by virtue of the isomorphism 

(3.6) 

we can go back to the {x} realization of our Lie algebra and 
find the solution of (3.1) according to the standard recipe 
( 1.3). 

The method we have just illustrated can be synthesized 
by the following procedure. The isomorphism allows to cast 
Eq. (3.1) in its matrix image form (3.3), the solution is then 
found according to (3.4), the isomorphism allows one to go 
back to the original representation and find the solution of 
the Cauchy problem in {x} representation. 

The remaining part of this section is just devoted to spe
cific examples, the first of which is the following one-dimen
sional Fokker-Planck equation: 

~ P( r;x) = [ax ~ + (J ~]P( r,x), 
ar ax ax2 (3.7) 

P(r;x) 17'=0 =p(x). 

It is easy to realize that the algebraic structure underlying 
the above equation is provided by the operators 

1 a2 
A 1 a 

k =-- kO=-2xa.x' (3.8) - 2 ax2 ' 

which obey the commutation relation (2.13) with A. = 1. 
Consequently, the matrix representation for the operators 
k _ and ko can be immediately written down as 

A (0 1) A (0 0) 
k_ = 0 0 ' ko = 0 1 ' (3.9) 

thus specifying the matrix image ofEq. (3.7) in the form 

a (0 2a) 
ar per) = 0 2f3 per). (3.10) 
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Accordingly, the solution to the above equation is readily 
obtained as 

(
1 B(r») 

P( r) = 0 D( r) P(O), (3.11 ) 

with 

B = (P la)(exp(2ar) - 1) D = exp(2ar). (3.12) 

We can now go back to the x representation and get the 
evolution operator in the form 

AU( A) 2h(T)k;, {(T)L 
r;x = e (! (3.13) 

with the functions hand g being 

h(r) =ar, /(r) = (Pla)(e2aT -1). (3.14) 

Finally using the identities (2.23 )-(2.27), we easily get 
A 

P( r;x) = U( r,x)p(x) 

1 f+oo { 
= [21T/( r)] \12 _ 00 exp -

[eh(T)x YF} 
2/(~ p(y)dy, 

(/(r) >0). (3.15 ) 

It is worth noticing that the operators (3.8) belong to a two
dimensional subalgebra of the SU ( 1,1) algebra. In order to 
deal with a more general case, involving the whole SU (1,1) 

algebra, let us consider the two-dimensional Fokker-Planck 
equation 

~ P( r,x,y) = (axy + P ~)P( r,x,y) , 
ar ax ay (3.16) 
P(r;x,y) IT=O =p(x,y), 

the relevant algebraic structure, being specified by the opera
tors 

The rules of commutation 

[ k: + ,k _ ] = - 2k:o [ k:o,k ± ] = ± k: ± (3.18 ) 

are immediately recognized as these relevant to the SU ( 1,1 ) 
algebra. Noticing that the matrix representation of the oper
ators (3.17) is provided by 

k: = (0 - 1) k: = (0 0) k: = 1.(1 0) 
+ 0 0' - 1 0' 0 2 0 -1 ' 

(3.19) 

we end up with the simple matrix image ofEq. (3.16) 

:r P = ~ - ~)p, (3.20) 

whose solution reads 

P (cos(~r) (r) = 
(Pia) 112 sin ( ~ r) 

- (alp> \12 sin( ~ ap r»)p(O). 

cos(~ap r) 
(3.21 ) 

Consequently, expressing the evolution operator in the or
dered form, 

U( r;x,y) = eh(T)[ \ + x(alax) + y(alay) J • e8(T)XY • e!(T)(a 'lax ay), 

(3.22) 

the matrix representation (3.19) allows one to specialize the 
functions h, g, and/as 

e-h(T) =cos(~apr), g(r) = -1(alp>\12sin(~r), 

/(r) = (Pia) 112 tan(~ap r). (3.23) 

A further example we will discuss is rather simple and is 
provided by the following equation: 

i~P(r;x,y) = {axi.+py~}p(r;x,y), 
ar ay ax (3.24) 

P(r;x,y) IT=O =p(x,y). 

We assume thatp(x,y) is continuous on both x,y as well its 
first derivatives. An algebraic structure can be recognized 
using the Bergman realization of creation-annihilation op
erators 

A a A + a=-, a =X 
ax 

(3.25) 

and the Wigner-Schwinger representation of angular mo
mentum 
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A 

=Qt Q2+' J3 =!(Ol+ Ql -a2+Q2)· 

(3.26) 

Therefore, we can immediately identify the following 
SU (2) -like operators 

J + = x ~, J _ = y !, J3 = ~ (x ! -y ~) . 
(3.27) 

A A 

[The relation of commutation are [J+ ,J-1 
A A A A 

= 2J3 , [ J3 ,J ± ] = ± J ± . The matrix realization of the J 
operators is provided by the Pauli matrices.] The solution of 
Eq. (3.23) can be found along the lines so far discussed thus 
obtaining 

P(r;x,y) =exp{ -In[cOS(~r)](x ! -y ~)} 

.exp{ - i.~ sin(2~ap r)x ~} 

.exp{ - i.~. tg(~ap r)y ! }P(X,y) 

=p(X(r),Y(r», (3.28) 

where 
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-i..Jt sin(..j{ifJ 7») (;). 

cos(~a/3 7) 

(3.29) 

The last example we will discuss in this section is the optical 
parametric amplifier equations (see Ref. 9 and references 
therein) 

~u(r,x,y) = {- ~(~-~) 
a7 2 ax2 ay2 

+(x~+y~)}U(7;X'Y)' (3.30) 
ax ay 

u( r,x,y) 11"=0 = s(x,y). 

The above equation is an almost trivial extension of Eq. 
(3.7) and its solution can be written as 

1 f+oo f+oo 
u( 7;X,y) = 112 d'1/ dt 

21T[ft (7)/2 (7)] - 00 - 00 

{ 
[eh,(1")x - '1/ F } 

X exp - --=-----...!..:..-
2ft (7) 

'exp - e y - ~ S('1/,t), 
{ 

[ h2(1") ~)2} 

. 2fz(7) 

with the functionsit.2' h l •2 specified by 

ft(7) = _~(e-21"_I), h l (7)=7, 

fz (7) = ~(e21" - 1), h2 (7) = 7. 

(3.31) 

(3.32) 

In this section, we have considered PDE whose underly
ing algebraic structure is SU (2) or SU (1, 1 ). Within this 
framework, we can finally discuss the most general case of a 
PDE reduced to the canonical form 

a A A A A 

a7 u = {aF + + /3F - + yFo + €l}u, (3.33 ) 

where F are the generators of the simple split three-5!imen
sional Lie a1&ebra (SSTD). The I!.tatrix realization ofF -.0 is 
the same as k -.0 in (3.9) while F + is given by 

(3.34 ) 

According to whether 15 = ± 1, theSSTDreducestoSU(2) 
or SU(1,I), respectively. The matrix image of (3.33) can 
therefore be written as 

~u=(€+Y/2 t5a )u. 
a7 \P €- yl2 

(3.35) 

As a consequence, casting the evolution operator in the form 

(3.36) 

the explicit expression of the ordering functions (h,g J,s) can 
be easily derived and read [see Eqs. (2.11) and (2.12)] 

e - h(1") = {_ ~ sinh( ~7) + cosh ( ~7) }eE1", 

g 7 =-- - -sm -- +-sm -7 e-, () 2t5a { y. h2(/K7) 1. h(~} _2E1" 
/K /K 2 2 2 
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I 

/( 7) = 2/3 { _ ..L.. + ctgh({K7)} - I, 

{K /K 2 

ll. = r + 4Oa/3. (3.37) 

In the next section, we will generalize the above procedure to 
the explicitly time-dependent case. 

IV. MATRIX SOLUTIONS OF POE: THE TIME
DEPENDENT CASE 

In this section, we will ~nsider equations of the type 
(3.1) in which the operator L is explicitly 7 dependent. In 
this case, the procedure outlined in the introductory remarks 
of Sec. III does not change. The only difference is that the 
matrix elements of A are the solutions of ordinary differen
tial equations with time-dependent coefficients. Since it is 
not necessary to restate the basic features of the technique, 
we will just discuss a few examples. 

The equation we consider is a generalization of (3.7), 
namely, 

-P(7;X) = a(7)x-+/3(7)-+Y(7)X2 P(7;X), a [ a a
2 

] 
a7 ax ax2 

P(O;x) = p(x), (4.1) 

which according to the matrix representation (3.19) of the 
SUe 1,1) generators (3.18), can be given the matrix form 

a (a12 - 2Y) 
a7 P( 7) = 2/3 _ 3/2a P( 7). (4.2) 

Introducing, as before, the transfer matrix ABCD acting as 

P(7) = (A(7) B(7»)p(0), (4.3) 
C(7) D(7) 

we get for the matrix elements the set of differential equa
tions 

a 1 
-A =-a(7)A - 2Y(7)C, 
a7 2 

~ C= 2/3(7)A - 2. a(7)C, 
a7 2 

(4.4a) 

A(O) = 1, C(O) = 0, 

~B = ~a(7)B - 2Y(7)D, 
a7 2 (4.4b) 

~ D = 2/3( 7)B - 2. a( 7)D, 
a7 2 

B(O) = 0, D(O) = 1. 

Giving the evolution operator in the following ordered form: 

U(r,x) = exp(s(7)l)exp(2h(7)ko) 

xexp(g(7)k+ )exp(f(7)k_), 

and comparing the matrix representation of U 
A ((1 - /g)eh 

_ geh
) 

U=e' /e-h e- h ' 
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with the ABCD matrix, we can infer the link between the 
matrix elements of (4.3) with the ordering functions h, g,/, 
ands as 

e2s =AD-BC, e-h=DI(~AD-BC), 

/= CID, g= -BDI(AD..:....BC). 
(4.7) 

Finally according to the relation (2.25 )-( 2.27), the solution 
to Eq. (4.1) specializes into 

h 2h , 1 per-x) = e-+ 12el12ge x-

, (21T/) 112 

X f_+ooOO e- (y-e
h
x)212ijJ(y)dy (/>0). (4.8) 

A further simple example is provided by Eq. (3.23) with a, 
{3, T-dependent functions. In this case, the solution is also 
easily found and has the same functional form as (3.27) with 
the only difference that 

( X(T») = (A(T) B(T»)(X) , (4.9) 
yeT) C(T) D(T) y 

with A and B satisfying the following ordinary second-order 
differential equation: 

ji - (izla)y + a{3y = 0, (4.10) 

A(O) = 1, B(O) = 0, .-4(0) = 0, il(O) = - ia(O), 

andB, C 

ji - (/3 1{J)y + a{Jy = 0, C(O) = 1, 

D(O) = 0, C(O) = - i{J(O) , b(o) = o. ( 4.11) 

We believe that the examples discussed in this section are 
enough to stress the flexibility of the algebraic technique we 
propose. 

For completeness sake, we conclude this section with a 
discussion of the more general case ofa PDE reduced to the 
canonical form (3.33), where (a, ... ,E) are nonsingular T

dependent functions. In this case, the matrix image equation 
yields the following differential equation for the elements of 
the evolution matrix: 

(1 ~) = (rI2 + E)A + oaC (r12 + E)B + OaD). 
C D \r3A + (E - r12)C {JB + (E - r12)D 

(4.12) 

On the other hand, the evolution operator (3.36) can be 
written in the following matrix form: 

A _ ((12 + oFG)'H -I oG\ 
U-\p H)' (4.13 ) 

where, for later convenience, we have defined 

eS =I, G=geh+s, F=/e- h+s, H=e- h+s. (4.14) 

Comparing (4.12) and (4.13), we find that the functions H, 
G, and F obey the following first-order differential equa
tions: 

if = {JoG + (E - r12)H, 

G= (rI2+E)G+aH, 

P = {J' (12 + oFG)( l/H) + (E - rI2)F, 

with initial conditions 
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( 4.15a) 

H(O) = 1, F(O) = G(O) = o. (4.15b) 

The first and third equations (4.15a) can be combined to get 

PH - ifF = (J1 2
, I (4.16) 

which amounts to saying that the determinant of U is, as it 
must be, 12 = e2s. 

The evolution operator can be written in the more com
pact form 

where 

F' = (l/{J)[P- (E- rI2)F], 

H' = (l/{J) [if - (E - rI2)H]. 

( 4.17) 

( 4.18) 

Finally, it is worth stressing that Hand F satisfy the 
same differential equation 

ji + p( T)y + q( T)y = 0, p( T) = - /3 I{J - 2E, 

q( T) = - /3 (..r. - E) + L - i: - oa{J + r - e. 
(J 2 2 4 

( 4.19) 

In the next section, we will discuss examples ofPDE reduced 
to canonical form underlying group structures with dimen
sionalities larger than those of SU (2) or SU ( 1,1 ). 

v. CONCLUDING REMARKS 

In the previous sections, we have discussed examples 
generated essentially by SU(2) and SUO,1) groups. The 
extension to groups with higher dimensionality does not 
present any conceptual problem and only obvious computa
tional difficulties may arise. This is indeed the case of the 
SU(3) generalization ofEq. (3.23), namely, 

/(r,X I ,X2,X3 ) IT~O =g(X I ,X2,X3 )· 

The group structure underlying (5.1) can be recovered de
fining the operators 17 

1'3 =l..(X2 ~-XI ~), 
2 aX2 aX I 

A a A a 
V+=x 3 --, V_=x 1 --, 

aX I aX3 

(5.2) 

A a A a 
U+ =X3 --, U_ =X2 --, 

aX2 aX3 

y=_I_[2x3 ~-X2 ~-XI~]' 
,j3 aX3 aX2 aX I 

and noticing that their rules of commutation are just those of 
SU(3) (see Ref. 18). The solutions ofEq. (5.1) can be found 
along the lines discussed in the paper using the Gell-Mann 
and Ne'eman 3X3 matrix realization of the SU(3) genera
tors. Skipping the rather tedious details of the derivation and 
referring to Ref. 17 for further comments, we just quote the 
final result, namely, 
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f( r,XI ,x2'X3 ) = g(XI (r),x2 (r),x3 (r», 

where 
3 

Xi (r) = L Ai,j (r)xj , Ai,j (0) = 8i,j' 
j=1 

(5.3 ) 

(5.4 ) 

and any column of the matrix A satisfies the same system of 
first-order differential equations. 

(5,5) 

In analogy to what has been done in Sec. II and, for 
completeness sake, we will show that the technique devel
oped in the paper can al~o be ~tilized to derive the Weyl 
identity (see Ref. 11). If Q and P are operators such that 

A. A. A. 

[Q,P] = AL (5.6) 

and L commutes with both Q and P, then 

(5.7) 
A. A. A. 

The operators Q, P, L can be for example the generators 
of the Born-Heisenberg-Jordan group and a possible matrix 
realization is2 

Q~G 
0 

~). p~G 
0 

~). 0 0 
0 0 (5.8) 

L~G 
0 !). 0 
0 

We get, therefore, 

eQ+p~C-A 
0 

:-A12) 1 

0 
(5.9) 

The ordered form we are interested in can be cast in the form 

o 
(5.10) 

o 
comparing (5.10) with (5.9) the Weyl identity immediately 
follows. 

Needless to say, the extension of the method to the case 
of inhomogeneous PDE is trivial. The solution of (fo is a 
known function) 

a A. 

-f(r;x) =L(x)f(r,x) +fo(r,x), f(r,X)IT=O =g(x) ar 
( 5.11) 

is obtained in the form 

f( r;x) = U( r;x)[g(x) + F( r;x)], 

F( r,x) = iT U - I( r';x)fo (r;x)dr'. 
(5.12) 

The algebraic technique we have presented seems to of
fer a powerful and feasible tool to solve a wide class ofPDE. 
The method can be viewed as a useful alternative to more 
classical methods, which do not provide the same generality. 
Other algebraic techniques can be eventually used. For ex
ample, many operatorial identities of the Weyl, Sack-Weyl, 
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B.C.H., and Zassenhaus typelO,ll can be directly exploited, 
as well as ordering theorems of the Wei-Norman (W.N.) 
type. II These methods may be useful when simple algebraic 
structures are involved; but become very cumbersome with 
increasing group dimensionality. To give an example we 
stress that the W.N. tech.nique becomes particularly compli
cated even for the SU (3) case (see Refs. 17). The advantage 
of the matrix image method discussed here is that it natural
ly contains all the above quoted techniques, but allows us to 
skip most of their computational difficulties. 

Needless to say, it is crucial for applying algebraic tech
niques in solving a PDE to identify the algebra involved. As a 
recipe we can suggest an evaluation of the commutators be
tween the differential operators appearing in the equations 
under study, in order to find a closed structure. By so doing, 
it is possible to identify both the basis for the involved alge
bra and the relevant structure. Finally, the lowest-dimen
sionality matrix representation of the generators Li can be 
obtained by noticing that 

A A m A. 

[ LoX.] = L Li,jXj' k = 1, ... ,m, i = 1, ... ,n, 
j=1 

with nand m denoting the dimensionality of the algebra and 
of the relevant matrix representation, respectively. The op
eratorsXI ,,,,,Xm must be understood as the independent co
ordinates XI '''''Xm for multidimensional differential equa
tion or as X and a lax for one-dimensional equation. For 
further details, the reader is addressed to Ref. 9, where a 
multiplication table is also provided. 

A conclusive remark is in order to avoid possible mis
conceptions. We therefore state that the result we have ob
tained here, using Lie algebraic methods, could have been 
obtained using conventional methods. However, in practice, 
because of their concise and modular nature, the use of alge-' 
braic methods makes it possible to obtain results well beyond 
those currently available by any other method. 
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The configuration space for a path integral description of a p-brane is seen as a vector bundle 
over moduli spaces. The Einstein condition, applied to such vector bundles over compact 
Kahler manifolds, provides the required stability conditions. Consequently moduli spaces for 
such extended objects of higher dimensionality are constructed. Finally a Hermitian metric can 
be introduced in these moduli spaces. 

I. INTRODUCTION 

A geometric technique for the description of moduli 
spaces for the functional path integrals in string theories and 
other extended objects of higher dimensionality is presented. 
This subject seems to be of considerable interest in string 
theories, the statistical mechanics of multidimensional ex
tended objects, as well as quantum gravity. 

The purpose of this paper is to provide a method for the 
extension of the path integral formalism from string theories 
to extended objects of any dimension. Moreover it maintains 
three very advantageous points. First, the method is model 
independent, i.e., it can be applied to any theory that might 
seem appropriate. As a guiding example we consider the Po
lyakov string. Second, there are no limitations with respect 
to the dimensionality of the fundamental extended objects 
under consideration. This is especially important in light of 
the recent emergence of the p-brane and other higher-dimen
sional extended objects in the work of Townsend et al. I

-
5 

Third, the required a priori conditions for the method to be 
applicable are intuitively understood and are also relatively 
easy to verify. It must be pointed out however that the condi
tions are only sufficient but not necessary, that is to say we 
have no criterion that serves as a no-go theorem. 

The questions that face us are, in principle, quite well 
known. Given an action S for an extended object defined 
classically over a world sheet (or a world volume) M, what is 
the configuration space ~ for the partition function Z asso
ciated with that action and its symmetry group &? Is there a 
convenient description of~? What would the correspond
ing path integral measure df.L be? Is there a convenient way to 
obtain it? The answers to these problems are, again in princi
ple, relatively simple. The configuration space is formed as a 
bundle over the moduli space of M, mod (M). This is the 
analog to the process of finding the correct weights of the 
eigenvalues of a Hamiltonian in statistical mechanics when 
degeneracies are present. The measure is found from the de
scription of the properties of one-forms in the tangent space 
of the moduli. This is the analog to finding dx as the integral 
measure in real analysis. What we strive for in this paper is to 
provide a physical answer to these fundamental questions, 
especially as they pertain to multidimensional string models. 

This article is articulated into six sections. In Sec. II we 
present the essential steps that lead to the description of the 
configuration space of the path integral in terms of moduli 

spaces and also review the Belavin-Knizhnik theorem. In 
Sec. III we introduce the Einstein condition, along with 
some of its consequences, as the counterpart to the stability 
requirement necessary in the Belavin-Knizhnik theorem. 
We tackle the problem of the general description of the mod
uli space and some of its fundamental properties in Sec. IV, 
with the p-brane in mind. In Sec. V we propose, in passing, a 
way to introduce a Hermitian metric in the moduli space via 
an inner product of one-forms in the tangent space of the 
moduli. This turns out to be a convenient choice for mea
sures in terms of applications. Finally in Sec. VI we present 
our concluding discussion. 

II. THE TWO-DIMENSIONAL STRING 

The approaches to problems of this form have tradition
ally elaborated on the work of Polyakov on the bosonic and 
fermionic strings6 or the Green-Schwarz superstring7

•
8 and 

have studied the space of Riemannian metrics that the base 
space manifold M can have, along with its associated mea
sure. 9

-
12 We shall briefly review some of these results. 

A. The partition function 

The principal idea in the process is to start from an ac
tion of the form 

S(y,x) = fM rry"baaXabXd2z, (1) 

where y"b(Z) is the metric on M and classically one would 
vary both y"b(Z) and x(z) to obtain a Nambu-Gotto string. 
For such an action we attempt to construct the partition 
function 

Z= f DxDye-S(r.x ) (2) 

by integrating over all metrics of M denoted by J( and all 
space-time embeddings denoted by If. The problem of deter
mining the correct configuration space ~ , which is a subset 
of J( X If, is nontrivial because the gauge group & == C(J * ~ , 
the semi-direct product of the conformal group C(J (or the 
Weyl rescaling group) and the diffeomorphic group ~ (the 
group of coordinate transformations) leaves the action S in
variant. At the same time care need be taken for the compu
tation of the integral measure in ~ . 

Let us look into the first problem, the determination of 
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the configuration space. The starting point should be vii X ~ 
from which one should eliminate the redundant degrees of 
freedom brought by the gauge group. As was pointed out by 
Alvarez9 simply considering ~ = vii X ~ /C( *!P does not 
completely solve the problem of eliminating all the gauge 
redundancies as one might expect. In general such an exci
sion will leave a finite number of degrees of freedom in ~, 
the Teichmiiller parameters. As we know 
vii /C( *fP =:mod(M), the moduli space of Riemannian sur
faces M. It is well known that mod (M) is a complex mani
fold of complex dimension 

{ 

0, for v= 0, 

dim(mod(M» = 1, for v= 1, (3) 

3v - 3, for v>2, 
where v is the genus, i.e., the number of handles ofthe sur
face. 

Ifwe follow traditional conventions and divide out only 
the diffeomorphisms that are homotopic to the identity fP I 
then we obtain vii /Cfl *!P I=: t(M), the Teichmiiller space. 
Although t(M) is contractible, this is not necessarily the 
case for its quotient with the group of diffeomorphisms not 
homotopic to the identity, !P /!P I> as this may in fact intro
duce nontrivial topology in ~. Therefore the general de
scription of the configuration space ~ will be in terms of a 
twisted bundle over mod (M). The twists have several im
portant consequences, especially whenever fermions are in
volved, since they yield discrete anomalies, but for the mo
ment we shall not discuss such cases, interesting though they 
maybe. 

Having taken care of this problem, we can write the 
partition function for the string 

Z = r dfL det' a 2y (det' aoy ) -13, for v>2, (4) 
Jrnod(M) _ 

where dfL is the Petersson-Weil measure on the moduli 
space, a2 is a Laplacian on quadratic differentials, aD is the 
Laplacian on functions in M, ji is a metric of constant nega
tive curvature, and finally the prime on the determinants is a 
reminder that the zero modes of the Laplacians have been 
excluded via some regularization scheme, e.g., 

det' aOy = e-;"(O). 

The case for genus one, the computation of Z yields the well
known result 

Z-.!.... r dz/\dZ 
- 2 JM' (Imz) 14 Ia(z)1 2 

' 

where 
00 

a(z) = e21riz II (1 _ e21rjnz)24 
n=1 

and the region of integration M' is specified by 

M' = {z:lzl>l, IRezl.q, Imz>O}. 

(5) 

As a note, observe that Eq. (5) can be expressed in terms of 
the theta function 

00 

(}(a) ~ e21Tina + 1Tin
2
z ,z = ~ 

n = - 00 

since we have 
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a(z) = ~1rjz((}(O,z)(}( 1/~,z)(}(Z/2,z) r 
Analogous expressions have been written for the path 

integral measure of the fermionic and heterotic string, where 
log(det' a) has been transformed into sums over appropri
ate geodesic curves by means of the Selberg trace formula 
and its supersymmetric analogue. 

B. The Belavin-Knlzhnik theorem 

Perhaps a more useful way oflooking at the problem of 
determining the functional measure should be a means to 
express dfL directly, in terms of the complex geometry of the 
moduli space, i.e., through properties of differential forms, 
rather than through spectral invariants of operators. This 
point of view forms the building block upon which we may 
extend the well-known techniques of string theories to arbi
trary extended objects. 

As a starting point we should review the case for the 
Polyakov string and then proceed to extend the results to 
higher dimensions. Let us begin with some results from Bela
vin and Knizhnik 13,14 and Mumford. 15,16 The principle idea 
behind this approach lies in the following nice property of 
the moduli space of Riemannian surfaces. As we know 
modeM) is a complex algebraic manifold but it does not 
have any natural global coordinates. However the holomor
phic one-forms in modeM) can be described in terms of qua
dratic differentials on complex curves that are parametrized 
by the points of mod (M). We can find a suitable basis for the 
quadratic differentials q = (ql ,q2' ... ,q3v _ 3) depending ho
lomorphically on parameters from mod (M) and we can also 
have a basis for the differentials of the first kind 
U = (U I ,U2 , ••. ,uv )' It has been shown in Refs. 15 and 16 
that there exists a unique, up to a multiplicative constant, 
holomorphic function / that depends on the choices of the 
bases q,u such that the form 

M =/ ql /\q2/\ ... /\q3v- 3 (6) 

v (U I /\U2 /\ ••• /\u v )13 

is a global section of an appropriate line bundle in mod(M). 
This section is meromorphic at infinity, that is to say that it is 
an algebraic function, has a pole of order 2, and does not 
have any zeros on mod(M). This is the celebrated Mumford 
form. 

It was Belavin and Knizhnik in Ref. 14 that extended 
this statement even further by proving that the Polyakov 
measure on modeM) is essentially the modulus squared of 
the Mumford form. The resulting expression for dfL is writ
ten in terms of one-forms Qj corresponding to the qj on 
modeM) as 

(7) 

where the bar implies complex conjugation and the integral 
is over the Riemann surface where the U j are defined. 

Having seen this it becomes quite apparent where the 
advantage of such a technique lies. The computation of the 
path integral measure is equivalent to the description of the 
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Mumford form that by its definition depends a priori only on 
the implicit global conditions. There is another great advan
tage to this methodology, namely that it can be directly ex
tended to describe the appropriate functional measure for p
dimensional strings that is presented in later sections. 

There is a small technical problem to be resolved before 
the method presented here can be applied to extended ob
jects in higher dimensions. The implicit conditions involved 
in Mumford's proof are the requirements for stability of the 
bundles over Riemannian surfaces. In practical terms these 
conditions are intractable for physicists and thus the use of 
this technique is relatively limited. We will, however, com
pensate for this technical problem by proposing instead a 
different but completely equivalent condition that is far 
more convenient to check and also physically appealing as 
we shall see in the immediately following section. This new 
condition, devoid of the handicap of stability requirements, 
allows us to extend the methods of Belavin and Knizhnik to 
the case of multidimensional strings. 

III. THE EINSTEIN CONDITION 

Recalling from our previous discussions that the general 
description of the configuration space is a bundle (often 
twisted) over mod(M) we should initially concentrate our 
efforts in studying properties of bundles. The purpose of this 
section is to introduce the Einstein condition, in as clear and 
simple way as possible, along with some of its consequences. 
Here lies an important contribution of this paper, for as we 
shall see the Einstein condition is the substitute for the stabil
ity requirements referred to at the end of Sec. II A. This is 
very important since the realization of this condition in 
physical terms is quite general, thus easily imposed and veri
fied, and also it has a transparent geometric meaning which 
is intuitively easy to grasp. 

A. Definitions and consequences 

Given a holomorphic vector bundle E of rank (fiber 
dimension) r over a manifold M, with dimension 
dim(M) = n, a Hermitian metric (or a Hermitian struc
ture) h on E is a Hermitian inner product defined on the 
fibers of E. Bundles bestowed with such metrics are called 
Hermitian. On the other hand, a Hermitian metric g on the 
manifold M is defined as the Hermitian metric g on its tan
gent bundle TM. 

The mean curvature K of a Hermitian bundle E is de
fined by 

K i ,...abRi 8 
j =.5 jab' ( ) 

Here R is the traditional curvature tensor, defined through 
the connection D of E. The bundle E is said to satisfy the 
weak Einstein condition with factor fprovided that 

K =PE<;:}KJ =.foJ, (9) 

wherefis a real function defined on M. This means that the 
mean curvature is essentially proportional to the identity. If 
it turns out thatfis a constant, then E is said to satisfy the 
Einstein condition. A Hermitian bundle E that satisfies this 
condition is called an Einstein-Hermitian bundle. 
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The Einstein condition has far reaching consequences. 
Some of the simplest ones are as follows. 

(i) Every Hermitian line bundle over a complex mani
fold M satisfies the weak condition, irrespective of the metric 
chosen for M. 

(ii) A Hermitian vector bundle over a Riemannian sur
face satisfies the weak condition if and only if it is projectively 
flat. 

(iii) The Whitney sum of two bundles EI and E2 satis
fies the weak condition if and only if both bundles satisfy the 
weak condition with the same factor f 

(iv) The tensor product of EI ® E2 satisfies the weak 
condition with factor fl + h assuming that each bundle sat
isfies the condition, respectively, with the appropriate fac
tors. 

(v) If the base M of the bundle E is a compact complex 
manifold then we have 

r C
I 

(E,h) /\ cf>n - I = _r_ r fcf>n, 
JM 21Tn JM 

(10) 

where CI (E,h) = - 21Ti tr(R) is the first Chern form of E 
with respect to the metric and cf> is the fundamental two
form, also known as the Kahler two-form, which can be ex
pressed in terms of local coordinates on M by 

cf> = ..r=T gi]dzi 
/\ £!ii. 

However, the important consequence of the Einstein 
condition, of interest to physicists, is the fact that every irre
ducible Einstein-Hermitian bundle over a compact Kahler 
manifold is stable. 17-19 As already mentioned the concept of 
stability of a bundle is not new. It is exactly this idea, pio
neered by Mumford, that led to the Belavin-Knizhnik 
theorem when applied to bundles over Riemann surfaces. 

The need for stability arises from the fact that the modu
li space of holomorphic structures need not be connected in 
general (i.e., it's non-Hausdorff) unless we are limited to 
stable (or semi-stable) structures (see Ref. 20 for example). 
Stability then is a de facto necessity for the existence of 
"good," i.e., physically interesting moduli spaces. If the 
moduli spaces are not connected then the entire concept of 
perturbation theory fails since there will certainly exist areas 
of the moduli, i.e., acceptable metrics, which will be impossi
ble to reach by infinitesimal deformations of "fiducial met
rics." We shall not pursue here the details of the algebraic 
theory but we shall present the fundamental concept of sta
bility. 

The definition of cf>-stability (or cf>-semistability) is as 
follows. Assume that Y is a coherent sheaf over a compact 
Kahler manifold (M,g) of dimension nand cf> is the Kahler 
form of (M,g). Since the manifold in Kahler cf> is a closed 
(1,1 )-form on M. The first Chern class of Y is defined by the 
first Chern class of the determinant bundle of Y, i.e., 

CI (Y) = ci (det Y). (11) 

This is also represented by a real closed (1, 1) -form on M. 
The cf>-degree of Y is defined as [see also Eq. (10)] 

deg(Y) = JM CI (Y) /\cf>n-I. (12) 

The degree to rank ratio of Y is defined, in direct analogy to 
the degree to rank ratio for bundles, as 
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/-l(Y) = deg(Y)/rank(Y). (13) 

The sheaf Y is said to be cI>-semistable provided that for 
every coherent subsheaf Y' of positive rank we have 

/-l (Y') </-l( Y). 

If, moreover, it happens that /-l(Y') </-l(Y) for all sub
sheaves with 0 < rank(Y') < rank(Y) then Y is said to be 
cI>-stable. By analogy, a vector bundle E over M is said to be 
cI>-stable or cI>-semistable if the sheaf Y (E) of germs ofholo
morphic sections of E is respectively cI>-stable or cI>-semista
ble. 

B. Criteria for stability 

The mathematical definition of stability is of very little 
use to physicists as it would be extremely cumbersome to 
check in every case. This is the reason why we have intro
duced the Einstein condition in its place. We present a con
venient criterion, stated in the form of a theorem, that guar
antees the stability of bundles under two conditions that are 
quite general and relatively easy to verify. The stability 
theorem provides the necessary requirements for stability of 
bundles as well as a useful decomposition property. It can be 
put in the following way. 

Theorem 1: If E is an Einstein-Hermitian bundle, with a 
Hermitian structure h, satisfying the Einstein condition with 
factor f, over a compact Kahler manifold M, with metric g, 
then E is cI>-semistable and it is a direct sum 

(E,h) = 61 (Ek,hk ) 
k 

of cI>-stable Einstein-Hermitian vector bundles (Ek ,hk ) 

with the same factor f as (E,h). 
A crucial feature here is that there is no limitation as to 

the dimensionality of the base manifold M. We shall use this 
to our advantage in the following sections. 

This result is analogous to several algebraic theorems 
proven by Takemoto,21 Bogomolov,22 and Gieseker,23 
which generalize Mumford's results to the case of the stabil
ity of sheaves, over algebraic surfaces of higher dimensions. 

IV. THE MODULI SPACE 

Stability of Einstein-Hermitian bundles is not limited to 
two-dimensional base manifolds and here lies the impor
tance of the Einstein condition. Everything that up to now 
has been applied to the Polyakov string can now be applied 
to the case of p-dimensional extended objects. The extension 
of the action in Eq. (1) to the p-brane case is trivial and the 
partition function is still given by Eq. (2), the differences 
being that the world sheet M is now a world volume and that 
the gauge group f§ may not be the same as for the two
dimensional string. 

Since the discussion that follows does not depend on a 
particular model for a p-brane we shall explicitly refrain 
from choosing one over any other. It must be pointed out, 
once again, that this technique applies to any string model 
that we may come up with, two-dimensional or p-dimension
aI, and consequently we do not wish to pose any limitations 
in that respect. We shall however play favorites and proceed 
with p-branes in mind, since there is a need to properly de-
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scribe the steps necessary for the construction of the parti
tion function. 

The essential fact remains that the configuration space 
for the partition function is still going to be described as a 
bundle over mod (M) and consequently it should be treated 
as such. Also we need to keep in mind that we will require a 
description for the tangent space of the moduli, since there 
lies the solution to the problem of finding the appropriate 
integration measure. These questions are answered in the 
following sections. 

As already mentioned, the first nontrivial problem 
namely the connectedness of the moduli space for the p
branes case has been eliminated. The reason of course is that 
the connectedness of the moduli space is guaranteed as long 
as stability is maintained, that is as long as the Einstein con
dition is satisfied. We shall therefore assume from the outset 
that we can always impose the Einstein condition. Conse
quently we can proceed to the next step, namely the descrip
tion of the moduli space, pertinent to the general p-dimen
sional string, and its properties. 

It has been shown24,25 that the moduli space of Ein
stein-Hermitian connections is open in the moduli space of 
holomorphic structures. Moreover it has a natural complex 
structure, very much analogous to the Dolbeault complex of 
holomorphic structures, which can be utilized to describe 
some of its important properties in terms of cohomology 
groups of the bundle. 

A. Definitions and basic notions 

Consider E a C oc complex vector bundle of rank r over a 
complex manifold M and GL(E) the group of automor
phisms of E, that is the group of transformations that induce 
the identity transformation on the base M, and 9J 0 (E) the 
set of linear maps between differential one-forms 
Do:A o(E) ..... A 0,1 (E) that satisfy 

Do (ab) = doa'b + a'Dob, for aEA o(E) and bEA o. 

All ofthese maps can be generalized to higher-order (p,q)
forms Do:A M(E) ..... A p,q+ I(E),p,q>O such that: 

Do (a,{3) = doa 1\{3 + ( - 1)r+ sa 1\ Do{3, 

for aEA r•s,{3EAM(E). (14) 

Consider the subset J¥'o (E) ~ 9J 0 (E) containing connec
tions that satisfy the condition Do ° Do = O. This set can be 
thought of as the set of holomorphic structures in E. The 
group GL(E) acts on 9J 0 (E) in the usual way 

Do ..... D'o = l' -loDo01' = Do + l' - l odo1', 

DoE9Jo (E) and 1'EGL(E). (15) 

Equivalence of hoi om orphic structures implies that they be
long in the same GL(E) orbit. Then one has 
J¥'o (E)/GL(E) as the moduli space of hoi om orphic struc
tures in E. 

Consider now a Hermitian structure h in E and take 
U(E) CGL(E) to be the unitary automorphisms of E. The 
connections D(E)E9J (E) that are induced by the structure 
will be of the form D:A o(E) ..... A I (E) and their action is 
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D(ob) = dO'b + o'Db, for oeA o(E) and beA 0, 

d(h(ol ,02» = h(Dol ,02 ) + h(OI ,D02)' 

for 01>02eA o(E). (16) 

All these connections can be extended uniquely to the case of 
general (p,q)-forms in the sense that D:A M(E) 
-+AP+I·q(E) +AM+I(E) which obey 

D(a/\{l) =da/\{l+ (-l)'+sa/\D{3, 

for {leA M(E), aeA r.s. (17) 

One can also naturally decompose the action of the connec
tionamong (O,1)-and (1,Q)-formsby havingD = Do + D I , 
where Do:A o(E) -+A o.I(E) and DI:A o(E) -+A l.o(E) and 
thus obtain the maps 

~(E)-+~o(E), when D-+Do. (18) 

As a matter of fact, if we know Do E~ ° (E) then we can 
easily determine the remainder DI from the relation 

do(h(ol ,02» = h(Dool ,02 ) + h(OI ,DI O2 ), 

for 01>02eA o(E) (19) 

and by its construction D = D~ + DI E~ (E). We can al
ways consider ~ (E)as an infinite-dimensional affine space 
isomorphic toA I (End (E) ), i.e., the space of one-forms with 
values in the bundle End(E). Again in a completely analo
gous fashion as previously we can define the subspace of 
connections K(E) C ~ (E):D = Do + DI such that their 
(0,1) components satisfy DooDo = O. Equivalently we can 
say 

Ko (E) = {DoE~ 0 (E) with Do oDo = O}. 

K(E) = {DE~(E) with DoEKo(E)}. 

As one might expect K(E) and Ko (E) and ~ (E) 
and ~ 0 (E) are closely linked. We can see this in the follow
ing way. Suppose DEK(E). As we know Do defines a 
unique structure h in E such that Do = do and consequently 
this connection is the Hermitian connection of E with re
spect to the structure. On the other hand, each holomorphic 
structure DoEKo (E) yields a unique connection 
D = Do + DI EK(E) which of course is the Hermitian con
nection of E with respect to Do. Essentially there is a map 
that links the two spaces b:K(E).,...Ko (E). 

The action of U(E) on ~ (E) is in analogy with Eq. 
(15) 

D-+D' = u - 10Dou = D + u - lodu, 

for DE~ (E) and uEU(E) (20) 

and will leave K(E) invariant. However note that since 
there is a bijection between ~ 0 (E) and ~ (E) the action of 
GL(E) on ~o (E) must have some bearing on ~ (E). Such 
a correspondence is established via 

D-+D' = T *oDI OCT *) -I + T -loDoOT, 

for DE~ (E) and TEGL(E), (21) 

where T * is the adjoint of T in the sense that 
h(ol ,T *02) = h( TOI ,02 ), We then have the following prop
osition. 

Proposition 2: The unitary subgroup VeE) contains au-
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tomorphisms of E that are parallel with respect to D and 
consequently it is naturally isomorphic to the centralizer of 
the unitary group VCr) of the holonomy group of the con
nection D. Consequently it is compact. 

Notice that if the holonomy group of D is irreducible 
then V (E) is essentially the group of scalar multiplication 
by OEC:IO 1= 1 and thus it is isomorphic to 
V(1) = OlE; OEC:IO 1= 1. This is much smaller than the 
center of V (E) in general, which would contain automor
phisms of the form t/JIE' where t/J are functions with It/JI = 1. 

We also propose that the action of V (E) on ~ (E) or 
K(E) is proper. Consequently the quotient spaces 
~ (E)IU (E) and K(E)IU (E) are certainly going to be 
Hausdorff. 

With the added assumption that the base manifold Mis 
a compact Kahler one, with Kahler metric g, we can consid
er ~ (E) CK(E) which will contain Einstein-Hermitian 
connections, that is to say 

~(E) = {DEK(E):K(D) = ~/E}' (22) 

where ~ is a constant and K(D) is the mean curvature of the 
connection. In general, if DE~ (E) and UEV (E) then 

K(D')=u-IOK(D)ou (23) 

and in addition 

R(D') = (u-IoDou)o(U-IODOu) 

=u-IoR(D)ou (24) 

and consequently one can see that the action of VeE) on 
~ (E) will leave ~ (E) invariant. By defining the quotient 
space ~ (E)IU(E) as the moduli space of Einstein-Hermi
tian structures in E we have the following proposition. 

Proposition 3: The moduli space ~(E)IU(E) of Ein
stein-Hermitian structures in E is Hausdorff and can be in
jected into the moduli space Ko (E)/GL(E) of holomor
phic structures in E. 

B. Properties of moduli 

Structures, i.e., inner products, defined on bundles are 
not always the most convenient concepts to handle. How
ever structures in bundles induce connections, a concept that 
we are much more familiar with, and as a result there is 
always a strong link between the properties of structures and 
connections. It should come as no surprise then that the pre
vious theorem can be extended to read as follows. 

Theorem 4: The moduli space ~ (E)IU(E) of Einstein
Hermitian connections in E is open in the moduli space 
Ko (E)/GL(E) of hoi om orphic structures in E. 

This theorem allows us to work with Einstein-Hermi
tian bundles and connections, as opposed to structures, 
knowing 0 priori that the moduli space will be well defined. 

In addition to this theorem, it has been shown25 that the 
moduli space of Einstein-Hermitian connections is in effect 
describable in terms of cohomology groups of the bundle. 
This is the analogous statement to the Belavin-Knizhnik 
theorem for the Polyakov string. 

Theorem 5: The moduli space ~j(E)IU(E) ofirreduci
ble Einstein-Hermitian connections in E is a complex ana
lytic space, nonsingular at the point D if 
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H 2(M,Endo(EDo ) = ° and its tangent space at such a point 
is isomorphic to the sheaf cohomology group 
H I(M,End (E Do». 

Please note that Endo(ED ) CEnd(En ) is the space of 
o ~o 

traceless endomorphisms of the bundle. Also note that there 
is no mention of the dimensionality of the base manifold. 

The physical implications here are obvious. The pre
vious theorem describes the moduli space, essentially via the 
connection, from the symmetry group of the action. In addi
tion the description of the tangent space of the moduli in 
terms of cohomology groups of the bundle is a welcome bo
nus, since it will help us determine the path integral measure 
associated with the partition function. 

It is important to know the dimensionality of the moduli 
spaces. At least for the cases where the base manifold M 
happens to be compact and Kahler, with a Kahler form <I> 
with a Hermitian vector bundle E of rank r over it, then the 
moduli space 'iff'(E)/U(E) is a nonsingular Kahler mani
fold if SCI (M) I\. <1>;;.0, where CI (M) is the first Chern class 
of M. The dimension of the moduli space, assuming that it is 
not empty, can be easily computed from the Riemann-Roch 
formula and is equal to one of the following: 

(i) 2rc2 (E) - (r - 1)cI (E)2 + y2(h 0,1 - 1) + 1 

if fMC I (M) I\. <1>;;.0 and the canonical line bundle LM is 

nontrivial, 
(ii) 2rc2 (E) - (r - 1 )c I (E)2 + y2(h 0,1 - 2) + 2 if 

L M is trivial, 
(iii) 2rc2 (E) - (r - 1 )c I (E)2 - y2 + 1 if CI (M) > 0, 

where C p (E), P = 1,2 are the Chern classes of E and h p,q are 
the appropriate Hodge numbers. As we know there is a sim
ple relation between these, the Betti numbers bs and the 
Euler characteristic X of a manifold, namely, 

Note that if L M is indeed trivial then M is either a torus with 
h 0,1 = 2 or a K3 surface with h 0,1 = ° and then the moduli 
space can have a holomorphic symplectic structure. These 
are in fact the only classes of surfaces with symplectic struc
tures in two dimensions. In higher dimensions though, 
should one require the imposition of a symplectic structure, 
several different possibilities must be investigated. The rea
son symplectic structures are mentioned here is due to the 
fact that they appear to be quite useful in compactification 
schemes at least as far as string models are concerned. 

v. THE METRIC 

At this point we wish to define a Hermitian metric in the 
moduli space. This is not an essential feature of the method 
we present and thus the reader may directly proceed to the 
next section. However, it is a convenient choice to be made in 
the case of applications. The essential point of this section 
lies in the fact that the tangent space of the moduli is isomor
phic to H I(End(EDo» and consequently an introduction of 
a Hermitian inner product in the latter will generate a Her
mitian metric in the former. 
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A. Definitions 

Let us begin from the L i space of one-forms over M 
with values in the skew Hermitian endomorphisms of E. Call 

A=Li(A1(End(E,h»), for k>n. (25) 

For any 1/IEA we can always write the usual decomposition in 
(0,1) and (l,O)-forms as 

t/J=t/Jo+t/Ju (26) 

where t/Jo is a (O,I)-form and t/JI is a (l,O)-form. Then the 
condition that t/J is skew-Hermitian can be written as 

¢' = - t/J¢::?t/JI = - ¢~. 
We can easily define a complex structure J on A as 

Jt/J = it/Jo - it/JI , 
so that we have naturally decomposed A in two parts 

(27) 

(28) 

K = L i (A O,I(End(E»), K = L i (A I.O(End(E»). 
(29) 

Obviously the natural isomorphism from A-+K (or K) is 
obtained by setting 

t/J-+t/Jo (or t/JI)' (30) 

In order to define a Hermitian inner product in K consider 
the local case of the inner product (u,v) :u,VEK. Expressing 
this in terms of an orthonormal basis (e I ,e 2' ... ,e r) of the 
fiber of E and an orthonormal frame (m I ,m2, ... ,m n ) of the 
base M we can write 

~ "-k " -k vee;) = £.. v';km ej = v';km ej , (31) 
j,k 

and thus the inner product can be written as 

(u,v) = L u{k!P;k' (32) 
ijk 

A more useful expression for the inner product of one-forms, 
in terms of their traces, can be given. Recalling that vt = v' 
and that 

t ~"-" I -k tr(ul\.v ) = - £.. u';kiYi/m I\.m , (33) 
ijkl 

we can write the inner product as 

(u,v) = Q t( - i tr(u I\. vt », (34) 

where Qt is the adjoint operator of Q = (<I> I\. .), which is 
nothing more than the exterior multiplication with the 
Kahler form. On the other hand, we also have 

- in tr(u I\. vt) I\. <l>n - I = (u,v)<I>n, (35) 

and consequently we can define a Hermitian inner product 
h' onKby 

h '(u,v) = fM (u,v)<I>n 

= -i fM ntr(ul\.vt)I\.<I>n-l. (36) 

From this we can see the corresponding inner product h in A 
to be 
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h(u,v) = h '(uo,vo ) + h '(vo,uo ) 

- i fM n tr( Uo A vi; + Vo A ui; ) A q,n - I 

- i fM n tr(uo AVI - U I Avo) Aq,n-I, (37) 

and the two-form liJ corresponding to this inner product 
would be 

liJ(u,v) = fM ntr(uAv)Aq,n-l. (38) 

It so happens26 that this inner product will in fact induce a 
Kahler metric on g'(E)!U(E), by applying it to harmonic 
forms, u,veH I(M,End (E Do». Recall that by Theorem 5 H I 
is isomorphic to the tangent space of the moduli space. 

Also noteworthy is the fact that the real part of the 
Kahler metric, namely the Riemannian metric on the modu
li, will depend on the Riemannian metric on Mbut it will not 
depend on its complex structure. For example suppose that 
M is a compact Riemannian manifold with a holonomy 
group such that M is Ricci flat and Kahler with respect to 
any complex structure consistent with its holonomy. The 
Riemannian metric on the moduli is independent of the com
plex structure we choose on M despite the fact that the com
plex structure and the Kahler structure of the moduli do in 
fact depend on the complex structure on M. 

The Riemannian metric is easily obtained by applying 
Eq. (37) to harmonic forms u,v in the real tangent space 
g'(E)!U(E). Then 

g(u,v) = h(uo,vo ) + h(uo,vo ) 

= fM«Uo,vo) + (uo,vo»q,n 

= fM (u,v)q,n, (39) 

where (u,v) is defined by the Riemannian metric and q,n 
would be the volume element of M. 

VI. CONCLUDING REMARKS 

Let us recapitulate the new and important contributions 
of this paper for the path integral formulation of p-brane 
theory. First, as we have seen, the configuration space can be 
described as a vector bundle over mod(M). It becomes ap
parent then that the introduction of the Einstein condition is 
the only requirement needed and this greatly facilitates our 
study of ~, the configuration space, over which the parti
tion function is defined. Second, the path integral measure 
can be found in the tangent bundle of mod(M). This has 
been described in terms of the cohomology of the bundle. 
Third, we have at our disposal the convenience to introduce 
a Hermitian metric in the moduli space. 

In this method it is important to recognize the fact that 
the only a priori condition we required depends on the im
plicit global topology of the string (or membrane) and not 
on spectral invariants of local operators. The condition is 
both intuitive and simple as well as convenient to check for 
any particular string model we wish to consider. It is also 
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interesting to note that this technique applies equally well to 
2-D or p-dimensional string theories. 

As an example, consider the cases of supersymmetric 2-
D string theories, where the base manifold of the string was 
proposed to be Calabi-Yau, 27,28 i.e., a compact Kahler mani
fold with SU (3) holonomy. The Einstein condition is trivial
ly satisfied for all these models. In addition we know already 
what the measure looks like by the Belavin-Knizhnik con
struction. On the other hand, there are other physical con
siderations that cause serious problems. These have nothing 
to do with the applicability of the Einstein condition but 
stem from purely dynamical considerations pertaining to the 
model. We know now that considering such base spaces, on 
which to write a supersymmetric u-model action, will lead to 
a non vanishing beta function in fourth- and fifth-order per
turbation calculations29

,3o the physical implication here be
ing that the theory does not have asymptotically free behav
ior from its inception. There is no known result of similar 
nature that blemishes the extension of this model to the case 
of a supersymmetric p-dimensional membrane. 

Also noteworthy is the fact that this description of the 
moduli space for the partition function, as well as the tangent 
space, for multidimensional extended strings comes to com
plement the classification of p-dimensional extended super
symmetric objects by Townsend et al., 1,2 where the Eilen
berg-Chevalley cohomology of the super-translation group 
l: was considered. The pertinent bosonic, or supersymme
tric, action would lead to a definition for an appropriate con
nection and consequently provide the metric on the base M. 
Despite the fact that no attempts were made therein to write 
a path integral formalism for such models, it is quite obvious 
that the Einstein condition must be verified a priori before we 
can proceed with the computation of the partition function 
or more importantly consider any perturbative expansions 
for multiloop calculations. Once again it must be mentioned 
that there is no reason to disqualify a certain string model on 
the grounds that it does not satisfy the Einstein condition. 
However, our analysis in such cases will become quite com
plicated and we should be extremely careful in our construc
tion of moduli spaces appropriate for the partition functions 
and their corresponding measures. 

This is of course only the beginning of the investigation 
and there is a need for further development and application 
of these techniques to potentially interesting multidimen
sional string models that will be presented elsewhere. 3 I 

ACKNOWLEDGMENTS 

The author wishes to thank his Ph.D. thesis advisor Dr. 
Walter W. Wada for his continual support and many stimu
lating discussions. 

I A. Achucarro, J. Evans, P. K. Townsend, and D. L. Wiltshire, Phys. Lett. 
B 198, 441-446 (1987). 

2 J. A. de Azcarraga and P. K. Townsend, Phys. Rev. Lett. 62, 2579-2582 
(1989). 

'E. Bergshoelf, E. Sezgin, and P. K. Townsend, Phys. Lett B 189, 75-78 
( 1987). 

4 J. Hughes, J. Liu, and J. Polchinski, Phys. Lett B 180, 370-374 (1986). 
5 P. K. Townsend, Phys. Lett. B 202,53-57 (1988). 
6 A. Polyakov, Phys. Lett. B 103, 207-210 (1981); 103,211-213 (1981). 

Menelaos S. Kafkalidis 2870 



                                                                                                                                    

7M. B. Green, J. H. Schwarz, and E. Witten, Superstring Theory (Cam-
bridge U.P., Cambridge, 1987). 

S J. Schwarz, Phys. Rep. 89, 223 (1982). 
·0. Alvarez, Nucl. Phys. B 216,125-184 (1983). 

10 L. Alvarez-Gaume and P. Nelson, CERN Preprint CERN-TH 4615/86. 
11 E. D'Hoker and D. H. Phong, Nucl. Phys. B 269,205-234 (1986); 278, 

225-241 (1986); 292, 317-329 (1987); Princeton preprint PUPT-1039 
(1988). 

12G. Moore and P. Nelson, Nucl. Phys. B 266,58-74 (1986). 
IJ A. A. Beilinson and Y. I. Manin, Commun. Math. Phys. 107, 359-376 

(1986). 
14 A. A. Belavin and V. G. Knizhnic, SOy. Phys. JETP 64,214-228 (1986). 
"D. Mumford, Enseign. Math. 23, 39-100 (1977). 
16D. Mumford and J. Fogarty, Geometric Invariant Theory (Springer Ver

lag, Berlin, 1982), 2nd ed. 
17S. Kobayashi, Proc. Jpn. Math. Acad. 58, 158-162 (1982); Proc. Jpn. 

Acad. 62, 21-24 (1986); Nagoya Math. J. 101, 37-54 (1986). 
18M. Liibke, Manuscripta Math. 42, 247-252 (1983). 
19 C. Okonek, M. Schneider, and H. Spindler, Vector Bundles on Complex 

Projective Spaces, Progress in Math. Vol. 3 (Birkhiiuser, Boston, 1980). 
20V. A. Norton, Indiana Univ. Math. J. 28, 365-387 (1979). 

2871 J. Math. Phys., Vol. 31, No. 12, December 1990 

21 F. Takemoto, Nagoya Math. J. 47, 29-48 (1973); 52,173-195 (1973). 
22F. A. Bogomo1ov, Math. USSR Izv. 13, 499-555 (1978); Proc. Int. 

Congr. Math. Helsinki, 517-524 (1978). 
"D. Gieseker, Ann. Math. 106,45-60 (1977); Am. J. Math. 101, 77-85 

(1979). 
24H. J. Kim, "Curves and Holomorphic Vector Bundles," Ph.D thesis, 

Univ. of California, Berkeley, 1985 (unpublished). 
2sH. J. Kim, Math. Z. 195, 143-150 (1987). 
26Y_T. Siu, Lectures on Hermite-Einstein Metrics/or Stable Bundles and 

Kahler-Einstein Metrics, DMV Seminar (Birkhiiuser, Basel, 1987), Vol. 
8. 

27p. Cande1as, G. Horowitz, E. Strominger, and E. Witten, Nucl. Phys. B 
258,46-74 (1985). 

28E. Witten, E. Nucl. Phys. B 258, 75-100 (1985). 
29M. T. Grisaru, A. E. M. van de Ven, and D. Zanon, Phys. Lett. B 173, 

423-428 (1986); Nucl. Phys. B 277, 388-408 (1986); 277, 409-428 
(1986). 

30 M. T. Grisaru, D. I. Kazakov, and D. Zanon, Nucl. Phys. B 287, 189-204 
(1987). 

31 M. Kafkalidis, in preparation. 

Menelaos S. Kafkalidis 2871 



                                                                                                                                    

Backlund transformations for surfaces in Minkowski space 
Bennett Palmer 
Technische Universitat Berlin. Fachbereich 3-Mathematik. Strasse des 17 Juni. 135. 1 Berlin 12. West 
Germany 

(Received 13 January 1989; accepted for publication 27 June 1990) 

A Backlund transformation is constructed between spacelike surfaces of constant negative 
curvature and timelike surfaces of constant negative curvature in three-dimensional 
Minkowksi space. The transformation gives a differential geometric interpretation to a 
Backlund transformation between the elliptic sine-Gordon equation and the elliptic sinh
Gordon equation studied by Leibbrandt [J. Math. Phys. 19 (1978)]. 

I. INTRODUCTION 

The classical Backlund transformation I for surfaces of 
constant negative curvature in the Euclidean space E3 has 
been an object of study for over 100 years. Under this trans
formation, an infinite family of constant curvature surfaces 
can be produced from a given one. In recent times, interest in 
this transformation has persisted due to its connection with 
the sine-Gordon equation and its associated soliton theory. 

In this paper, we investigate an analogous transforma
tion for surfaces in the Minkowski space E~ . 

Theorem I: Let M C E~ be a spacelike surface with con
stant negative curvature. Corresponding to M is an infinite 
one-parameter family of timelike surfaces in Ef with con
stant negative curvature. 

One difference between our approach and the classical 
result is that elliptic equations are utilized in place of hyper
bolic ones. For the spacelike surface, the Gauss equation is 
the elliptic sinh-Gordon equation (EShGE) 

l1u = sinh u (1.1 ) 

and for timelike surfaces the elliptic sine-Gordon equation 
(ESGE) 

I1v = sil} v, ( 1.2) 

where 11 = a;x + a;y- A transformation between solutions 
of (1.1) and (1.2) has been studied previously by Leib
brandt2 in connection with the theory of superconductors. 
Theorem I can be considered a geometrization of this result. 

Throughout this paper, all surfaces are assumed to be of 
class C "'. We use the abbreviations sl for spacelike and t1 for 
timelike. The symbols ch, sh, etc. are used to denote the 
hyperbolic cosine, sine, etc. 

II. PRELIMINARIES 

Throughout this section, we use the summation conven
tion. Let 

X:M-+E~ 

be a sl immersion of a surface M. On a neighborhood in M 
select a frame {ej}j= 1,2.3 with {ej}j= 1,2 orthonormal and e3 

a normalto M with (e3 ,e3 ) = - 1. Define the dual coframe 
by w;(e) = D;' We have 

dX = ejw j. (2.1) 

Differentiation of ej defines an so (2.2) valued one-form 

de; = ejw{. (2.2) 

By considering the equation d dX = 0, one obtains 

dw;=wiAwj, i=I,2,3. (2.3) 

In particular, when i = 3, we get the "symmetry equation" 

WI Aw~ + w2 Awi = 0, (2.4) 

along M. From the equations d dej = O,} = 1,2,3, we ob
tain the equation of Gauss 

dwi = w~ Aw~ 

and the Codazzi equations 

d 3 ;A 3· 12 
Wj = Wj 1\ wi' } = , . 

Cartan's Lemma and (2.4) allows one to set 

j - h ; W3 - - ijw, 

(2.5) 

(2.6) 

(2.7) 

with h ij = hj ;. The (Gauss) curvature K of M is given by 

dwi = -Kwl Aw2 = w~ AwL (2.8) 

so that - K = det(hij)' The mean curvature h of M is de
fined by 

2hw1 A w2 = w~ Aw2 + WI AwL (2.9) 

so that 2h = - (h ll + h22 ). Note the sign convention. 
In what follows it will be useful to introduce isothermal 

coordinates on M. Denote such a coordinate by z = x + iy, 
the induced metric on M is expressed 

(2.10) 

Differentiating the normal field 1]=e3 on M defines <I> by 

1]z = - <l>e - PXz - hXz (2.11) 

where the subscripts z, z are, respectively, the complex de
rivatives ~(ax + iay )' The structural equations of the im
mersion X are 

Xzz =pzXz - (<1>/2)1], 

Xzz = - h(ePI2)1], (2.12) 

1]z = - hXz - <l>e - PXz· 

By taking the third derivatives with respect to z and z of the 
first two equations and equating the mixed partials, one ob
tains the integrability equations of Gauss 

1<I>12e-2p=h2-2e-Ppzz (2.13) 

and Codazzi 
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<l>z = ePhz • (2.14) 

The quantity Q= <I> d:il defines an invariant differential 
on M. Under change of isothermal coordinate z = z(t), Q 
transforms according to 

(2.15 ) 

Note that by (2.14), Q is a holomorphic quadratic differen
tial when h = const. 

The map d7J defines a self-adjoint linear transformation 
of the tangent space at each point in M. Denote its eigenval
ues by - k;, i = 1, 2. It follows from the last equation of 
(2.12) that 

(2.16) 

and 

(2.17) 

We remark that given a coordinate z as above one may 
obtain an orthonormal frame by setting 

el - ie2 = e- p/2Xz ' (2.18 ) 

For timelike immersions, 

fT -+lEi, 
we introduce an adapted frame on a neighborhood in T such 
that e3 is the unit normal and the induced metric is 

rl®rl-r®r, (2.l9) 

where -f is dual to ej • We have the equations 

dej = rfek , j = 1,2,3, (2.20) 

with if = r~. The Gauss curvature K is then given by 

dif = - Krl /\ r. (2.21) 

III. PROOF OF THEOREM I 

Let 

Y:M-+lE~ (3.1) 

be a spacelike immersion. Let A be a constant and consider a 
second immersion 

Y = Y + A(COS Oe; + sin Oe2). 

We seek a function 0 on M such that 

(i) the displacement 

EI =cos Oel + sin Oe2 
is tangent to M= Y(M) and 

(ii) the normal E 3 to M is of the form 

(3.2) 

E3 = ch tP( - sin Oel + cos Oe2) + sh tPe3' (3.3) 

for some constant tP. 
The condition (ii) prescribes the angle between M and 

M to be a constant. We compute 

if = [wl-AsinO(dO+wi>]el 

+ [W2 + A cos O(dO + wi)] e2 

+ [A cos Ow~ + A sin Own e3. (3.4 ) 

The condition 0 = (dY,E3 ) yields 
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- A dO = cos O( W - A tanh tPw~ ) 

- sin O(wl + A tanh tPw~) + Awi. (3.5) 

Using the structural equations on M the integrability equa
tion d dO = 0 yields, after much computation, 

Wi /\ w2 + A 2 tanh2 tPw~ /\ w~ + A 2Kwl /\ w2 = 0, (3.6) 

which implies 

ch2 tP +A 2K= O. (3.7) 

Proposition: There exists a surface satisfying (i) and (ii) 
iff. K = const < 0 on M. 

We now investigate the surface M. Assume for conven
ience k= - 1. Clearly the condition (ii) implies Mis time
like. Let 0 be the solution obtained above and change co
frame on M according to 

a l + i~ = e-;o(wl + iw2). (3.8) 

With the obvious notation, it is easily checked that 

ai = wi + dO (3.9) 

and 

~ + i~ = e-;o(w~ + iwD. (3.10) 

Using (3.8)-(3.10) and taking for convenience 
A = + ch tP, (3.5) becomes 

~ = ch tPai + sh tP~ . 

Let Ej be the frame on M dual to a j
• Then, Y = Y + ch tPE I 

and computation yields 

dY = EI EI + E2 if2, 

where 

E2 = sh tPE2 + ch tP7J, E3 = ch tPE2 + sh tP7J, 

0.1 = aI, if2 = ~ , iTi = - sh tPai + ch tP~, (3.11) 

cr: = ch tPai - sh tP~ , 01 = ~ . 
It is straightforward to check that 

diTi = iTl 
/\ if2, 

which implies the curvature K of M= Y(M) satisfies 
K = - 1 and Theorem I follows. 

IV. COORDINATE-DEPENDENT CONSEQUENCES 

In this section, we investigate coordinate-dependent 
consequences of Sec. III. In order to make the choice of 
coordinate as natural as possible, we parametrize M as a 
parallel to a sl constant mean curvature surface. 

Proposition: Let 

X:~-+lE~ (4.1) 

be an umbilic, free sl immersion with constant mean curva
ture h =f. O. Define the parallel surface 

Y = X + (1!2h)7J' (4.2) 

Then M= Y(~) is a sl surface with constant curvature 
K= - 4h 2

• 

Proof Let {Ej } be frame on a neighborhood in ~ with 
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dual coftame {aI} and connection forms {an. Define 
{uI}j ~ 1,2 by 

dY = e l WI + e2 w2
• 

It follows from (4.2) that 

u!=d+(2h)-I~, j=1,2. 

(4.3) 

(4.4) 

It is also easily verified using the Gauss and Codazzi equa
tions on ~ that (with the obvious notation) 

wt; = ~, 1 <i,j<3. ( 4.5) 

Therefore, 

dai = - Ka l l\a2 = - Kwll\ w2. (4.6) 

However, 

WI 1\ w2 = (a l + (2h) - laD l\(a2 + (2h) -Ian 

= - (2h)-2Ka l l\a2 

and the result follows. 
Let ~ be as in the proposition. We assume for conven

ience that h = -!. The general case can be obtained by res
caling X. Locally it is possible an isothermal coordinate 
t = x + iy so that 

Q=!dt2. 

To see this replace an arbitrary isothermal z by 

t(z) = {(2<P(W)1I2 dw, 

for some branch of the square root and some fixed Zo E~. The 
transformation rule for Q yields 

Q = <P dr = <p(.!!!.-)2 dt 2 = ~ dt' 2. 
dt 2 

Write the metric induced on ~ as 

d~ = ePldt 12. 

The choice of coordinate t yields a frame 

EI = e- p /
2Xx, E2 = e- p /

2Xy , (4.7) 

which is tangent to the principle directions, so that 

~ = kjd, j = 1,2. (4.8) 

By (1.16) 

1<Ple - p = (h 2 + K) 112 = (k l - k2 )/2. (4.9) 

This implies, since <P=!, that 

(k l - k2 )/2 =! e- P (4.10) 

and since 

! = - h = (hI + k2 )/2 

we have 

kl =!(1 + e- P ), k2 = !(1- e- P ). 

Therefore by (4.8) 

WI = a l 
- a~ = sh(p/2)dx, 

w2 = a 2 - a~ = ch(p/2)dy, 

and so the metric dfil induced on Mis 

dfil = sh2(p/2)dx2 + ch2(p/2)dy2. 

A standard formula for the Gauss curvature yields 
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(4.11 ) 

( 4.12) 

(4.13 ) 

(4.14) 

K = - l{::}pxx + Pyy = shp (EShGE). 

Using (4.12), one finds that 

w~ = ch(p12)dx, w~ = sh(p/2)dy. 

From (3.11) and (4.2), it follows that 

0'1 = 0.1 = cos () sh (p/2) dx + sin () ch(p/2)dy, 

if = 01 = cos () ch (p/2) dx + sin () sh(p/2)dy. 

Finally, changing the coframe (0'1 ,if) by a Lorentz transfor
mation, 

brings the pseudometric dif induced on M into the form 

dif = rl ®rl - r®r 
= sin2 

() dy2 + cos2 
() dx2. 

As a consequence 

K = - l{::}()xx + ()yy =! sin 2() (ESGE). 

Theorem II: The Backlund transformation of Theorem 
I induces a Backlund transformation between solutions of 
(EShGE) and (ESGE). 

A transformation appearing in the work of Leibbrandt2 
connects the two equations mentioned above. We will now 
show how to recover Liebbrandt's transformation from 
Theorems I and II. 

Let ~ be as above with h = -! and t chosen so that 
<P=!. We have 

'/]r; = !Xr; -! e- PX7;' 

The immersion Yin (3.2) can be expressed 

Y = X -'/] - ch <p(ei()-P/2Xr; + e- i()-P/2X7;), 

while the normal E3 is given by 

E = ch <p(iei()- p/2X;- + ie - i() - P/2X7;) + sh <p'/]. (4.15) 

A tedious computation using the structural equations, 
(2.12) shows that the equation (3.5) is equivalent to 

ch <p( ();- - i pf) = (~ - ~ sh <p )sin( () + i i ) , 
setting cos IL = sch <p, sin IL = tanh <p, this may be written 

( () - i i )t = + e - iA sin( () + i~). ( 4.16) 

This is essentially the transformation appearing in Ref. 1. 
Remark: Leibbrandt's "procedure of harmonic func

tions" arises naturally by varying the choice of isothermal 
coordinate on ~. 

Remark: On ~, () is an invariantly defined function satis
fying 

al: () = (k l - k2 )sin 2(), 

where al: is the Laplace-Beltrami operator of~. 

Bennett Palmer 2874 



                                                                                                                                    

Remark: It can be shown that E3 defined by (4.15) with 
() satisfying ( 4.16) is a harmonic map of ~ into 
S i == {w E En (w,w) = + 1}. Since constant mean curva
ture, sl surfaces can be recovered from harmonic maps into 
H2 = {w E E~ I (w,w) = - 1}, there is an induced Back
lund transformation between the corresponding harmonic 
maps. 
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Properties of u space [a set n of points P with a real function u(P,P') given on n] are 
investigated. A continuity of the set n is not necessary and, generally, geometry is discrete. 
The properties of the world function u are investigated. At certain (extremal) world function 
properties the u space is shown to be a subset of points of Euclidean space or Riemannian 
space. The presented approach has the peculiarity that no operation other than the function u 
is given on u space. In particular, all such operations as linear operation over vectors, 
constructing lines and planes, and dimension of the space are expressed through the world 
function u and only through it (ifit is extremal). A violation of the u-space extremality leads 
to going out beyond the frames of Riemannian geometry (lines are substituted by tubes of 
lines, etc.). The presented approach can be useful in quantum gravitation, string models, and 
other problems, where the properties of the event space at small distances are important. 

I. INTRODUCTION 

Event space (pseudo-Euclidean or Riemannian) is used 
to consider a set of two independent structures: (i) linear 
vector space (or manifold in the case of a Riemannian space) 
and (ii) metric space. Linear vector space properties are 
used for constructing straight lines, planes, and for deter
mination of space dimensionality. Metric space properties 
are used for determining distances, volumes, etc. The con
cept of continuity is important for describing linear vector 
space. 

In general, the hierarchy of concepts can be represented 
as follows: (i) the manifold, which includes continuity and 
affine properties, including space dimensionality; (ii) metric 
properties; and (iii) the topological type of the space (i.e., 
whether it is topologically equivalent to a plane, cylinder, 
sphere, etc). 

Another approach to the description of event space 
properties is possible. This approach uses only the structure 
of metric space. Linear space and its properties are consid
ered not as a new additional structure, but as a structure 
generated by the metric space. 

Let us illustrate the structure of metric space in the ex
ample of three-dimensional proper Euclidean space E 3, 

where the distance d(PI,P2 ) between the points PI and P2 

with the Cartesian coordinates XI and X2 is defined in the 
conventional way: 

d(PI,P2 ) = d(XI,X2 ) = ~(XI - X2 )2 = IXI - x21. (1.1) 

It is easy to see that 

d(PI,P) + d(P,P2 ) = d(PI,P2 ), (1.2) 

considered as an equation for the point P at fixed PI and P2 

(PI ¥=P2 ), determines an intercept .2" [P,P, J of the straight 
line .2" P,P, between the points PH P2• Equation (1.2), con
sidered as an equation for P2 and fixed PI ¥=P, determines a 
ray of the straight line, passing through the points PI' PEE3• 

Hence, solving the algebraic equation of type (1.2), one can 
construct a straight line passing through two points. 

If one can construct straight lines, then one can con-

struct two-dimensional planes, etc. and determine the space 
dimensionality. Practically, all properties (except continu
ity) of the Euclidean space, which are usually described in 
terms of the linear space, can be obtained from properties of 
the distance function d of the metric space. 

Such an approach is possible only in the case when the 
distance d(PI,P2 ) has specific (extremal) properties. For 
instance, if expression (1.1) for the distance d(X I,X2 ) is sub
stituted by 

d(X I ,X2 ) 

where a is a nonvanishing constant, then the set of points P 
satisfying Eq. (1.2) forms a two-dimensional cigar-shaped 
surface. In the case when 0 < a < 1 the transversal size of the 
"cigar" of unit length is much less than its longitudinal size. 
Then the cigar distinguishes itself slightly from the intercept 
of the straight line. 

In the conventional approach the geodesic (straight) 
line is defined as a curve of an extremal (in the given case of 
the shortest) length. It is natural that the definition of the 
curve must be given and the space dimensionality concept 
must be defined. 

In our approach the geodesic (straight) line is merely a 
set of points which is determined by the form of the distance 
function d(X I ,X2 ). The circumstance that the line is one
dimensional (but not two-dimensional, for instance) is con
ditioned by specific properties of the function d. There is no 
necessity to introduce concepts such as continuity, curve, 
and dimensionality. The distance function can be given on 
any set of points. 

Practically, it is more convenient to use another func
tion 

( 1.4) 

instead of the function d. The function uwill be referred to as 
the Synge world function or merely the u function. The 
properties of the world function that provide, in general, the 
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degeneration of the many-dimensional surface ( 1.2) into the 
one-dimensional geodesic will be referred to as extremal 
properties. The present paper is devoted to investigating ex
tremal properties of the u function. 

The real event space description in terms of the u func
tion realizes an intuitive conception that the event space is 
described by and only by an interval between any pair of 
events. This circumstance, together with the permission of 
discrete space, can conveniently occur at the event space 
quantization. Finally, the potential violation of the u-func
tion extremality at small distances leads to the fact that a 
pointlike particle is described by a world tube (but not by a 
one-dimensional world line): It is associated with the string 
model in elementary particle theory. 

Apparently, the world function was first introduced for 
the Riemannian space description by Ruse)·2 and Synge.3 In 
gravitation theory the world function is denoted by different 
symbols: by 0 in Synge;4 by Gin Rylov;5.6 where the world 
function is used for the two-metric formalism, by I in Gore
lik,7 which is devoted to the introduction of special coordi
nate systems on the base of the world function. In current 
quantum gravitation8

•
9 the symbol u is used. This designa

tion will be used further. 
In the presentation of event space properties in terms of 

the world function the hierarchy of suppositions is as fol
lows: (i) determination of the world function, (ii) world 
function extremality, and (iii) continuity properties. 

The world function extremality is equivalent to the Eu
clidean axiom: One and only one straight line passes through 
two different points, one and only one plane passes through 
three different points that do not lie on one straight line, etc. 
If the world function is extremal, then the space dimension
ality and topological type of the space (plane, cylinder, 
sphere, etc.) can be determined in some cases independently 
of the continuity property, for instance, in the case of a dis
crete space. 

The circumstance that the continuity is nonessential can 
be useful in quantum gravitation because in a certain sense 
the quantization is a substitution of continuous variables by 
discrete ones. 

Section II is devoted to the introduction of u space and 
its extremality. In Section III the Euclidean space properties 
are described in terms of the ufunction. In Sec. IV we inves
tigate to what extent the u space extremality determines its 
properties. In Sec. V curtailed tubes are introduced and the 
manifold is described in terms of the ufunction. Section VI is 
devoted to the description of Riemannian space in terms of 
the u function. In Sec. VII some violations of the u-function 
extremality are investigated. 

II. uSPACE 

Definition 2.1: The u space Vis a set 0 of points P with a 
real function u of two points P and Q given on 0, where the 
function u has the properties 

u(P,Q)=u(Q,P), u(P,P) =0, P,QEO. (2.1) 

The function u will be referred to as the world function, or 
merely as the u function. 

The interval S between the points P and Q is defined as 

2877 J. Math. Phys., Vol. 31, No. 12, December 1990 

S(P,Q) = ~2u(P,Q 

{ 1~2u(P,Q) I, = il~2u(P,Q) I, 
P,QEO 

u(P,Q) >0, 
u(P,Q) <0, 

(2.2) 

Let us introduce more a real function of the three points 
PO,p), P2 : 

r(PO'p),P2 ) =u(Po,p) + u(PO'P2 ) 

- u(p),P2 ), PO,P),P2EO. (2.3) 

The functions u(P,Q), S(P,Q) are symmetric with re
spect to the arguments P and Q: r(PO'p),P2 ) is symmetric 
only with respect to the arguments p) and P2• 

It is easy to see that any subset 0' C 0 of the u-space 
points is a u space. 

Let us introduce the designations 

k9 n = {Pk,Pk+) , ... ,Pn}, k9; = k9 n'\{Pe}' 

9 n=o9 n, 9; = 9 n'\{Pe}, 

and define a real function Fn of n + 1 points 9 nco: 

(2.4) 

Fn(9 n
) = detljr(Po,p;.Pk ) II, i,k= 1,2, ... ,n. (2.5) 

One can show that as a result of Eq. (2.3) Fn (9 n) is 
symmetric with respect to any pair of points Pi and Pk 
(i,k = O,I, ... ,n). 

The meaning of the functions u, r, Fn can be under
stood most easily in the example of D-dimensional proper 
Euclidean space, considering it as a u space with the u func-
tion D 

u(P,Q) = u(x,y) = 1.- L gik (Xi _ /) (xk _ yk), 
2 i,k=) 

(2.6) 

where {Xi} and {yi} are contravariant coordinates of the 
points P and Q, respectively, in some coordinate system K. 
Here gik = const, i,k = 1,2, ... ,D is the metric tensor in the 
coordinate system K, which is formed by D + 1 points Po, 
P»"'" PD with the point Po as an origin of K. The vectors 

are directed along coordinate axes of the coordinate system 
K. Then using the cosine theorem and Eqs. (2.7) and (2.3), 
it is easy to verify that 

= r(PO'p;.Pk ), i,k = O,I, ... ,D. (2.8) 

The function (2.5), 

Fn (9 n) = detllgik II 
= detll (POp;.POPk ) II = (nIVn (9

n »2, (2.9) 

is the Gram determinant and Vn ( 9 n) is the volume of 
(n + 1) edron with vortices at the points 9 n. In proper Eu
clidean space the condition 

(2.10) 
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is the necessary and sufficient condition of the linear inde
pendence of n vectors ei = PoPi' i = O,l, ... n and that of the 
fact that n + 1 points 9 n do not lie on one (n - 1 )-dimen
sional plane. 

Definition 2.2: The n + 1 point basis 9 n is n + 1 points 
PiEf! (i = O,l, ... ,n) that satisfy condition (2.10). 

The point basis 9 n in the Euclidean space is associated 
with the basis of n vectors ei = POPi (i = 1,2, ... ,n) in an n
dimensional plane .Y ( 9 n ) containing the points 9 n. 

Definition 2.3: The line tube (or merely the tube) Y n of 
the nth order formed by the basis 9 n is a set of points PEf!: 

Y fji'" = Y(9 n) = {PI Fn+ I (P,9 n) = O}, 

Fn (9 n) =1=0. (2.11) 

Definition 2.4: Section Y n;P of the tube Y ( 9 n) at the 
point PEY( 9 n) is the set of points P'Ef!: 

Y n;P(Y( 9 n» 

= {P'lFn+ I (P'9 n) = 0:0:U(p/,P') = U(p/,P)}, 

Fn+ I (P,9 n) = O. (2.12) 

In the Euclidean space the tube Y n of nth order corre
sponds to the n-dimensional plane containing the points 9 n 

and the section Y n;P(Y ( 9 n» consists of the point P. 
The tubes of zeroth and first order are of most interest. 

One has, for F I , 

and 

(2.13 ) 

In the proper Euclidean space the tube Y P" = {po} 
consists of one point Po and Yo;p" (Y p,,) = {po}. However, 
in the pseudo-Euclidean space, which is the space-time in 
special relativity, Y P" is the light cone with the vortex at 
point Po: its section at point P, 

Yo;p (Y p,,) 

= {p'lu(P',Po) = O/\u(Po,P') = u(Po,P)} = Y p", 

(2.14 ) 

coincides with the light cone. 
In describing first-order tubes it is convenient to use the 

circumstance that F2 ( 9 2
) can be represented as a product 

F2(PO'PI,P2) = S+ (PO,PI,P2)S2(PO,PI,P2) 

X S2 (PI,P2,PO)S2 (P2,PO,PI ), (2.15) 

where 

S+ (PO,PI,P2) = S(PO,PI,) + S(PI,P2) + S(P2,PO')' 

(2.16) 

S2(PO'PI,P2) = S(PO'PI,) + S(PI,P2) - S(PO'P2,). (2.17) 

Since it follows from Eq. (2.2), S + vanishes in only that case 
if all the terms in Eq. (2.16) vanish. Then no two points form 
a basis and construction of a tube is not defined. The tube 
Y( 9 2

) can be divided into parts and each off actors (2.17) 
in Eq. (2.15) is responsible for one part. 

Let us set 
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Y[P"P,] = Y[P,P,,] = {p IS2(PO'P,PI) = O}, 

u(PO'PI ) =1=0, 

Y P,,[P, = Y P,]P" = {p IS2(PO,PI>P) = O} 

u(PO'PI ) =1=0. 

(2.18) 

(2.19) 

One refers to Y[P,,P, ] as the tube segment between the points 
Po, PI and to Y P,,[P, as the tube ray outgoing form PI in the 
direction from the point Po. The set 

Y = Y U Y [P"P, - [P"P,] P,,[P, (2.20) 

will be referred to as the tube ray outgoing from Po toward 
point PI' It is evident from Eq. (2.15) that 

(2.21 ) 

Let us use the designations 

[

/= I ] 
Y = Y U Y Y (P"P,) [P"P, ] \ I;Pf ( p"p,), 

/=0 

Y(P"P,] = Y[P"P, ] \Y I;P" (Y P"P, ), (2.22) 

Here Y(P"P,), Y(P"P,] will be referred to as the open and 
half-open tube intercepts, respectively, between the points 
Po, PI and Y P, )P, will be referred to as the open tube ray 
outgoing from point PI in the direction from the point P2. 

By definition, point P is placed between points Po and PI 
if PEY (P"P,) . 

Let us use designations (2.7), (2.8), and 

(2.23 ) 

Then in the Euclidean space the first-order tube Y P"P, is 
described by 

its solution has the form 

PoP=x=e!'T+q, reR, 

where q satisfies the conditions 

(q,e l ) = 0, q2 = O. 

(2.24) 

(2.25) 

(2.26) 

In proper Euclidean space Eqs. (2.26) have the unique solu
tion q = 0 and the tube Y P"P, coincides with the straight line 
passing through the points Po, PI' In the pseudo-Euclidean 
space of index 1, metric signature ( +, -, - , ... - ), Eqs. 
(2.26) have the unique solution q = 0 for the timelike inter
valPoPl' e~ = 2u(Po,PI ) >0. For the spacelike interval PoPl 
[u(PO'PI ) < 0] there are many solutions of Eqs. (2.26) and 
Y P"P, is not reduced to the straight line .Y P"P, . 

In the case of the proper Euclidean space V and in the 
case of the pseudo-Euclidean space V of index 1 the section 
Y I;P (Y P"P, ) of the timelike tube Y P"P, has the form 

Y I;P (Y P"P, ) = {p}, PEY P"P,' (2.27) 

If the tube is spacelike [u(PO'PI ) <0], then 

YI;Q(Y(P"P,» = Yp"p, ('To), 'To = (PoQ,PoPI)/(POPI)2, 

(2.28) 

whereY P"P, ('T) is a set ofpointsPsatisfying Eqs. (2.25) and 
(2.26). 
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Thus in the four-dimensional event space the timelike 
tubes are one-dimensional straight lines; however, the space
like tube Y PuP, is a three-dimensional surface formed as a 
result of moving the light cone section normal to the vector 
PoP I: The section moves in the direction of the vector of 
POP I , 

In the conventional approach a geodesic in a D-dimen
sional Riemannian space is considered as a special type of a 
curve having extremal properties, as follows. 

(i) Extremality. The distance (2u) 1/2 between two 
points measured along a geodesic is the shortest (extremal) 
compared to a distance measured along other curves. 

(ii) Definiteness. Any two points of the geodesic deter
mine unambiguously the geodesic passing through these 
points. 

(iii) Minimality of section (one-dimensionality). Any 
section of a geodesic consists of one point. 

In the conventional approach property (ii) is a corol
lary of property (i) (for the rather small space region); how
ever, property (iii) is a property of any curve (not necessar
ily of a geodesic) . 

Another approach is when the geodesic is considered as 
a special type of suiface (or of a line tube) that degenerates 
into a line. Then properties (ii) and (iii) are supposed to be 
fulfilled; however, property (i) is not defined because the 
concept of a line (or a curve) is not defined. 

Let us try to define a geodesic as a tube having the prop
erties of definiteness and minimality of section at the same 
time. 

Definition 2.5: The tube Y( f)!In) has the definiteness 
property if for any basis !l) n of n + 1 points !l) n C Y ( f)!I n) 

the condition 

Y(!l)n) =Y(f)!In) 

is fulfilled. 

(2.29) 

Definition 2.6: The tube Y ( f)!I n) has the property of 
section minimality if V PEY ( f)!I n) , 

(2.30) 

Definition 2. 7: The u space is extremal on the tube 
Y( f)!In) if the conditions of definiteness and section mini
mality are fulfilled. 

Definition 2.8: The u space is extremal on the set Y of 
tubes Y ( f)!I n) of nth order if it is extremal on each tube of 
the setY. 

Definition 2. 9: The u space is extremal in the nth order if 
it is extremal on all tubes Y( f)!In) of nth order. 

Definition 2.10: The tube Y ( f)!I n) is a geodesic tube 
.:t' ( f)!I n) if the u space is extremal on the tube Y ( f)!I n) . 

Introducing the concept of u space and considering a 
geodesic as a kind of a line tube, one hopes to obtain a more 
adequate description of the event space. The u space is de
scribed in terms of the ufunction and only in these terms. In 
this approach the introduction of such concepts as continu
ity and manifold is not necessary. In this approach the world 
lines are replaced by world tubes whose section is a surface, 
but in general nota point. This approach is associated with 
the string model, which is popular in the contemporary theo
ry of elementary particles. Finally, quantum particles have 
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no definite world lines: They are "spread" over the event 
space. The tubes are the world lines spread over the event 
space. Perhaps the tubes are more adequate for describing 
quantum particles. In other words, perhaps the u space de
scribes the real event space at small distances better than 
does the Riemannian space. 

We are not to be discouraged by the circumstance that in 
the event space the timelike tubes correspond to timelike 
straight lines and the spacelike tubes correspond to three
dimensional surfaces. Really, world lines of real particles are 
timelike, whereas there are no spacelike world lines. Perhaps 
the u space makes even this distinction. 

In reference to the null tubes y* (f)!I I) (u(PO'PI ) = 0), 
definition (2.24) or (2.11) does not provide them. For con
tinuous u space the null tubes Y~,p, can be defined as fol
lows: 

Y~p = lim YPP" u(P',Po) >0, u(PO'PI ) = 0 
n I P'_P

I 
() 

(2.31) 

as a limit of the timelike tube Y p,r atP' -+PI ' In the case of 
pseudo-Euclidean space the result is a null straight line. If 
the interval PoP' is spacelike, then the result ofEq. (2.31) 
depends on the way in which P' is applied to PI' 

Example 1: Let points P of a u space Vbe numbered by 
n I' n2, n3El, where 1: is the set of all integer numbers. Let the 
u function that is between the points P = (n l ,n2,n3)' 
P' = (n; ,n;, n~ ), n l , n2, n3' n;, n;, n~El be defined by the 
relation 

2 3 

u(P,P')=~L(n;-n;)2, a=const, a>O. 
2 ;=1 

(2.32) 

The u function depends only on the difference n; - n; 
(i = 1,2,3) and the tube's properties can be investigated 
without loss of generality in the example of .:t' Plr' 

Po = (0,0,0). Solving 

F2(PO'P',P) = 0 (2.33 ) 

with the u funciton (2.32) one obtains 

.:t' p,r :n; = 7n;, i = 1,2,3, 7 = kiN, N,kEl, 
(2.34) 

where n; (i = 1,2,3) are coordinates of points of .:t' p,r' k is 
an arbitrary integer number, and N is determined by the 
relation 

(2.35) 

Thus points of .:t' p,r are points of the straight line 
x = n'7 [0' = (n;,n;ni), x = (X I,X2,X3)] with integer co
ordinates. It is easy to verify that the uspace (2.32) is extre
mal in the first order. 

The detemination of straight lines permits us to intro
duce the linear vector space over the ring of integer numbers 
1:. Let us refer to an ordered pair of points Po, PI as the vector 
PoP I' The modulus of the vector PoP I is the number 

(2.36) 
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The vector PoP' = a PoP is a result of multiplying the vec
tor PoP by the number aEZ. The point P' is determined by 

O'(Po,P') = a 20'(po,P), (2.37) 

withP'e.2" [p,)p ifa>OandP'e.2" p,)JP if a <0. The sum of two 
vectors PoP and PoP', 

PoP" = PoP + PoP', 

is determined by the relations 

POP I = 2PoP, POP2 = 2PoP', 

P"e.2"[p)p,J' S(P",PI ) =S(P",P2 )· 

(2.38) 

(2.39) 

Thus defined operations of summation and multiplication 
by a number satisfy all the axioms of linear vector space. 

The vectors PoP I ,PoP 2, ••• ,PoP n are referred to as linear 
independent if the relation 

n 

L akPOPk = PoPo = 0, a l ,a2,· .. ,an EZ 
k=1 

(2.40) 

is fulfilled only at a i = 0 (i = 1,2, ... ,n). The maximal num
ber ofthe linear-independent vectors is called the dimension
ality of the space. In the given case, D = 3. 

The scalar product of the vectors PoP and PoP' is the 
number (PoP,PoP'), which is defined by the relation 

(PoP,PoP') = r(po,p,P') 

=O'(Po,P) + O'(Po,P') - O'(P,P'). (2.41 ) 

Thus all operations in the vector space are defined only 
through the world function 0'. The space V is a subset of 
three-dimensional Euclidean space. Indeed, let us imagine 
that the coordinates (n l ,n2,n3), (ni ,n;,n3) in expression 
(2.32) are real numbers. Then relations (2.32)-(2.41) de
fine the three-dimensional proper Euclidean space, where 7' 

in Eq. (2.34) and a in Eq. (2.37) are arbitrary real numbers. 
The constraint (2.35) is to be omitted. 

Example 2: Let points of the 0' space Vc be numbered by 
three numbers n l , n2, n3 (n l ,n2,n3eZ, 0<n3 <N), whereNis 
some natural number and Z is the set of all integer numbers. 
Let us define the 0' function by the relation 

2 3 

O'(P,P') =!!.- L (n i - n;>2, n l ,n2,n3,ni n;,n3EZ, 
2 i= I (2.42) 

P = (n l ,n2 ,modN n3 ), P' = (ni ,n;, modN n3). 

Here 0' is a multi valued function of two points P, P' because 
the same value modN (n3 - n3 ) corresponds to different val
ues of n3 - n3. The space Vc is obtained from the space Vof 
Example 1 by means of identifying those points P whose 
coordinates n3 are distinguished by sN, where s is integer. At 
such an identification P = PI = P2 = ... the world function 
O'(P',Pi ) (i= 1,2, ... ) converts into O'(P',P) and becomes 
multivalued, i.e., the world function contains information 
about the identification. The space Vc is a discrete analog of 
a cylinder, whereas V from Example 1 is a discrete analog of 
the three-dimensional plane. 

The O'space with the world function (2.42) is not extre
mal in the first order. In particular, the tube Y p,)P" , 

Po = (0,0,0), P" = (ni',n;, modN n3) consists of geodesics 
oftype (2.34): 
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n3 = modN n; + sN. 

Usually, the difference between a cylinder and a plane is 
formulated as a distinction of topology of these surfaces. 
When discussing the distinction between Vand Vc ' it is hard
ly appropriate to speak about topology because topology is 
connected with the concept of continuity, which is not used 
here. Formally, a "cylindricity" of the space Vc manifests 
itself in "closed" geodesics consisting of N points. In the 0' 
space V of Example 1 any geodesic contains an infinite num
ber of points. 

In Example 2 a single-valued world function can be de
fined by the relation 

O'(P,P') = (a2/2){(n l - ni)2 + (n 2 - n2)2 

+ [modN (n3 -n3 +q) -q]~}, 
q = [N 121e, (2.43) 

where [ ... 1e denotes the entire part of the number. In this 
case the space is also no extremal in the first order. Equation 
(2.43) corresponds to the case when the unique (minimal) 
value of the function is chosen among many values (2.42). 
Thus almost all properties of the Euclidean space can be 
formulated in terms of an extremal 0' space without using the 
concept of continuity. A discrete analog of the Euclidean 
space can be constructed by removing all points except a 
countable set, with the values of the world function for the 
remaining points being conserved. 

Definition 2. If: The 0' space V, the point set of which is a 
subset of the points ofthe Euclidean space E, is a Euclidean 0' 
space. 

III. PROPERTIES OF THE 0' SPACE 

Let us consider a Euclidean space En of the dimension
ality n > 1 and introduce coordinates of an arbitrary point P 
in the basis g; n using only the world function. Let g; n be 
n + 1 points that do not lie on one (n - 1)-dimensional 
plane. In this case Fn ( g; n) # 0 and g; n is a point basis in En 
connected with the basis 

ei = pop;. i = 1,2, ... ,n (3.1) 

in the linear space of the vectors PoP. Then in this basis, 
according to Eq. (2.7), the metric tensor gik ( g; n) has form 
(2.8) and, according to Eq. (2.9), 

(3.2) 

The covariant coordinates Xi of the vector PoP in this 
basis are 

Xi = (POP,e i ) 

= r(PO'p,Pi ) 

= O'(Po,P) + O'(PO'Pi ) - O'(P,Pi ), 

Yi = r(PO,Q,Pi ). 
(3.3 ) 

The world function of two points P,Q of the Euclidean space 
En has the form 
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u(P,Q) =!gik(&''')(Xi -Yi)(Xk -Yk)' (3.4) 

wheregik are contravariant components of the metric tensor, 
defined by the relation 

gik(&''')gkl(&''') = £5;' i,1 = 1,2, ... ,n. (3.5) 

Here the summation is made over repeated superindices and 
subindices from I-n. 

The following definitions, equivalent to conventional 
definitions, will be used. 

Definition 3.1: The n-dimensional Euclidean space is the 
set R"ofall ordered n number x = {X I ,X2, .•• x,,}, wheretheu 
function is given by relations (3.4) and (3.2), 'dxER, 'dyER. 

Definition 3.2: The proper n-dimensional Euclidean 
space is the Euclidean space for which the equation 
u(x,y) = 0, 'dyER" has the unique solution x = y. 

Definition 3.3: The pseudo-Euclidean space is the Eu
clidean space, which is not proper. 

Definition 3.4: The flat space is the Riemannian space 
with an everywhere vanishing Riemannian curvature tensor. 
A flat space can differ from the Euclidean space in topology. 

Let us consider a (n + 2) X (n + 2) matrix 

d" + 2 = lIaik II, aik = r(PO,Pi,Pk ), 

i,k = 1,2, ... ,n + 2, P,,+ I = P, P,,+2 = Q, 

F" (&''') =10. 

(3.6) 

(3.7) 

Theorem 3.1: Let &''' be a basis of n + 1 points in the u 
space V, i.e., Eq. (3.7) is fulfilled. Then for the tube Y( &' PI) 

to be a Euclidean u space, fulfillment of the following condi
tions is necessary and sufficient: 

(i) The rank (d,,+2) = n, 'dPe!T(&'''), QE.r(&'''). 
(ii) The section Y( &''') is minimal at any point: 

Y n;Q(Y( &'''» = {Q}, QE.r(&'''). 
Proof Let Y ( &''') C E" be a subset of a Euclidean space 

E" and PeY(&,"), QEY(&,"). Then using the designa
tions (2.8), (3.3), and (3.7) and property (3.4), one can 
represent the matrix in the form 

gik(&''') I Xi Yi ----- ... ----------
I " " 
12: Xli 2:YIX

I 

1 /= I 1= I 

I " " 
12: xli 2:Yli 
1 /= I 1= I 

i,k = 1,2, ... ,n, (3.8) 

where 

" " Xi= 2:gik(&,,,)Xk, yi= 2:gik(&''')Yk (3.9) 
k= I k=1 

are contravariant coordinates of points P and Q in the same 
basis &,n. 

According to Eq. (3.7), 

g=detllgjkll = F,,(&''') =10 (3.10) 

and rank r of the matrix d" + 2 is not less than n (r>n). On 
the other hand, the last and next to last columns of the ma
trix (3.8) are linear combinations of the first n columns with 
thefactorsyk andxk (k = 1,2, ... ,n), respectively, i.e., rank of 
the matrix r<n. Then one concludes that in the Euclidean 
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space the rank of the matrix d" + 2 is equal to n provided 
that when fulfilling Eq. (3.7), 

rank (dn+2) = n. (3.11) 

It is easy to verify that the section of any plane Y ( &' ") 
of the n-dimensional Euclidean space is minimal in the sense 
ofEq. (2.30). 

Nowletn + 1 points &'''ofauspace VsatisfyEq. (3.7). 
Let PeY(&,"), QE!T(&'''), rank of matrix (3.6), be equal 
to n and any section of the tube Y (&' PI) be minimal, i.e., Eq. 
(2.30) is fulfilled 'd Pe!T (&' "). According to Eq. (2.11), the 
conditions Pe!T ( &' "), QE.r ( &''') mean that 

gik I Xi 

M,,+ 1,"+ I = F,,+ I (P,&''') = --+---- = 0, 
Xk : 2u(PoP) 

M" + 2," + 2 = F" + I (Q, &''') = 0, (3.12) 

where M" + I,,, + I and M" + 2," + 2 are two principal minors of 
the matrix (3.6). It follows from Eq. (3.12) that 

" u(Po,P) =! 2: gikXjXk' 'dPe!T( &'''). 
i,k= I 

(3.13) 

Using Eq. (3.13), the matrix d"+2 can be written in the 
form 

(3.14) 

In order that the rank of matrix (3.14) be equal to n, it is 
necessary that each of the two last columns are a linear com
bination of the first n columns: This means that 

" r(po,p,Q) = 2: Xjy i . (3.15 ) 
i= I 

As a result of definition (3.3) and Eq. (3.13), (3.15) leads to 
Eq. (3.4). 

Now let us map Y(&,") ..... 0" CR", where R"is a set of 
all elements consisting of n ordered real numbers X = {x..} 
(i = 1 ,2 ... ,n). Let us correspond to each point Pits covariant 
coordinates in the basis (&' "). Such a mapping is one-to-one 
as a result of the minimal section condition (2.30), i.e., each 
point Pe!T( &''') corresponds to one point XEO" CR" and 
each point XEO" corresponds to only one point Pe!T (&' "). 
Really, if the points Pe!T(&''') and QE.r(&''') have the 
same coordinates 

Xi = r(PO'Pi,P) = r(po,pi>Q) = Yi' i = 1,2, ... ,n, 
(3.16) 

then it follows from Eq. (3.13) that 

u(Po,P) = u(Po,Q). (3.17) 

As a corollary of Eqs. (2.3) and (3.16) one has 

u(Pi,P) =u(Pi,Q), i= 1,2, ... ,n. (3.18) 

Conversely, Eq. (3.16) follows from Eqs. (3.17), (3.18), 
and (2.3). Then definition (2.12) of the tube Y(&''') sec
tion can also be represented in the form 
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Yn;p(Y(.9 n» = {P'lFn+ I (P',.9 n) 

= OIA n r(PO'PiP') = r(PO,p;.P)}, 
/=1 

(3.19) 

It follows from (3.19) that if (lEY ( .9 n) and has the coordi
nates (3.16), then (lEY n;P ( .9 n). As a result of the minimal 
section condition the section consists of one point. Then any 
coordinates x correspond to the unique point P and the map
ping Y ( .9 n) -+ n n is one-to-one. 

Thus for XEnn eRn, )'Enn eRn the 0' function has the 
form (3.4). Let us propagate Eq. (3.4) over all the points of 
the set Rn. Then the Rn with the 0' function defined on it is a 
Euclidean space. The nn with the 0' function defined on it is 
a subset of Rn. Hence, nn is the Euclidean 0' space. As a 
result of the one-to-one correspondence Y ( .9 n) ~n nand 
the invariance of the 0' function one concludes that Y ( .9 n) 

is the Euclidean 0' space. Theorem (3.1) is proved. 
Theorem (3.1) permits us to determine the dimension

ality D of the proper Euclidean 0' space V based only upon 
the 0' function. Let us use the following procedure. Let PoE V. 
If Y p" = V, then D = 0; otherwise, 3PIEl:Yp", PIEV. Then 
F I(.9

I ):;60, D>O. If Y(.9 I
) = V, .9 1 = {PO,PI}, then 

D= 1; otherwise 3P2E1:Y(.9 I ), P2EV, and D> 1. If 
Y( .9 2

) = V, then D = 2; otherwise 3P3E1:Y(.9 2
), P3EV, 

and D > 2, etc. Let us continue the procedure until at some n, 
Y ( .9 n) = V and D = n. Such a procedure can be produced 
in any 0' space, but for the single-valued result it is necessary 
that it does not depend on the choice of the basis .9 n: It is 
provided if V is a proper Euclidean 0' space. 

IV. THE EUCLIDEAN C1 SPACE AND EXTREMALITY 

The proper Euclidean space is extremal in all orders. Let 
us investigate whether the reverse statement is valid: A 0' 

space that is extremal in all orders is proper Euclidean. In 
general, this statement is not valid, although its violations 
are rather an exception than a rule. 

Let a basis .9 n en, where n is the set of points of the 
extremal 0' space V, PEX' ( .9 n), and (lEX' ( .9 n). The defi
niteness condition (2.29) containing n + 3 points P, Q, .9 n 

can be written in the form 

Fn+ I (P,.9 n
) = 0, Fn+ I (Q,.9 n) = 0, (4.1) 

Fn+ I (P,Q,.97) =0, I=O,I, ... ,n. (4.2) 

Here the n + 3 equations (4.1) and (4.2) (except for the 
case I = 0) represent the condition of vanishing n + 2 prin
cipal minors of the matrix (3.6). Using the designations 
(3.2) and (3.3), one obtains from Eq. (4.1) relation (3.13) 
and a similar relation with the substitution P -+ Q, x -+ y. Each 
ofEqs. (4.2) represents a quadratic equation with respect to 
the variable 

n 

Z = r(Po,P,Q) - LXii. 
;=1 

Equations (4.2) have the trivial solution 

ZI =0, 

2882 J. Math. Phys., Vol. 31, No. 12, December 1990 

(4.3) 

(4.4) 

which corresponds to relation (3.15) and leads to expression 
(3.4) for O'(P,Q), i.e., to the Euclidean O'space Y(.9 n). 

Using the trivial solution (4.4), one can reduce the or
der ofEqs. (4.2). Then Eqs. (4.2) (except for the case / = 0) 
are reduced to n linear equations with respect to z: 

gllz + 2xJ/ = 0, / = 1,2,oo.,n. (4.5) 

One can show that 

II Fn_ 1 (.97) 
1= 1,2,oo.,n, g = , 1= 1,2,oo.,n. 

Fn(.9 n) 

(4.6) 

Let us substitute Eqs. (4.6) into Eqs. (4.5) and take into 
account that the first (/ = 0) of Eqs. (4.2) is obtained from 
1= k as a result of substituting PO~Pk' Then one obtains a 
system of n linear equations for z: 

Fn_ 1 (.97)z + 2.JFn (P,.97)Fn (Q,.97) = 0, 

I=O,I,oo.,n. (4.7) 

The coefficients ofEqs. (4.7) do not depend on O'(P,Q): The 
condition of a common solution of Eqs. (4.7) imposes con
straints upon these coefficients, which are constraints upon 
coordinates of the points P and Q. 

Only the nontrivial solution of system (4.7) is of inter
est. The trivial solution z = ° returns us to case (4.4) of the 
Euclidean 0' space. 

If the points .9 n = {PO,PI,oo.,Pn} are such that no n lie 
on a tube of (n - 2)th order, i.e., 

Fn _ I (.9 7) :;6 0, (4.8) 

then according to Eq. (4.6), 

gil :;60, 1= 1,2,oo.,n (4.9) 

and Eq. (4.5) can be represented in the form 

1= 1,2,oo.,n. 

(4.10) 

Definition 4.1: The (n + 1) point basis .9 n in 0' space V 
is the nondegenerate basis provided that any n points of .9 n 

form an n-point basis .97 (Fn _ I (.97) :;60, 1= O,I,oo.,n). 
Definition 4.2: Points P and Q of the 0' space Vare mutu

ally conjugate with respect to the nondegenerate (n + 1) 
point basis .9 ne Vif PE!:Y( .97), QEl:Y(.97) (/ = O,I,oo.n), 
and their contravariant coordinates x and y satisfy Eq. 
(4.10). 

If one of coordinates Xl = ° [which is equivalent to 
PEY ( .9 n or Fn (P,.9 7) = 0], then according to Eqs. 
(4.5)-(4.10) one obtains the trivial solution (4.4). 

Fixing the coordinates xi:;60 (i = 1,2,oo.,n) of point P, 
one concludes from Eq. (4.10) that the set of points Q satis
fying Eq. (4.10) with an indefinite rhs forms a straight line 
passing through point Po. From the symmetry under consi
deration one concludes that point Q must lie on the straight 
line passing through point PI' through P2 ,oo . . Thus in this 
case there is no more than one point Q conjugate to P with 
respect to the basis .9 n. 

One can formulate the following theorems. 
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Theorem 4.1: Let gt'l n be a nondegenerate (n + 1) point 
basis in the 0' space V. which is extremal on Y( gt'ln) 
= Y(gt'ln). If PEY(gt'ln). Pl!Y(gt'li) (I = O.l ..... n). then 
there exists no more than one point Q conjugate to P with 
respect to gt'l n. 

Theorem 4.2: Let gt'l n form a non degenerate (n + 1) 
point basis in the 0' space Vand Vbe extremal on Y( gt'ln) 
= Y (gt'ln). IfQ.PEY (gt'ln). p. QEY (gt'l7) (I = O.I ..... n). 

then either the 0' space Y ( gt'l n) is Euclidean or the points P 
and Q are mutually conjugate with respect to gt'l n. 

Theorem 4.3: Let gt'l n be a nondegenerate (n + 1) point 
basis in the 0' space V and V be extremal on Y ( gt'l n) 
= Y ( gt'l n). Then the 0' space VI = Y ( gt'l n) is Euclidean 

provided that the number N of points in VI = Y ( gt'l n) is 
distinguished from n + 3. 

Proof Insofar as gt'lncY(gt'ln). then N;pn + 1. If 
N = n + 1. then VI = gt'ln and Theorem 4.3 is evident from 
Eqs. (3.3). (3.5). and (2.8). 

If N = n + 2. VI = {gt'ln.p}. Then it follows from the 
first ofEqs. (3.12) that relation (3.13) takes place. There
after. one can verify Eq. (3.4) usingEqs. (3.3). (2.8). (3.5). 
and (3.13). 

Now. if N = n + 4. then VI = {gt'ln.p.Q.R}. Let VI be 
non-Euclidean. Then according to Theorem 4.2 Q is conju
gate to Pand R is conjugate toPwith respect to the basis gt'ln. 
According to Theorem 4.1 the conjugate point is unique; 
then Q =1= R cannot exist. Then the 0' space is Euclidean. The 
same consideration can be given in the case of N> n + 4. 
Theorem 4.3 has been proved. 

Now let us consider an illustration for Theorem 4.3: 
When N = n + 3. the O'space is extremal on Y(gt'ln); how
ever. Y( gt'ln) is non-Euclidean. 

Example 3: Let the 0' space 0 4 consist of the four points 
O.I.P. Q. 

S(O.I) = S(P.Q) = a. 

S(O.P) =S(Q.I) =b. O<b<a. 

S(P.I) = S(O.Q) = a-b. 

It is easy to verify that 

(4.11 ) 

Y OI =Yop =YoQ =YIP =YIQ =Y PQ =04 , 

i.e .• the tube Y OI contains all points of the 0' space 0 4 and 0 4 

is one-dimensional. The line tube has the definiteness prop
erty. Besides. if a - b =l=b. then the section of the tube is mini
mal. Thus at a =1= 2b the 0' space is extremal in the first order. 

In addition. one has the following situation. which is 
unusual for the proper Euclidean space: 

PEY(OI)' QEY(OI)' 

i.e .• the points P and Q are placed between the points 0 and 1. 
At the same time. DEY (PQ). lEY (PQ) • i.e .• the points 0 and 
1 lie between the points P and Q. Here 0 4 is not a Euclidean 0' 
space. 

Relations (4.11) can be understood from the Euclidean 
point of view if one imagines that the points are placed on a 
closed geodesic in the order O.P.I.Q.O .... . For the transition 
to the unclosed geodesic it is sufficient to substitute 
S(P.Q) = a with S(P.Q) = a - 2b. 

2883 J. Math. Phys., Vol. 31, No. 12, December 1990 

Another version of the interpretation is shown in Fig. 1. 
One-dimensional proper Euclidean 0' space consists of the 
five points Q ; • O. p. 1. Q ~. The points Q ~ and Q; are mirror 
images of point Q at a reflection with respect to points 1 and 
O. respectively. The point Q is conjugate to point P with 
respect to the basis (0.1) provided that S (P. Q ; ) 
= S(P.Q ~ ). Let the points P and Q be conjugate with re
spect to the basis (0.1). Then it is possible to identify the 
points Q; and Q ~. denoting them by means of Q and con
serving all distances except S(Q~.Q;). S(O.Q~). and 
S( I.Q; ). As a result the 0' space (4.11) arises: It is flat. but 
non-Euclidean. 

Example 4: Let the 0' space Os consist of the five points 
0.1. 2.P. Q. 

S(O.I) =S(0.2) =S(1.2) =a. 

S(O.P) = a/v'J + £ + 0(£2). 

S( 1.P) = S(2.P) = a/v'J - £/2 + O(~). 
S(1.Q) = S(2.Q) = a/v'J + El2 + 0(£2). 

S(O.Q) = a/v'J - £ + 0(£2). 

S(P.Q) = a/v'J + 0(£2). £~ 1. 

(4.12) 

One can verify that Y Ol2 = Os and Os is a two-dimensional 
0' space extremal in the second order. However. Os is not a 
Euclidean 0' space. The disposition of points on the proper 
Euclidean plane is shown in Fig. 2. All distances (4.12) ex
cept S(P.Q) correspond to Euclidean distances in Fig. 2. If 
the distance S(P.Q) were Euclidean. then one would have 
S(P.Q) = 2E + 0(£2). 

The properties of Os can be understood if one considers 
the 0' spaces Os '\{O}. Os,\{I}. 0s,\{2}. Os'\{p}. and 
Os '\ {Q} consisting off our points. Each of them is a Euclid
ean 0' space. The disposition of points in these spaces is 
shown in Fig. 2. The point Q in the first three 0' spaces is 
replaced. respectively. by Q ~. Q ; • and Q i in the picture of 0' 
spaces on the proper Euclidean plane. Thus one has Os '\ {O} 
= {I.2.P.Q~}. OS'\ {I} = {0.2.P.Q ;}. Os'\ {2} 
= {O.l.p.Qi}. Os'\{p} = {0.1.2.Q}. and Os '\ {Q} 
= {0.I.2.P}. Then all the distances shown in Fig. 2 coincide 

with those in Eq. (4.12). The presented examples illustrate 
Theorem 4.3 in the case when N = n + 3 and O'space is non
Euclidean. 

V. THE DENSE (T SPACE AND CURTAILED TUBES 

Definition 5.1: A non-null tube ray 
Y[l'\,P, (O'(PO'PI ) =1=0) is dense at point Po if an infinite-con
verging-to-Po sequence P; .p i .... of distinguishing in pairs 
points can be found on the open tube ray Y(p.,p, . This means 
that for 'dE> o there exists Ne such that 120'(Po.p ~) 11/2 <£if 
n>Ne' 

I o p Q % • • • 

FIG. 1. Version of interpretation. 
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._-------------------. 2 

QI 
2 

...... 

o 

FIG. 2. Disposition of points on the proper Euclidean plane. 

Definition 5.2: The u space V is dense at point Po in the 
timelike direction if any timelike tube ray Y[P''p is dense at 
Po· 

Definition 5.3: The u space Vis dense at point Po if any 
non-null tube ray Y[poP is dense at Po. 

Definition 5.4: Ifa non-null tube ray Y[PoQ C Vis dense 
at the point Po and the limit 

u(Po,Q) I rep. Q' P) 
u(Po,Q') 0" 

(5.1 ) 

exists VPe V and for any way of tending Q' to Po, then the 
tube ray Y[PoQ determines a non-null direction vector up')Q 
at point Po. Here II (Po,Q,P) is a projection of the vector PoP 
onto the direction dp,)Q' 

The limit (5.1) is defined in the conventional way. For 
any E> Osuch 8" > ° exists, that the inequality 

III (Po,Q,P) - r(Po,Q',P)12u(Po,Q')I-I/21 <E 
(5.2) 

is a consequence of the conditions 

I ~2u(Po,Q') I <8, Q'E Y(P,,,Q' (5.3 ) 

Definition 5.4 can be formulated briefly as follows: uPoQ 
= gen(Y[p')Q) ("up,)Q is generated by Y[PoQ "). 

Definition 5.5: Iftheuspace Vis dense at the point POE V 
and if the equation 

(UPoQ·,PoP) 

I ~2u(Po,Q') I 
u(Po,Q) #0, 

(UPo,Q'PoP) 

I ~2u(Po,Q) I 
VPeV 

(5.4) 

considered as an equation for the determination of Q " has 
only the solutions Q'E Y[p,)Q' then the non-null direction 
vector uPoQ at point Po determines the non-null tube ray 
Y[p')Q' 

Definition 5.5. is formulated briefly as follows: 
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Y[PoQ = gen(up,)Q) (Y[PoQ is generated by uPoQ )' This 
property is a variety of the definiteness property (Definition 
2.5) when the two points Po and Q' defining the tube are 
infinitely close. 

In the conventional approach the concept of direction is 
connected with the concept of a curve. The latter is connect
ed with the possibility of one-to-one continuous mapping 
into the set R of all real numbers. In our approach the con
cept of direction is connected with the extremality of Y PoQ 
in Eq. (5.1) because only in this case does the limit exist as a 
rule. It is quite natural since the concepts of a curve and an 
extremal tube that is dense at all points are rather close. 

However, there are u spaces that do not contain the 
extremal tubes Y p,)p. For instance, the D-dimensional 
pseudo-Euclidean space ED of index 
i (gkl = diag(1,l, ... ,l, - 1, - 1, ... , - 1), 1 <i <D - 1, 
D;;;.4) is not extremal on any tube Y p,,P' In this case nonex
tremality in the first order is caused by nonextremality in the 
zeroth order. The extremal tube ray Y P,,P can be obtained 
from the nonextremal tube ray by means of the special cur
tailing operation C(f: 

(5.5) 

There are different ways of defining the curtailing oper
ation. One way is the operation of intense definiteness (in
tense extremality) 

Y[P,,P = f Y[PoP = {p'IY[pop' = Y[Pop} (5.6) 

when the set Y[PoP contains only those points P' of Y[PoP 
for which Y[P,,P' coincides with Y[P"p. Here the u space is 
extremal on Y[PoP) if 

Y[P,,P'=Y[p')p), P'EY[POP)' P'#Po, (5.7) 

1=1 

YI;Q(Y[P,,P» = {P'IP'EY[POP) 100 u(P1,Q) 

= u(P1,P')} = {Q}, Qe Y[P,,P,. (5.8) 

Example 5: Let us consider the pseudo-Euclidean space 
E4 of index 2. In the Cartesian coordinates x = (Xl ,X2,X3 ,x4) 

the u function has form (3.4 ), with gik 

= diag(1,l, - 1, - 1). Let Po = (0,0,0,0), PI = (1,0,0,0), 
andP2 = (0,0,1,0). LetP= (X I,X2,X3,X4) be a running point 
of the set. The calculation leads to 

Y(poP, =f Y[P"p,:x2=X3 =X4 =0I\x l ;;;.0, 

Y[p,,P,:(XI)2 + (X2)2 - (X4)2 = 0I\x3 ;;;.0, 

Y[P,,P, = f Y[PoP) :x l = x 2 = X4 = 0I\x3 ;;;.0. 

Thus the curtailing operation transforms the three-di
mensional tube ray Y[P,,P, into the one-dimensional cur
tailed tube ray Y[P,,P,, where the u space is extremal on 
Y[P"P, in the sense ofEqs. (5.7) and (5.8), where Eq. (5.7) 
is fulfilled as a result ofEq. (5.6). 

Further, the u space that is extremal on all timelike 
tubes Y P"P will be considered. Spacelike tubes are not in 
general extremal. Such a u space is important from a phys
ical viewpoint because the real event space is a u space of this 
kind. 
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Definition 5.6: The scalar product between two non-null 
direction vectors up',p and up',Q at Po (or between two non
null tuberaysY[p',P andY[PoQ ) is determined if the follow
ing limit exists: 

(UPoP,UPoQ) 

== r~o (Po,P,Q) 

= lim lim I 
Q' -P'.Q'E Y(P"Q P' -Po,P'EY(P"P 

u(Po,P)u(Po,Q) I 
u(Po,P')u(Po,Q ') 

Xr(po,p',Q'). (5.9) 

Let a u space Vbe given on the set n. On the set 

there are defined two kinds of objects: the vector PoP (the 
point PEn t. determines PoP) and the direction vector U PoP' 
PEnt.. 

The scalar products between the two vectors are defined 
by Eqs. (5.1), (5.9), and 

(PoP,PoQ) = r(Po,P,Q). (5.11) 

Two different u spaces can be defined on n:.: the u space 
V:' with the world function u and the u space V t. * with the 
world function 

~o (P,Q) = u(Po,P) + u(Po,Q) 

- r~, (Po,P,Q), p,Qen:.. (5.12) 

It is supposed that the vectors uPoP (PEn:. ) belong to V:' *, 
whereas the vectors PoP (PEn:.) belong to V:'. 

Definition 5. 7: The uspace V given on a set n determines 
a uspace V:' *, with the ufunction defined by Eq. (5.12) on 
the set n:. if the following conditions are fulfilled. 

(i) The u space Vis dense at Po and extremal on any 
timelike tube ray Y[PoQ 3Po, (u(Po,Q) > 0), Qen. 

(ii) Any timelike tube ray Y[PoQ (u(Po,Q) > 0) 
determines the timelike direction vector up',Q 
(uPoQ = gen(Y[PoQ ), u(Po,Q) > 0). 

(iii) The scalar product of two direction vectors up',P 
and up',Q (uPo,Q) > 0, u(Po,P) > 0) at Po is determined. 

It is easy to verify that the function r~, (Po,P,Q) calcu
lated by means ofEq. (2.3) with the ufunction (5.12) coin
cides with expression (5.9). 

Definition 5.8: The direction vector up',p (PEn) is tan
gent to the vector PoP (PEn) on nit if 

(up',Q'PoP) = (Up.,Q'upop ) 

(5.13) 

Definition 5.9: The u space V given on the set n deter
mines the D-dimensional u space V t.,Dt of the timelike tan
gent direction vectors up',Q on the set nt. if the following 
conditions are fulfilled. 

(i) Here V determines theuspace V:. * with theufunc
tion (5.12) on n:.. 

(ii) Any direction vector up',p (PEn) is tangent to the 
vector PoP (PEn) on nt. 

(iii) The set f/t = {rl r = rank d n ( g; n )} of all matri-
ces 
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i,k = 1,2, ... ,n neN 

is restricted above 

rankdn(g;n)<D, g;ncn:. 

(5.14) 

(5.15) 

and the supremum D is achieved for the matrix d D (g;D) 
of the same order D: 

(5.16) 

The set g;D cn:. forms a (D + 1) point basis in V t.$.. 
Let us parametrize the non-null tube Y PoP by means of 

a parameter r in such a way that any point P( r) of the sec
tion Y1;P(T) (Yp"p) corresponds to some value of the pa
rameter r determined by the relations 

[ 
r(1 - r) ]2 

..Ju(Po,P(r» + Ir(1_r)I..Ju(P(r),1') =u(Po,P), 

u(Po,P( r» = ru(Po,P), 

u(P,P(r» = (1- r)2u (Po,'p), 

r(Po,P,(r» = 2ru(Po,P), 

perle Y1;Q(T) (YPop ), 

( 5.17) 

Here P( r) is one of the points of the section 
Y1;Q(T) (Yp''p)' 

Such a parametrization means that 

P(r)eYpo)p, r<O, Poe{P(O)}, PE{P(1)}, 

P 
G/ G/ (5.18) 

(r)eY[PoP)J O<r<l, P(r)eYp,,[p, l<r. 

The parametrization is continuous and relations (5.17) 
for u satisfy the equation of the tube: 

F
2
(P

O
,P,P(r» = I 2u(PoP) r(po,P,P(r» I =0. 

r(Po,P( r),1') 2u(Po,P( r» 

(5.19) 

Let us consider the D-dimensional Euclidean space ED 
given on the set RD. The world function has the form (3.4) 
and the tube ray Y ox can be represented in the form 

Y ox = S=~-I U {yIY= roX + Dila/(x)r/}, X,yeRD, 
s=o T,ER /= I 

a/eRD, 1= 1,2, ... ,D - 1, rseR, s = O,I, ... ,D - 1. 
(5.20) 

Here a/ are D - 1 linear independent vectors which sat
isfy 

(a/(x),a/(x» =0, (a/(x),x) =0, 1= 1,2, ... ,D-1, 
(5.21 ) 

where 
D 
~ . k (x,y) = £.i gikX'y , 

i,k= I 

1= 1,2, ... ,D. 

If ED is the proper Euclidean space, then system (5.21) 
has only a trivial solution a/ = 0 (/ = 1,2, ... ,D - 1), and ED 
is extremal on Y ox ' If ED is the pseudo-Euclidean space of 
index 1 (D>2), thena/(x) = 0 (/ = 1,2, ... ,D - 1) for time
like x, u(O,x) > 0, but a/ (x) #0 for spacelike x (u(O,x) < 0). 
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Let us use the curtailing procedure (5.6). Then for the 
non-null tube one obtains 

(5.22) 

where ED is extremal on Y~x' 
Thus in the case of the pseudo-Euclidean space the cur

tailing procedure can be defined as an addition of the curtail
ing equations y = 'TX: 

Ygx = u {yIF2 (0,x,y) = Ol\y = 'Tx}, x,yERD
• 

?ER 

(5.23 ) 

It is easy to see that the curtailing procedure does not 
change the extremal timelike tubes, but it does change the 
nonextremal spacelike tubes. 

Theorem 5.1: If the u space V given on the set n deter
mines the D-dimensional u space V t,J: of the timelike tan
gent vector up"p on the set nt, and any timelike direction 
vector uPoP determines the tube ray Y[PoP , then V t,J: is a D
dimensional Euclidean u space. 

Proof According to Eq. (5.15) there is a (D + 1) point 
basis 9 D C n t, in V:';'. Let us use the designations 

X;(P)=(UPOPi'POP) = (uPOPi'up"p) 

= r%., (Po,P;,P), 

(5.24) 

(5.25) 

whereg;k (9 D
) is the metric tensor and x; (P) are covariant 

coordinates of the point P in the basis 9 D with the basis 
vectors e; = up"Pi (i = 1,2, ... ,D). According to Eq. (5.13) 
the vector uP"P is supposed to be tangent to PoP. 

Let us write Eq. (5.15) with n = D + 2, PD + 1 

= PEnt" PD + 2 = Qent,. Using the designations (5.24) 
and (5.25) one obtains 

g;k(9 D
) x;(P) x;(Q) 

rank Xk (P) 2u(Po,P) r%., (Po,P,Q) =D, 

xk(Q) r~o (P,Q,P) 2u(Po,Q, ) 

i,k = 1,2, ... ,D. (5.26) 

Insofar as the last two columns are linear combinations of 
the first D columns one obtains 

1 D . 
u(Po,P) = - I x; (P)x'(P), PEnt, , 

2 ;=1 

D 

= Ix;(P)x;(Q), p,Qent" 
;=1 

where 
D 

x;(P) = I g;k(9 D )Xk(P), i= 1,2, ... ,D. 
k=1 

(5.27) 

(5.28) 

(5.29) 

SubstitutingEqs. (5.27) and (5.28) intoEq. (5.12) oneob
tains 
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The above means that the u space V:';' is Euclidean if 
there is a one-to-one correspondence between the direction 
vectors U p,,P and their coordinates x (P) = {x; (P) }. 
i = 1.2 ..... D. xERD. 

Let P' = P( 'T)EY P"P, Q' = P( r)EY P"P, and PEnt,. 
Then Eqs. (5.17) and (5.27) lead to 

u(P'.Q') =..!.. f gik(9 D
) [x;(P') -x;(Q')] 

2 ;,k= 1 

X [xdP') - x k (Q')]. P',Q'EYp"pCnt, , 

(5.31) 

which means that the timelike tubes Y P"P and Y%.,p con
structed in the u spaces Vand V:';' coincide, respectively. 
with 

Y%.,p = Y P"P' u(P.Q) = 01:
0 
(P,Q). QeY P"P . 

(5.32) 

Then for Y[P"P let us take expression (5.23). which is valid 
for pseudo-Euclidean space. 

Y[P,,P = U {p'lx(P') = 'Tx(P) 
1'>0 

1\2'Tu(Po,P) = r(Po,p.P')}. 

(5.33) 

For a timelike tube each of conditions (5.33) is a corollary of 
the other condition. However, conditions (5.33) will be con
sidered as independent. keeping in mind that we will further 
use them in the general case. 

According to Eq. (2.12) the section of Y[P"P at the 
point QeY[poP has the form 

Y1;Q(Y[P"p) 

= U {p'lu(Po.P') = u(Po,Q) l\u(p.P') = u(P,Q) 
1'>0 

I\x(P') = x(Q) I\x(Q) = 'Tx(P) 

1\ 2'Tu(Po.P) = r (Po.p,Q) 

I\r(Po.p.p') = r(po.p,Q)}· (5.34) 

As a result of Eqs. (5.19) and (5.27) the first and last of 
conditions (5.34) are corollaries ofthe remaining condition 
and may be omitted. Then 

Y1;Q(Y[P"p) 

= {p'lx(P') =x(Q) 

l\u(P.p') = u(P.Q)}. QeY[p.,p . (5.35) 

Thus any section corresponds to some value 'T. The section is 
described by 

x(P') = x(Q) = 'Tx(P). x = {x;l. i = 1.2, .... D. 
(5.36) 

u(P.p') = u(P,Q) . (5.37) 

As a result of the extremality of Von Y[PoP system 
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(5.36) and (5.37) has the unique solution P' = Q. If Eq. 
(5.36) has another solution P' = Q'=fQ, then 
u(P,Q') =fu(P,Q) and Q'EtYt;Q (Y[poP)' Besides, Q' does 
not belong to the other sections, which correspond to other 
values r'. Hence, Q' Et..'T[ PoP . On the other hand, by the sup
position of Theorem 5.1 any direction vector uPoP deter
mines Yfpop : This means that any solution Q' of Eq. (5.4) 
belongs to Yfpop. As a result ofEqs. (5.17), (5.27), and the 
arbitrariness of P, Eq. (5.4) is reduced to Eq. (5.36). Insofar 
asQ'Et..'Tfpop ,P' = Q'cannotbeasolutionofEq. (5.36). The 
contradiction obtained shows that there is the unique solu
tion on P' = Q of Eq. (5.36) and a one-to-one correspon
dence between the point P and its coordinates x(P). Thus 
Theorem 5.1 has been proved. 

In the case of u space, which is extremal in the zeroth 
order and does not contain spacelike and null vectors, 0 t, 
= 0 and Theorem 5.1 can be formulated as follows. 

Corollary 1: Let the u space V given on the set 0 be 
extremal in the zeroth order and u(P,Q) >0 for any P,QeO. 
Let V determine the D-dimensional u space V~ Dt of the 
tangent direction vectors uPoP on 0 at PoEO. If any"direction 
vector up"p, PEO determines the tube ray Y[P"P' then V~,,Dt 
is the proper Euclidean u space. 

Using property (5.32), let us try to spread the u space 
V t,J: over the whole set O. In the D-dimensional u space 
V t,J: the coordinates (5.25) are defined VPEO. Then Eq. 
(5.25) realizes a mapping O--O~, caD. 

Let us consider the D-dimensional Euclidean u space 
V t,J: given on O~o by means of the world function (5.30): 

1 ~ ik D 01:
0 
(x,y) = - £.J g (r!)J ) (Xi - Yi) (xk - Yk) , 

2 i,k= I 

XEO~o' YEO~", (5.38) 

where the dimensionality D is specified by properties of the u 
space V mentioned in definitions (5.7)-(5.9). Usingexpres
sions (5.33) and (5.35) for the curtailed tube rays in the 
Euclidean u space V:,,:, one can use these expressions in the 
general case. Equations (5.33) and (5.35) are also well de
fined in the case u(Po,P) = 0: They can be considered as the 
definition of the null curtailed tube Y~,pou(Po,P) = 0 and 
its section at the point QeY~,p. In this case the section of 
Y~"p is defined as a set of points Q( r)E..'T~,p with the fixed 
value r. Here the null curtailed tube Y~oP is considered as a 
complex of non-null curtailed tubes Y~;p with P; --Po 

(i = 1,2, ... ,D), P;E..'T PoP,' The curtailed tube ray (5.33) has 
the definiteness property as a result of its definition by Eq. 
(5.7), Thus the uspace Vis extremal on Yfp"p if 

Y';Q(Yfp"p) 

= {p'lx(P') = x(Q) /\u(P,P') = u(P,Q)} 

= {Q}, QeY[P"p. (5.39) 

The curtailed tube rays can be used for the calculation of 
the limits (5.1) and (5.9), which determine the quantities 
(up"p,PoQ), r~o (Po,Q,P) for the timelike direction vectors 
up"p' Use of the curtailed tube rays enables us to spread defi
nitions (5.4) and (5.6) on the arbitrary direction vectors by 
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replacing Y(P"Q' Y(poP by Y(P"Q' Y(PoP in Eqs. (5.1) and 
(5.9). 

One should bear in mind that form (5.33) of the cur
tailed tube supposes a determination of the D-dimensional a 
space V:,,:, by the a space V, although the curtailing oper
ation (5.6) can be used, in principle, in any a space. IftheD
dimensional u space V:.J: is determined, then the limits 
(5.1) and (5.9) take the form 

x(Q(r» = rx(Q) , 

r~" (Po,Q,P) 

= lim lim I 
T_ +0 'T'_ +0 

a(Po,Q)a(Po,P) I 
u(Po,Q( r»u(Po,P('r'» 

xr(Po,Q(r),P(r'», x(Q(r»=rx(Q) , 

x(P(r'» = r'x(P), P,Q,PoEO. 

(5.40) 

(5.41) 

For non-null curtailed tubes, when Y~op kY P"P' the limits 
(5.40) and (5.41) coincide with the limits (5.1) and (5.9). 
For null curtailed tubes the definition of the limit of Eqs. 
(5.2) and (5.3) cannot be used. A parametrization of the 
null curtailed tube ray Y~"p (a(Po,P) = 0), which is used in 
definitions (5.33) and (5.39), can be obtained as a limit of 
the parametrization (5.17) of the non-null ray Yfp,,P' with 
P' --P,P'EY[pp' ,a(P,P') =fO.Suchalimitispossibleinthis 
case only if V is dense on Y P" • 

For determination of the uspace V~,,Dt on 0 one can use 
the following procedure, which does'not need a density of V 

at VPE..'Tp". Let 0;.; = O\Ot,. 
(i) (up"Q'PoP), PEO, QeOt, is determined by Eqs. 

(5.1)-(5.3). 
(ii) (up"Q'up"p), PEOt" QeOt, is determined by Eq. 

(5.9). 
(iii) (up"Q'up"p), PEO;.;, QeOt, is defined by Eq. 

(5.13) through (up"Q'PoP), PEOp,;, QeOt,. 
(iv) (up"Q'up"p), PEO, QeOp'; is determined by Eq. 

(5.15) through (up"Q'up"p), PEO, QeOt,. 
(v) (up',Q'PoP), PEO, QeOp'; is determined by Eq. 

(5.13) through (up"Q'upop ), PEO, QeOp,;. 

Thus all (up"Q'PoP) and (up"Q'up"p), PEO, QeO are 
determined through (up',Q'PoP), PEO, QeOt, and 
(up"Q'up"P ),PEOt" QeOt, without using the density of Vat 
V PEY p" . Practically, it is this procedure that is used for the 
parametrization (5.33) of the null curtailed tube ray. 

Definition 5.10: The a space V given on the set 0 deter
mines the D-dimensional a space V~,,Dt of the tangent vec
tors up"p on 0 if the following conditions are fulfilled. 

(i) The a space Vis dense at Po on any curtailed tube ray 
Yfp"p 3Po and extremal on it. 

(ii) Any tube ray Yfp"Q determines the direction vec
tor uPoQ = gen(YfpoQ ). 

(iii) The scalar product (up,,P,up,,Q )is determined and 
any direction vector up,,P' PEO is tangent on 0 to the vector 
PoP, PEn at point Po. 
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(iv) The matrix d n (g;n) of any n + I points g;n sat
isfies conditions (5.14) and (5.15) with g;n CO instead of 
g;nCO+. 

Theorem 5.2: If the 0' space V given on the set 0 deter
mines the D-dimensional 0' space V~oDt of the tangent vec
tors uP.,P on 0 at Po and any direction vector uPoQ determines 
the curtailed tube ray Y[PoQ (Y[PoQ = gen(uPoQ»' then the 
0' space V~oDt is Euclidean. The proof of Theorem (5.2) is 
like that of Theorem 5.1. 

Theorem 5.3: Let the 0' space V given on the set 0 deter
mine the D-dimensional 0' space V~,Dt of the tangent direc
tion vectors uPoP on 0 and let any direction vector uPoQ de
termine the curtailed tube ray Y[PoQ . If V is dense at any 
point PEO, then V determines the D-dimensional manifold 
on the open set 0 0 = n\B, wherenis theclosureofOandB 
is the boundary of n. 

Proot According to Theorem 5.2 there is a one-to-one 
mapping 0 -+vII C RD , where RD is the space of all coordi
nates x = {Xi (P)}, (i = 1,2, ... ,D). Let us define the 15 vicini
ty of the point xEJ/ as a set of yEJI satisfying the condition 

D 

Ix-yI 2 = L (xi -Yi)2<c5, 15>0. 
i~1 

Then the set vii is dense at any point (i.e., any 15 vicinity of 
xEJ/ contains at least one pointy;6x) because the O'space V 
i~ dense at any point P on any c~rtailed tube ray Y~'p' Let 
vii be the closure of vii. Here vii does not contain isolated 
points because vii is dense at any point. Let us remove all 
boundary points of :71. Then :71 transforms into an open 
region vii 0 of RD :vII evil 0 C RD. 

Let us use the one-to-one correspondence between 0 
and vii and construct the mappings n++:71 and Oo++vII 0 

with 0 COo. The 0' function on the 0 0 can be defined from 
the world function on 0 by means of the proper limiting 
process. Then the 0' space Vo on 0 0 arises. The set 0 0 with 
the coordinate system defined by Eq. (5.25) is a manifold. 
Theorem (5.3) has been proved. 

VI. THE RIEMANNIAN SPACE 

Definition 6. i: The D-dimensional Riemannian space V 
is a D-dimensional manifold vii with the quadratic form 

(dS)2=gik(X)dxi dxk (6.1) 

given at any point P of vii in some coordinate system K on 
vii. Here X = {xi}, (i = 1,2, ... ,D) are contravariant coordi
nates of point P in the coordinate system K; gik , 

(i,k = 1,2, ... ,D) is the metric tensor. Here and below the 
summation is made over repeated superscripts and sub
scripts from I-D. 

In the thus-defined Riemannian space V the world func
tion O'(P,P') is defined through the interval 

S(P,P') = S(x,x') = i P 

~gikdxi dxk 

P' 

by means of the relation 

O'(x,x') = O'(P,P') =! S2(p,p') . 

(6.2) 

(6.3 ) 

Integration in Eq. (6.2) is produced along the geodesic 
.5t' P'P, which is an extremal of the integral (6.2) considered 
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as afunctional of Xi = Xi (1'), (i= 1,2, ... ,D). The functions 
Xi ( 1') satisfy 

d 2x i . dxk dx' . 
--:::2 + r'kl(X) -- = 0, 1= 1,2, ... ,D, (6.4) 
dr d1' d1' 

i,k,l = 1,2, ... ,D, 

dxi dxk 
gik --=const. 

d1' d1' 

(6.5) 

(6.6) 

The rather small region 0 of the Riemannian space V is 
considered, so that one and only one geodesic passes through 
two different points P, P'EO, P ;6P'. 

If the metric (6.1) is definite, i.e., if 

gikXixk = 0 

has the unique solution Xi = O(i = 1,2, ... ,D), then the Rie
mannian 0' space V with the 0' function (6.2) and (6.3) is 
extremal in the zeroth and first orders. For the opposite case 
the 0' space Vis nonextremal in the zeroth order, but it can be 
extremal in the first order (on the curtailed tubes). 

We shall consider only the cases when the Riemannian 
space is locally either proper Euclidean or pseudo-Euclidean 
of index I. In the latter case the spacelike geodesics are cur
tailed geodesic tubes of the form (5.33). In both cases the 0' 

space V is thought to be extremal in the first order. 
TheO'function defined by Eqs. (6.2) and (6.3) satisfies4 

O'igik(X)O'k = 2, O'(x,x') = O'(x',x),O'(x,x) = 0, 
(6.7) 

wheregik (x) is the metric tensor at point Pwith the coordi
nates x and 

_ au 
0'.=-, 

I axi 
_ au 

0',. = ax'" , i,i' = 1,2, ... ,D. (6.8) 

The prime at the index shows that the differentiation is pro
duced with respect to the coordinates x' of point P'. The 
absence of the prime shows that the differentiation is pro
duced with respect to the coordinates x of point P. Essential
ly, Eq. (6.7) is a corollary of the fact that integration in Eq. 
(6.2) is produced along the extremal. 

There is another formulation of the extremal property 
(6.7) which does not contain the metric tensor explicitly: It 
is valid for any Riemannian space. This formulation has the 
form of a system of differential equations containing only the 
0' function and its derivatives.5,6 

O';cI,k'O'k' = 20', O'(x,x') = O'(x',x), O'(x,x) = 0, (6.9) 

G;klll = 0, i,k,l = 1,2, ... ,D, (6.10) 

where d,k' is determined by 

d·k'O'I.k' =15;, i,l= 1,2, ... ,D, (6.11) 

a20'(x,x') , 
O'I.k' I k" I,k = 1,2, ... ,D. (6.12) 

ax ax' 
The symbol ( ) III denotes the tangent derivative with respect 
to Xl , i.e., the covariant derivative with respect to Xl with the 
Christoffel symbol 
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i,k,l,/ = 1,2, ... ,D, 

and Gjk is defined by the relation 

, _ aUj / 

Gjk = Gjk (x,x ) =uj11k = - - r jk U/, 
axk 

i,k = 1,2, ... ,D. 

(6.13) 

(6.14 ) 

Equations (6.9) and (6.10) are corollaries ofEq. (6.7), but 
Eq. (6.7) can be obtained as a corollary of Eqs. (6.9) and 
(6.10) and the "boundary" condition5

,6 

[Uj,k' ] = Uj,k' (x,x') Ix' =X 

= -gjk(X), i,k= 1,2, ... ,D, (6.15) 

The tensor Gjk is the metric tensor at point x of the 
Euclidean space Ex" which is tangent to the Riemannian 
space V at point x'. The geodesic mapping V-Ex" is pro
duced in such a way that any geodesic !f P'P of V passing 
through pointP' is mapped into a straight line of Ex' tangent 
to !f P' P at point P'. At such a mapping the length of any 
intercept of the geodesic !f P' P and the angles between the 
geodesics at point P' are conserved. The coordinate system K 
in Vis mapped into the coordinate system Kx' in Ex" Here 
Gjk is the metric tensor of Ex' in the coordinate system Kx" 
In Ex' the U function of the arguments P and P" has the 
form5•6 

~. (P,P") = ~ (x,x") = u(x',x) + u(x',x") 

- Ur (x',x)grk' (x')uk. (x',x"). 
(6.16) 

Relation (6.16) sets in correspondence the world function 
~. of the Euclidean space Ex' to a point P' and the world 
function U of the Riemannian space V. 

Theorem 6.1: Let the U space V given on the D-dimen
sional manifold JI have the world function u, which is the 
twice-differentiable function of coordinates. Then the U 

space determines a D-dimensional Riemannian space R on 
JI. 

Proof Expanding u(x,x + dx) into a series over the 
powers of dxj 

, one obtains, as a result of properties (2.1) of 
the U function, 

~(dS)2 = u(x,x + dx) = ~jk (x)dx
j 
dxk + o( IdxI2), 

gik (x) = [au~x,y: ] , i,k = 1,2, ... ,D. 
ayay y=x 

( 6.17) 

Theorem (6.1) has been proved. 
Remark: In general, the U function U R of the Rieman

nian space R, defined by Eqs. (6.2 )-( 6.5) and (6.17), does 
not coincide with the world function U of the U space V. 

Definition 6.2: The U space V given on a set no is a Rie
mannian U space if no is a subset of points of a Riemannian 
space R and the U function UR of R, defined by Eqs. (6.2)
( 6. 5) and (6.17), coincides with the world function U of V: 

U(Po,P) = UR (Po,P), poEno, PEno' (6.18) 

Theorem 6.2: Let the U space Vbe given on the set nand 
let the following conditions be fulfilled. 
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(i) Here V determines the D-dimensional U space VJ.,Dt 
ofthe tangent direction vectors uPoP at any point poEn on n. 

(ii) Each direction vector uPoP determines the curtailed 
tube ray YIPoJ' . If V is dense at any point Pen, then the U 

space Vo given on no = 0 '\B is the Riemannian space and 
the world function defined by Eqs. (6.2)-(6.5) and (6.17) 
coincides with the U function of Vo. 

Proof According to Theorem 5.3 the U space V deter
mines the D-dimensional manifold on the set no = 0 '\B, 
where B is the boundary of 0, and the U space Vo on no 
arises. Let Po, Peno be arbitrary points of no. According to 
Eqs. (5.27) and (5.29) the ufunction is the twice-differen
tiable function of the coordinates (5.25). As a result of 
Theorem 6.1 the U space Vo determines a D-dimensional Rie
mannian space R on no, with the metric tensor (5.24) at 
PoEno in the coordinate system Kpo defined by Eq. (5.25). 
Four U spaces arise on no: vo, V~,,D" R, and Ex" with the 
corresponding u functions u, ~o' U R, u1(Po' According to 
Eqs. (5.32) and (6.16) one obtains 

u(Po,P) =~" (Po,P), UR (Po,P) = u1(P" (Po,P), 

po,PEno, x; =xj(Po), Xj =xj(P), 

i= 1,2, ... ,D. (6.19) 

According to Eq. (6.17) two Euclidean uspaces V~"Dt and 
Ex' coincide in the infinitesimal vicinity of point Po; hence, 
they coincide everywhere: 

(~.20) 

Equations (6.20) and (6.19) lead to Eq. (6.18). The ufunc
tions of Vo and R coincide. The u space Vo given on no is a 
Riemannian space. Curtailed tubes in Vo coincide with the 
geodesics in R Y~"p = !f p,,P' 

Theorem 6.3: The u space V given on aD-dimensional 
manifold JI is a Riemannian u space if Vis extremal on any 
curtailed tube Y~,,P' Po, PEJI and the u function is the 
twice-differentiable function of coordinates. 

Proof One can verify that all suppositions of Theorem 
6.2 are fulfilled as a result of the suppositions of Theorem 
6.3. Then Theorem 6.3 is valid as a result of Theorem 6.2. 

VII. VIOLATION OF EXTREMALITY IN THE FIRST 
ORDER 

A u space defined on a manifold and extremal in all 
orders n> 1 is a Euclidean u space. According to Theorem 
6.3 a u space defined on a manifold and extremal in the first 
order is a Riemannian space. Which are properties of a u 
space defined on a manifold, but nonextremal in the first 
order? Can such a uspace have a bearing on real event space? 

The real event space is usually considered as a four-di
mensional pseudo-Euclidean space of index 1 or as a four
dimensional Riemannian space. In both cases the event 
space considered as u space is extremal in the first order (on 
curtailed tubes) and timelike tubes coincide with timelike 
curtailed tubes. The world line of a free particle placed at 
point x' and having the four-velocity u

j 
is described by an 

algebraic equation with respect to x ( 1"): 

U,. (x,x') = u,.1" = g,.k' (x')uk'1", i' = 0,1,2,3, (7.1) 
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where ris a parameter along the world line. If detII Ut,k II :;60, 
then Eq. (7.1) can be solved with respect to Xl : It describes a 
one-dimensional world line 

Xi=Xi(l'), i=0,1,2,3. (7.2) 

Equation (7.1) (there ardour) is distinguished from 

F2(PO'P),P) = ° (7.3) 

in the respect that Eq. (7.1) always describes the one-dimen
sionalline; however, Eq. (7.3) does that only in the case 
when the extremality conditions are fulfilled. 

The circumstance that the U function is both the trans
formation function describing the classical particle motion 
and the world function describing the event space properties 
permits us to use test particle observations for the determina
tion and description of event space properties. In a certain 
sense the motion of the free classical particles and event 
space properties are identical because each is described 
through the other. 

The drawing of a geodesic is a way of describing the 
space properties, but it is equivalent to the observation offree 
classical particle motion. Pointlike particles are necessary 
for a test of space properties at small distances. However, 
pointlike particles are simultaneously the particles of a small 
mass (electrons, protons, etc.) which move according to 
quantum mechanics laws. 

If one describes the quantal motion of microparticles in 
terms of Feynman path integrals, then the particle moves 
along arbitrary trajectories, but not only along extremal 
ones, although the motion along them is most probable. This 
means a violation of extremality in the sense of property (i) 
of Sec. II and does not permit us to use quantal particles for 
testing the space-time properties, as one can do by means of 
classical particles. 

Another approach is possible using the following hy
pothesis: The space-time considered as C1 space is not extremal 
in the first order, i.e., a tube 0/ lines (not geodesic) passes 
through any two points o/the space-time. The microparticle 
motion is described by this tube (i.e., by the world tube and 
not by a world line). 

The above hypothesis permits us to use microparticle 
motion for testing of the space-time properties and, in partic
ular, for determination of the extremality violation. The sec
tion (t = const) of a world tube is in general a surface 
(string), but not a point. This circumstance is associated 
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with the string model of elementary particles, which is cur
rently popular. 

Example 6: Let there be a coordinate system K on the 
four-dimensional manifold. Let the u function have in this 
coordinate system K the form 

u(P,P') = u(x,x') =! q(1 + (£qIP)2, 

q = (x - X')2 = (t - t ')2 - (x - X')2, (7.4) 

where x = (t,x),x' = (t',x') are coordinates of the pointsP 
and P', respectively. Here I is some characteristic length and 
£ is a small parameter 1£1 ~ 1 describing a small violation of 
extremality. 

Let Po = (0,0), p) = (a,O), and £a2/F~ 1. The equa
tion for the timelike tube Y P"P, has the approximate form 

x2 = _ 6 £t
2
(t - a)2 + 0(£2), t

2 
1 £ (t -2a ) 

2 ~ 1. 
12 £(i~ , 1 

(7.5) 

If £ = 0, then the tube is a geodesic x = O. If £ > 0, then the 
timelike tube Y p. P degenerates into two points Y P"P, 

= {po,p)}, but fo~~lly the uspace remains extremal on the 
tube Y PoP, because extremal properties degenerate into the 
trivial form. If £ < 0, then the timelike straight line .!f P"P, 

transforms into a three-dimensional surface. The extremal 
properties of definiteness and minimal section are violated. 

The tube is more close to the geodesic the less.,fit II. 
If, indeed, real space-time is distinguished from Rie

mannian space at a small distance, then one should expect 
that attempts to describe the particle motion in terms of 
world lines leads to contradictions and difficulties. In the 
nonrelativistic approximation these difficulties have been 
successfully handled in terms of a probabilistic description 
of quantum mechanics; however, one cannot be sure that it is 
the best way of overcoming these difficulties. 
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Schr6dinger quantum mechanics is formulated as an infinite-dimensional Hamiltonian system 
whose phase space carries an additional structure (uncertainty structure) to account for the 
probabilistic character of the theory. The algebra of observables is described as an algebra of 
smooth functions on the quantal phase space, with a product naturally induced by the 
geometrical structures living on that manifold. The possibility of generalizing Schr6dinger 
mechanics along these lines is discussed. 

I. INTRODUCTION 

Pure states in ordinary (Schr6dinger) quantum me
chanics can be given a fairly natural geometrical description 
as the points of an infinite-dimensional Kahler manifold, the 
projective space P(Jr"') of the Hilbert space Jr'" of the sys
tem, as a matter offact. I

- 5 

This geometrical description is interesting in many re
spects. An ordinary quantum system appears as an infinite
dimensional Hamiltonian system of a special kind, in which 
the Kahler metric plays a central role. In this paper, we want 
to make clear this role: Indeed, we show that, apart from 
providing the symplectic structure through its fundamental 
form, the metric gives the "dispersion structure" of the sys
tem, therefore taking charge of the probabilistic character of 
quantum mechanics. (The term "uncertainty structure" ap
pearing in the title refers precisely to this structure; it is clos
er to physical intuition, but less precise from a technical 
viewpoint. ) 

We further exploit the geometrical description ofSchr6-
dinger mechanics looking at the observables. The observa
bles are represented in this framework by a special, quite 
natural class of real-valued smooth functions on P(Jr"') that 
we call Kiihlerian functions. Obviously enough, we look for a 
suitable algebraic structure for Kahlerian functions and we 
find that it is intimately connected with Kahler properties 
and, in particular, with the constancy of the holomorphic 
sectional curvature of the state manifold of the system. By 
the way, this throws further light on the relation between the 
holomorphic sectional curvature and Planck's constant. 

On these grounds, rather naturally, we are led to the 
question of possible generalizations ofSchr6dinger quantum 
mechanics obtained assuming as state manifold a significant 
substitute for P(Jr"'). The answer is that, under some general 
conditions which appear reasonable from the physical view
point, one is necessarily led to SchrOdinger mechanics. 

Our paper is organized as follows. Section II provides 
the basic mathematical tools, defining a number of bilinear 
composition laws between the smooth functions on a general 
almost Kahlerian manifold and introducing Kahlerian func
tions. Section III contains the Kahler formulation ofSchr6-
dinger mechanics on P(Jr"'). Section IV discusses the possi
bility to generalize SchrOdinger mechanics. 

II. PRELIMINARIES: *" PRODUCT AND KAHLERIAN 
FUNCTIONS 

In order to standardize the language, we start recalling a 
few definitions. Given a real, smooth (i.e., COO) Banach 
manifold vii, we shall use notations such as 2' ( T vii) , 
2' (T* vii, T vii), 2' n (T vii, R), etc., to denote the vector 
bundles of base vii whose fibers at any point x of vii are 
2' ( Txvll) (the Banach space of bounded linear operators 
on the tangent space at x), 2'( T:vII, Txvll) (the Banach 
space of bounded linear maps from the cotangent to the tan
gent space at x), 2' n ( Tx vii, R) (the Banach space of 
bounded n-linear forms on Tx vll ) , and so on. 

An almost complex structure on vii is a smooth section 
J of 2' ( T vii) such that J 2 = - 1. Such a J is called integra
ble if its torsion6 is zero; i.e., if for every open set ~ of vii 
and every pair X, Yof smooth vector fields on ~ , 

[JX,JY] - [X,Y] - J [X,JY] - J [JX,Y] = O. (2.1) 

An almost Kahlerian manifold is a triple (vII,J,g) , 
where vii is a real, smooth Hilbertian manifold, J is an al
most complex structure, and g is a Kahler metric, i.e., a Rie
mann metric 7 such that: 
( 1 ) g is J invariant: 

gx (JxXx,Jx Yx ) = gx (Xx'Yx )' Vxe.L ,xx'YxETxvll; 
(2.2) 

(2) the fundamental form of the metric, that is the nonde
generate two-form (J) defined by 

(J)x (Xx,Yx ): = gx (JxXx'Yx )' Vxe.L ,xx'YxETxvll 
(2.3) 

is closed. 
Note that an almost Kahlerian manifold is canonically a 

symplectic manifold. If J is integrable, we shall say that 
(vII,J,g) is a Kahler manifold. 

Now let us fix an almost Kahlerian manifold (vII,J,g). 
The fundamental form (J) and the Kahler metric g induce for 
every xe.L two top-linear isomorphisms Ix, Gx between the 
cotangent space T:vII and the tangent space Txvll. These 
are defined implicitly by 

(J)x(/xax,xx) = (ax,xx), gx(Gxax,xx) = (ax,xx)' 
(2.4) 
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for axeT:J(, Xx eTx J( . We shall denote by I, G the 
smooth sections Xl---+I x' Xl---+G x of::t' ( T * J( , T J( ) ; one easily 
checks that G = JoJ. 

Definition 2.1: Let J,/eC 00 (J( ,R). The Poisson and 
Riemann brackets of/and I, denoted by {J,/} and « J,l», 
respectively, are the real smooth functions on J( defined by 

{J,l}: = (dJ,I dl) (2.5) 

and 

( (J,l) ): = (dJ,G dl ). (2.6) 

By bilinearity, the definition of Poisson and Riemann brack
ets will be extended to smooth, complex valued functions on 
J(. 

The definition of Poisson bracket given in (2.5) is stan
dard. The second bracket operation is less usual; we call it 
Riemann bracket, because its definition depends only on g. 
Note that Eq. (2.4) and theJ invariance of li) andg allow us 
to reformulate equivalently the definitions (2.5) and (2.6) 
as follows: 

{J,l} = li)(l dJ,I dl) = li)(G dJ,G dl); (2.5') 

«J,l» = g( G dJ,G dl) = g(l dJ,I dl). (2.6') 

We now define other bilinear composition laws between 
smooth functions on J(. The physical relevance of these 
composition laws in connection with quantum mechanics 
will appear in the next section. 

Definition 2.2: LetJ,leC 00 (J( ,e). The Kahler bracket 
of/and I, denoted by <.J,l> , is the smooth complex valued 
function on J( defined by 

<.J,l>: = «J,I» + i{f,l}. (2.7) 

For VER, the ° v product and the *v product of/and 1 are the 
smooth complex valued functions on J( defined, respective
ly, by 

/ov I: = !v( (J,I» + fl, 
/*j: = !v <.J,l > + fl· 

(2.8) 

(2.9) 

When equipped with Riemann bracket, or, alternative
ly, with 0v product, COO(J(,R) [resp. COO(J(,e)] be
comes a real (resp. complex) commutative and nonassocia
tive algebra. The Kahler bracket and the * v product provide 
two more structures of complex, nonassociative algebra for 
Coo (J( ,e). With any of these two bilinear composition 
laws and with the natural involution defined by complex 
conjugation, Coo (J( ,e) is an involutive algebra. 

We also observe that, for J,/eC 00 (J( ,e), 

/*v1=/ov1+ (i/2)v{J,1}, 

/ov 1 = !(/*v1 + 1 *J), 

{J,l} = (lIiv)(/*j - hJ). 

(2.10) 

(2.11 ) 

(2.12) 

Definition 2.3: LetfeC 00 (J( ,R), and let Xbe the vector 
field I d! We shall say that the function/is Kahlerian if 

Lxg=O, 

where Lx denotes the Lie derivative along X. More general
ly, if/eCOO(J( ,e), we shall say that/is Kahlerian ifRe/ 
and 1m/are Kahlerian. The set of Kahlerian functions will 
be denoted by %(J( ,R) or %(J( ,e). 

We think it is convenient to add a few comments about 
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the definition of real Kahlerian functions. First of all, in the 
language of symplectic manifolds, X = I d/is the Hamilto
nian vector field corresponding to! The condition Lxg = 0 
tells us that the integral flow of X, that is the Hamiltonian 
flow ofJ, preserves the metric g. Note that, by the Liouville 
theorem, we have automatically L xli) = O. From this also 
follows LxJ = 0 [remember that J is uniquely determined 
by li) and g via Eq. (2.3)]. Therefore, if/is Kahlerian, the 
Hamiltonian flow of/preserves the whole Kahler structure. 
We remark that if the distance induced by g on every con
nected component of J( is complete the Hamiltonian flow of 
any real Kahlerian function is globally defined on R X J(; in 
fact, it is known that infinitesimal isometries of complete 
Riemann manifolds are complete. 8 

It is easy to check that %(J( ,R) [resp. %(J( ,e)] is 
a Lie subalgebra of COO (J( ,R) [resp. COO (J( ,e)] with 
respect to Poisson bracket. The behavior of Kahlerian func
tions with respect to the other bilinear composition laws in
troduced in this section will be studied extensively in the rest 
ofthe paper. 

III. THE KAHLER FORMULATION OF SCHRODINGER 
QUANTUM MECHANICS 

Let us now specialize our considerations to a particular 
Kahler manifold, namely the projective space P(K), where 
K is a complex Hilbert space with scalar product ( j ). 

Here, P(K) is defined as the set of one-dimensional 
subspaces, or rays, of K; for every xeJY'\ {a}, [x] will de
note the ray through x. If K is the Hilbert space of a Schro
dinger quantum system, the rays of K represent the pure 
states of the system and P( K), once equipped with its natu
ral differential structure (see below), can be regarded as the 
"state manifold" of the quantum system, just like phase 
space is the state manifold of a classical mechanical system. 

The structure carried by the quantal state manifold is 
richer than the structure of classical phase space. The latter 
is a symplectic manifold; this is true also of P(K), but in 
this case the symplectic form is the fundamental form of a 
Kahler metric. The almost complex structure and the 
Kahler metric carried by P(K) are not natural objects for 
classical phase space, or, at least, they are not essential in the 
Hamiltonian formulation of classical mechanics. On the 
contrary, these objects are fundamental for the formulation 
of quantum mechanics illustrated in this paper. 

Let us illustrate the Kahler structure ofP(K). Follow
ing Ref. I, we first define on P(K) a structure of hoi om or
phic manifold by means of the atlas 
{(rh,bh,~\)}(heJY',lIh 11= 1), where, for every h, 
( r h ,b h' ~ h ) is the chart with domain r h' and local model 
the complex Hilbert space ~ h' defined as follows: 

r h: = {[x]eJY'j(h jx)¥=O}; (3.1) 

(3.2) 

bh:rh-+~h' [X]~bh([X]);=x/(h Ix) -h (3.3) 

[in Eq. (3.2),1 denotes the orthogonal complement]. 
A holomorphic manifold can be regarded in an obvious 

way as a real smooth manifold with an integrable almost 
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complex structure. This will be, from now on, our attitude 
towards P (jlt'). As a real manifold, P (jlt') is coordinatized 
by the atlas {(rh,gfobh,gf~ h)}' (hEK,lIh II = 1), where 
gf ~ h denotes the realification of ~ h (the real Hilbert space 
obtained from ~ h restricting to R the field of scalars) and 
gf: ~ h - gf ~ h' v.-gf v is the canonical bijection. Vectors of 
gf ~ h will be always represented in the form gfv, where 
ve~h· 

We now write down the local expression with respect to 
a chart (rh,gfobh,gf~ h) of the Kahlermetricgcarried by 
P(jlt'). The metric, g is a smooth section of 
..? 2 (TP(jlt') ,R); its local expression is the smooth map 

gh:gf~ h -..?..!' (gf~ h,R), gfZI---+~z 

where 

~ (gfv gfw): = 2v Re( (vlw) _ (viz) (zlw) ) . 
ytz' 1 + IIzl12 (1 + Ilz1l2)2 

(3.4) 

In Eq. (3.4), v denotes an arbitrarily chosen positive con
stant, whose role will be clear shortly afterwards. For a char
acterization of the distance induced by g, see Ref. 9. 

As is usual, we shall denote by (U the fundamental form 
of the metric. If we regard (U as a section of 
..? 2 (TP(jlt') ,R), its local expression in any chart 
(r h ,gfobh ,fYt ~ h) is the map 

(Uh:gf ~ h -..?..!' (gf ~ h ,R) , gfz I---+(U~z' 

where 

(Uh (gfv fYtw): = 2v Im( (vlw) _ (viz) (ZIW») . 
ytz' 1 + IIzl12 (1 + Ilz1l2)2 

(3.5) 

The Kahler metric (3.4) on P(jlt') is the infinite-di
mensional generalization of the well-known Fubini-Study 
metric lO onP(Cn

); we shall therefore call it in the same way. 
Its holomorphic sectional curvature is constant and equal to 
2/v. 

It must be remarked that projective spaces are, up to 
isomorphisms, the only connected, simply connected and 
complete Kahler manifolds of constant and positive holo
morphic sectional curvature; this follows from the Hawley
Igusa theorem6 and will be fundamental in the sequel. 

We also give the local expressions of the sections I, G of 
..?(T*P(jlt'),TP(jlt'» defined by Eq. (2.4). For every 
chart (rh,gfobh,gf~ h)' and for gfz Egf'fl h' aE(fYt'fl h )*, 

I~z(a) = (l/2v)(l + IlzIl2)gf( - iu(a) - i(zlu(a»z), 
(3.6) 

G~z(a) = (l/2v) (1 + IIzIl2)gf(u(a) + (zlu(a»z), 
(3.7) 

where u(a) is the unique element of 'fl h such that 

(a,fYtv) = Re(u(a) Iv), 'tIve'fl h. (3.8) 

Up to now, we have studied the differential structure of 
the quantum state space P(jlt') and the geometrical struc
ture it carries without any reference to dynamics. In Schro
dinger quantum mechanics, the dynamics of the system is 
determined by the map 

RXP(jlt') -P(jlt') , (t,[x] )I---+[e- (i/II)tHX ) , 
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where H is a (typically unbounded) self-adjoint operator in 
jlt'. To implement this fact into our geometrical language, 
we shall fix our attention on Kahler isomorphisms ofP(jlt') 
onto itself [i.e., smooth diffeomorphisms <I>:P(jlt') -P(jlt') 
with the properties <1>* J = J and <I>*g = g]. 

If U is any unitary operator on jlt', the map 
P(jlt') -P(jlt') , [X] 1---+ [ Ux] is a Kahler isomorphism of 
P(jlt'). Conversely, I any Kahler isomorphism ofP(jlt') is 
induced by a unitary operator U, unique up to a phase factor. 

Furthermore,2 for every self-adjoint operator A in jlt', 
possibly unbounded, the family of maps (<I> t ) (tER) , where 

<l>t:P(jlt') -P(jlt') , [x]l---+[e- itAX ] 

is a continuous one parameter group of Kahler isomor
phisms ofP(jlt') and, vice versa, every continuous one pa
rameter group (<I>t) (IER) of Kahler isomorphisms ofP(jlt') 
is induced by a self-adjoint operator A [boundedness of A 
amounts to smoothness for (<I>t) (IER) ]. 

Therefore, in the present framework, the dynamical law 
for a quantum system is described as a continuous one pa
rameter group of Kahler isomorphisms of the state manifold 
P(jlt'). Note that Kahler isomorphisms are also isomor
phisms for the symplectic structure defined by the funda
mental form of the metric. So, in this approach a quantum 
system is (also) a Hamiltonian system, in the same way as 
classical conservative mechanical systems, if, as a Hamilto
nian system, a pair is meant consisting of a symplectic mani
fold and a one parameter group of symplectic isomorphisms. 
In particular, a quantum system has a Hamiltonian function 
generating the dynamics; on this we shall return while dis
cussing observables. 

Observables and their algebraic structure are the third 
constituent ofSchrodinger mechanics. In the traditional lan
guage, they are described by self-adjoint operators; ideally, 
we can suppose that every self-adjoint operator represents an 
observable. To simplify our treatment, we shall consider 
only bounded self-adjoint operators. We shall see that they 
are in one-to-one correspondence with the real Kahlerian 
functions. 

Definition 3.1: LetA be a bounded linear operator on jlt'. 
We shall denote by (A) the mean value function of A, de
fined by 

(A ):P(jlt')-+C, [X] 1---+ (A )[x]: = (xIAx)/lIxI1 2, 
(3.9) 

and by a 2 A the squared dispersion function of A, defined by 

a 2A:p(jlt')_C, [x]l---+aIx]A: = «A - (A )[X])2)[X]. 

(3.10) 

The maps (3.9) and (3.10) are smooth. If A is self-ad
joint, (A ) is real valued, a 2 A is nonnegative, and we can 

define the dispersion function!l.A: =.J a2A ; the physical in
terpretation of (A ) and !l.A in quantum mechanics is well 
known. 

Again supposing A self-adjoint, we give the local expres
sions (A )h:f&' h -R and (d (A) )h:'fl h -+ ('fl h)* of (A) and 
d (A) with respect to a chart (rh,gfobh,gf'fl h); for fYtz, 
gfVEgf'fl h one has 

(3.11) 
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«d (A ) )~z,~v) 

= 2 Re( 1 A (z + h) _ (h IA (z + h» h 
1 + IIzl12 1 + IIzll2 

_ (A(z+h)lz+h) zJv). (3.12) 
(1 + Ilz1l2)2 

Furthermore, the local expressions X h:~ 'll h ---~ 'll h' 
yh:~'ll h ---~'ll h of the vector fields X: = Id (A) and 
Y: = Gd (A ) are 

Xh(~Z) = (l/v)~(i(h IA(z+h»(z+h) -iA(z+h» 

(3.13) 

and 

yh(~Z) = (l/v)~( - (h IA(z + h»(z + h) 

+ A(z + h». (3.14) 

Using local expressions, we can prove the following. 
Proposition 3.2: LetA be a bounded self-adjoint operator 

on JY. Then the flow ofthe vector field X = Id (A ) is com
plete and is given by the one parameter group (<I>t)(teRP 

where 

<l>t ([x]) = [e- i(t/,,)AX ], V [x]eP(JY) . (3.15 ) 

The previous proposition first appeared in Ref. 11. See also 
Refs. 1, 2, 4, and 12. 

Proposition 3.3: Letfbe a complex-valued function on 
P(JY). Thenfis Kahlerian if and only ifthere is a bounded 
operator A such thatf = (A ). 

Proof: This is just a reformulation of a result obtained in 
Ref. 2. • 

Let us discuss briefly the meaning of Proposition 3.3, 
restricting our considerations to real Kiihlerian functions. 
According to 3.3, the observables of a quantum system, rep
resented by self-adjoint operators in the traditional lan
guage, can be described in this approach by a selected class of 
real smooth functions on the state manifold, namely the 
Kahlerian functions. Since these are exactly the functions 
whose Hamiltonian flow preserves the geometric structures 
carried by P(JY), we can say that observables are the gener
ators of the structural symmetries of the state manifold. 

It must also be noticed that Proposition 3.2 throws 
further light on the dynamical law for the system. Let us 
consider for a moment the idealized case of a system whose 
Hamiltonian operator H is bounded (the unbounded case 
can be treated using a more sophisticated technique, see Ref. 
2). Proposition 3.2 tells us that the general solution ofSchro
dinger's equation induced by H is the Hamiltonian flow of 
the function (vi") (H). If we want the Hamiltonian func
tion for the system to be just (H), we must stipulate that 

v=". (3.16) 

This equation provides a geometrical interpretation of 
Planck's constant in terms of the curvature of the quantal 
state manifold; such an interpretation has been pointed out 
in Refs. 3 and 4. 

We now examine the connection between the algebraic 
structure of X' (JY) and the different bilinear composition 
laws between smooth functions on P(JY) defined as in the 
previous section. The introduction of these composition 
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laws, and the discussion of their links with operator algebras 
and with the geometry of the manifold on which they work 
are the main results of the paper. 

Proposition 3.4: LetA, BeX' (JY). Then, with vas in Eq. 
(3.4), 

(a) {(A ),(B)} = «(1liv) [A,B]); 
(b) «(A ),(B») = (l/v)(AB+BA) - (2!v) (A )(B) 
and, in particular 
«(A ),(A ») = (2!v)a2 A; 
(c) «A),(B» = (2!v)«AB)-(A)(B»; 
(d) (A )o,,(B) =i(AB+BA); 
(e) (A)*,,(B) = (AB). 

Proof: Once we have proved (a) and (b), the remaining 
statements follow trivially. Furthermore, by linearity argu
ments, we can limit ourself to prove (a) and (b) in the case A 
and B are self-adjoint. The proof can be obtained going to 
local expressions. By definition, {(A), (B ) } = (d (A ),x) 
and « (A ),(B») = (d (A ),Y), where X: = Id (B) and 
Y:=Gd(B). 

Using Eqs. (3.12)-(3.14), we obtain for the local ex
pressions of the Poisson and Riemann brackets 

{(A ),(B) }h(~z) = (z + hi (1liv)(AB - BA)(z + h» ; 
1 + IIzl12 

« (A ),(B» )h(~Z) = 1 (z + hi (AB + BA)(z + h» 
v 1 + IIzll2 
_ ~ (z+ h IA(z+ h» 

v 1 + IIzll2 
(z + h IB(z + h» X . 

1 + IIzl12 • 
We remark that one of the statements contained in 

Proposition 3.4, namely (a), was already known (see, for 
example, Ref. 11). Proposition 3.4 can be used for a Kahler 
formulation of SchrOdinger quantum mechanics; it leads us 
to a number of conclusions that are reported hereafter. 

(1) If we put v = "in (a), we find a precise mathemat
ical support for the statement that "( l/i") [ , ] is the quan
tum analog of Poisson bracket." 

(2) The Riemann bracket is the operation we must use 
in this framework to compute the dispersion of observables. 
Putting v =" in (b), we obtain that, for every observable 
fe%(P(JY) ,R) and every state [x]eP(JY), the resultsofa 
great number of measurements offin the state [x] are dis

tributed with standard deviation ~ i"( (fJ) ) ( [x]) around 
the mean value f( [x]). This also explains the role of the 
Riemannian structure carried by the quantum state mani
fold: It is the structure that takes charge of the probabilistic 
character of quantum mechanics. 

(3) Point (d) tells us that 0" -product between (real or 
complex) Kahlerian functions is the equivalent in this 
framework ofJordan product between operators. In particu
lar, 0" product provides the power structure for observables, 
since, for every AeX'(JY), 

(A n) = ("'«(A )o,,(A »o,,(A » ... o,,(A» 

(n times). 
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( 4) Point (e) tells us that *" product between complex
valued Kahlerian functions is the equivalent ofthe operator 
product. Apart from applications to quantum mechanics, 
this result is by itself interesting because it allows us to for
mulate a functional representation theorem for the algebra 
..? (JY). In order to refine the functional representation, let 
us put 

sup (!*J)([x]). (3.17) 
[xjeP(K) 

The maphll /11" is a norm on the linear space of the smooth 
functions / such that the right side of Eq. (3.17) is finite. 
Equipped with *" product, with complex conjugation and 
with the norm 1111", %(P(JY), C} is a W* algebra, and the 
map AI-+(A ) is an isomorphism between the W* algebras 
%(P(JY) ,C}and ..?(JY). Starting from this fact, itispos
sible to develop a general functional representation theory 
for C * algebras, \3 generalizing the classical spectral repre
sentation for commutative C * algebras. In this general theo
ry, the Kahler manifold P(JY) is replaced by a topological 
fiber bundle in which every fiber is a Kahler manifold iso
morphic to a projective space. It is known9 that such a struc
ture of "Kahler bundle" is naturally admitted by the set of 
pure states of any C * algebra. 

Once discovered the link between the operator formal
ism on JY and the "Kahlerian functions formalism" on 
P(JY), to translate a notion from one language to the other 
is just an exercise; in particular, this operation can be per
formed for the notion of spectrum of a bounded self-adjoint 
operator A on JY. Indeed, it is not difficult to prove14 that a 
nonzero vector x in JY is an eigenvector of A if and only if 
d[x j (A ) = 0 or, equivalently, if and only if [x] is a fixed 
point for the vector field Id (A ); in this case, the correspond
ing eigenvalue is (A ) [x j' By a suitable generalization, it is 
possible to treat along the same lines the continuous spec
trum. 

We conclude the section with an observation about the 
limiting behavior as v-O + of the formalism we have devel
oped; by Eq. (3.16), this can be interpreted as the classical 
limit of quantum mechanics. Now, for v- 0 + the holomor
phic sectional curvature of the Fubini-Study metric grows 
to + 00, or, in a more pictorial language, the "radius of 
holomorphic sectional curvature" tends to zero. Thus we 
can say that in our approach the classical limit is a singular 
limit in which the quantum state manifold, in a sense, col
lapses. 

IV. GEOMETRICAL QUANTUM MECHANICS? 

The results obtained in the previous section show that 
one can formulate Schrodinger quantum mechanics using 
the language of differential geometry instead of the tradi
tional apparatus based on Hilbert spaces and linear opera
tors. Since projective spaces are, up to isomorphisms, the 
only connected, simply connected and complete Kahler 
manifolds of constant and positive holomorphic sectional 
curvature, we can give the following geometrical definition 
of Schrodinger quantum system: 

Definition 4.1: A Schrodinger quantum system is a qua-
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druple (1,J,g,(<I>')(teR»' where (1,J,g) is a connected, 
simply connected and complete Kahler manifold of constant 
holomorphic sectional curvature 2/", and (<1>,) (teR) is a 
continuous one parameter group of Kahler isomorphisms of 
(1,J,g). 

Given such a structure, we interpret 1 as the set of pure 
states of a physical system, the real Kahlerian functions as 
the observables, etc., and (<I>')(teR) as the dynamical law. 
We remark that such a geometrical attitude toward quan
tum mechanics agrees with the general scheme of quantum 
theory proposed in Ref. 15 (pure states as the points of a 
manifold and observables as a selected class of real functions 
on the pure states, in contrast to classical mechanics where 
any real function on the phase space is an observable). 

One may wonder whether it is possible, on the grounds 
of some reasonable assumption, to enlarge Definition 4.1 so 
as to include some hypothetical "generalized quantum sys
tem." Why should the state manifold be isomorphic to a 
projective space? Is Kahler structure really essential for a 
satisfactory definition of quantum system, or can it be re
placed by some more general geometrical structure? Of 
course, to discuss these problems, we must necessarily put 
some a priori limitation on the most general structure we are 
willing to consider. Keeping in mind what we have learned 
in the previous section working P(JY), we make the follow
ing choice. 

Definition 4.2: A trial quantum system (TQS) is a qua
druple (1,(i),g, (<I> t ) (teR) ) where 1 is a real, smooth Hitber
tian manifold, and (i), g are, respectively, a symplectic form 
and a Riemann metric on 1; (<1>,) (teR) is a continuous one
parameter group of isomorphisms of (1 ,(i),g): 

<I>~(i) = (i), <I>~g = g. 

Given a TQS, we shall denote by %(1 ,R) the set of real 
smooth functions / on 1 such that the Hamiltonian vector 
field X = I d/preserves g: Lxg = O. %(1,C) will be the 
set of complex-valued smooth functions / on 1 such that 
Ref, Im.fe%(1 ,R). 

In the previous definition, the term "trial" emphasizes 
the fact that we do not know whether every structure of that 
kind can be reasonably interpreted as the geometrical de
scription of a quantum system. Apart from this, the ideas 
underlying Definition 4.2 are clear: 

( 1 ) 1 is the set of pure states of the system: We require 
it admits a symplectic structure because we want a Hamilto
nian theory. 

(2) % (1 ,R) is the set of observable functions, char
acterized as in the case of Schrooinger quantum systems as 
the generators of the symmetries of the geometrical struc
tures carried by 1. For every observable / and every state 
xE..-II , the mean value obtained by a great number of mea
surements of/in the state x is/ex). 

(3) The Riemann metric g gives the "dispersion struc
ture" of the system: For.fe% (1, R) and xEM, the disper
sion of/in the state x is 

aJ: = ~ !"« /f) )(x) , (4.1) 

where « , » denotes the Riemann bracket operation, de
fined as in Eq. (2.6). 
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Like Eq. (2.6), Eqs. (2.5) and (2.7)-(2.9) also have a 
well-defined meaning when applied to a TQS; we shall use 
them to extend to general trial quantum systems the defini
tions of all bilinear composition laws introduced in Sec. II. 
The symbols °Il and *11 will be employed to denote 0" prod
uct and *" product with v = Ii. For future application, it will 
also be useful the following. 

Definition 4.3: Given a TQS, we shall say that 
%(1,R) is full if for every XEM the differentials dJ, 
fE%(1 ,R), span the whole cotangent space T:1. 

The fullness condition means that the set of observables 
is sufficiently rich; to ask it is reasonable from a physical 
viewpoint. This condition is satisfied by SchrOdinger quan
tum systems, as well as by other trial quantum systems, for 
example those in which 1 is the Grassmannian of d-planes 
in a complex Hilbert space (d = 2,3, ... ), g is the natural 
Kahler metric of the Grassmannian and Ct) is its fundamental 
form. 

Having delimited by Definition 4.2 the general geomet
rical structure allowed in our discussion, we pass to examine 
the questions we formulated at the beginning of this section. 
A possible answer to such questions is the one provided in 
Refs. 3 and 4, that, in our setting, sounds as follows: Schro
dinger quantum systems are the only trial quantum systems 
in which the state manifold satisfies a number of geometrical 
requirements (in particular, homogeneity, isotropy, and po
sitivity of the curvature; simple connectedness is also expli
citly asked). In the approach we shall follow here, attention 
is fixed on the fullness condition, the measurement process 
and the algebraic structure of observables. In our opinion, 
this approach is better founded from a physical viewpoint: 
Rather than putting by hand a set of geometrical conditions 
on the state manifold, it selects indirectly the admissible geo
metries through a careful discussion of the observables and 
their behavior. In this discussion of the observables, fullness 
is the assumption in which, at a first sight, the connection 
with the geometry of the state manifold is most direct; 16 
however, the fullness requirement alone is not resolutive, 
and the conclusions of our analysis will depend strongly on 
the other assumptions we will make. 

We now start discussing the question: Is Kahler struc
ture really necessary to build quantum mechanics? Given 
any TQS, we have a unique smooth section J of 2' ( T 1) 
such that 

Ct)x (Xx'Yx ) = gx (JxXx,Yx ), VxEvR' ,Xx,YxETx1. 
(4.2) 

From the nondegeneracy of Ct) follows that Jx is a top-linear 
isomorphism for every xEvR', If J 2 = - 1, J is an almost 
complex structure and the triple (1 ,J,g) is an almost Kah
lerian manifold. 

As we shall now see, there is a relevant physical reason 
to ask that J 2 = - 1: This condition is equivalent to a suffi
ciently strong formulation of the uncertainty principle. The 
need for a strong formulation of the uncertainty principle 
was first pointed out in a different context by Ref. 17. In the 
present, geometrical framework, we are led to the following. 

Definition 4.4: We say that a TQS (1,Ct),g, (cI>, ) (teR» 
satisfies the uncertainty principle if the following conditions 
are satisfied for every XEM: 
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(a) for every f,IE%(1 ,R), 

I1Jl1x l>!lil {f,l} (X) I; 
(b) foreveryjE%(1,R), 

I1J = Inf{tlE[O, + 00]) I tll1xi>!IiI{f,/}(x) I 

V1E%(1,R)}. 

Proposition 4.5: Let (1,Ct),g, (cI>, j (teR» be a TQS in 
which %(1,R) is full. Then (1,Ct),g,(cI>')(teR» satisfies 
the uncertainty principle if and only if the tensor field J de
fined by Eq. (4.2) is an almost complex structure. 

Proof Let us fix xEM. Forf,IE%(1 ,R), we have 

I1J = ~ !l1gx (JxXx ,JxXx ), I1x 1= ~ ~l1gx (Jx Yx,Jx Yx ) 

(f,/}(x) =Ct)x(Xx'Yx )' 
wherewehaveputXx: = IxdJ, Yx: = IxdJ From here and 
the fullness hypothesis follows that conditions (a) and (b) 
are equivalent to 
(a

/
) gx (JxXx,JxXx )gx (Jx Yx,Jx Yx »Ct); (Xx'Yx ) for every 

Xx, YxETx1; 
(b /) for every XxETx1 

gx (JxXx,JxXx ) = Inf{AE[O, + (0) IAgx (Jx Yx,Jx Yx) 

>Ct); (Xx'Yx )VYx ETx1}. 

. Moreover, J; = - 1 if and only if 
(c) gx(JxXx,JxXx ) =gx(Xx,xx) foreveryXxETx1. 
Thus we must show that conditions (a/ ) and (b/ ) together 
are equivalent to (c). 

Assume (a/ ) and (b /) are satisfied. Then, for every 
Xx ETx 1 

g; (Xx,xx) = g; (JJ x- IXx,xx) 

= Ct); (J x-1Xx,xx) 

<.gx (Xx,xx )gx (JxXx,JxXx), 

so that 

gx (Xx,xx )<.gx (JxXx,JxXx )' (4.3) 

On the other hand, since for every S'ER, Xx, YxETx1, one 
has 

O<.gx (Xx + S'Jx Yx,xx + S'Jx Yx ) 

= gx (Xx,xx) + S' 2gx (Jx Yx ,Jx Yx ) - 2S'Ct)x (Xx, Yx ), 

choosing S' = Ct)x (Xx, Yx ) / gx (Jx Yx ,Jx Yx ), we obtain 

gx (Xx,xx )gx (Jx Yx ,Jx Yx) - Ct); (Xx, Yx ) >0. 

Therefore, from (b'), we have 

gx (Xx,xx »gx (JxXx,JxXx )' (4.4) 

Conversely, let (c) be satisfied. Then u.sing Schwarz's in
equality, we easily infer (a'). To obtain (b'), assume we are 
given, for a fixed XxETx1, a non-negative real number A 
such that 

Agx (Jx Yx,Jx Yx »Ct); (Xx,Yx ), VYxETx1. (4.5) 

In particular, this inequality will hold for Yx = JxXx. In this 
case, using (c) we get 

Agx (JxXx,JxXx »g; (JxXx,JxXx ) 

that is A>gx (JxXx,JxXx)' This proves (b'). • 
Proposition 4.5 gives us sufficient motivations for re-
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stricting our considerations to trial quantum systems of al
most Kiihlerian type, i.e., those in which the tensor field J 
defined by Eq. (4.2) is an almost complex structure. 

We now examine the behavior of observable functions 
with respect to the bilinear composition laws induced by g, 
(/J. Let us take a functionjE%(1 ,R); then, the equation 

(4.6) 

which follows immediately from Eq. (4.1) and the definition 
of o

lj product, supports the interpretation ofjo.,j' as the ob
servable "square of j" (remember of the identity 
(P2) = a2p + (p)2, holding in probability theory for any 
square-summable random variable F). Therefore, it is natu
ral to ask that 

jE%(1 ,R) =:}jo.,j'E%(1 ,R). 

This amounts to ask that 

J,/E%(1 ,C) =:}j.Ij/E%(1 ,C) 

[remember that.1j = 0lj + (i/2)~, } and that the Kahler
ian functions are closed with respect to Poisson bracket]. 

The.1j product couples together the "power structure" 
for observables, respented by 0 Ij product, with the Lie alge
bra structure, defined by the Poisson bracket, in a way which 
is suitable to build a complex, associative algebra. Now, the 
following proposition holds. 

Proposition 4.6: Let (1,{/J,g, (<1>,-) (IER) ) be a TQS of al
most Kahlerian type in which % (1 ,R) is full. Let us con
sider the pair of conditions: 

(a) j.ljlE%(1 ,C) for every J,IE%(1 ,C); 
(b) (j.ljl).ljk =j.IjU.ljk) 

for every J,1,kE%(1 ,C). 
These conditions are satisfied if and only if the almost com
plex structure J defined by Eq. (4.2) is integrable and 
(1 ,J,g) is a Kahler manifold of constant holomorphic sec
tional curvature 2/fz. 

Proof It will result from the theorems we will establish 
in an accompanying paper,18 devoted to the study of proper
ties of Kahlerian functions in general, almost Kahlerian 
manifolds. We shall see that condition (b) is equivalent to 
integrability for the almost complex structure and that, tak
en for granted integrability, the apparently "innocuous" 
condition (a) is satisfied if and only if the curvature is con
stant and equals 2/fz. • 

Propositions 4.5 and 4.6 provide a possible answer to the 
questions formulated in this section. Summing up, we can 
say that if a trial quantum system has the following proper
ties then the space state is a Kahler manifold of constant 
holomorphic sectional curvature 2/fz: (i) the observables 
are full; (ii) the uncertainty principle is satisfied; and (iii) 
the observables form an associative algebra with respect to 
.Ij -product. Under the additional assumptions of connec
tedness, simple connectedness and completeness, this neces
sarily leads us to ordinary SchrOdinger mechanics. 

Note added in proof After this work was submitted for 
publication, a paper of S. Weinberg appeared ["Testing 
Quantum Mechanics," Ann. Phys. 194, 336 (1989)], con
cerning the general foundations of quantum mechanics and 
its possible nonlinear generalizations. Here, a .-product is 
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introduced on the quantum observables, in a framework that 
is slightly different from ours, clashing with the lack of asso
ciativity in the nonlinear case. We think the general geomet
rical setting proposed in our paper is relevant in connection 
with these problems. 
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Making reference to the formalism developed in Part I to formulate Schr6dinger quantum 
mechanics, the properties of Kiihlerian functions in general, almost Kiihlerian manifolds, 
are studied. 

I. INTRODUCTION 

In a previous paper, I we have shown that a geometrical 
formulation is possible for Schr6dinger quantum mechan
ics, in which the pure states of a quantum system are re
garded as the points of an infinite-dimensional Kiihler 
manifold and the observables are represented by a selected 
class of smooth functions on the state manifold (the Kahl
erian junctions). 

The central point in our work was the observation that 
a number of bilinear composition laws are defined natu
rally between smooth, real-, or complex-valued functions 
on any almost Kiihlerian manifold. Restricting these bilin
ear composition laws to Kiihlerian functions, we were able 
to reproduce in such a geometrical framework the alge
braic structure of the observables of a quantum system, 
given by operator algebra in the conventional language of 
Schr6dinger mechanics. 

The Kiihler manifold, on which we worked to obtain 
these results, is the projective space P(J¥') of the Hilbert 
space J¥' of the system; we subsequently discussed the pos
sibility of a generalization of Schr6dinger mechanics in 
which the state manifold is not a projective space, and our 
conclusion was that no generalization of this kind is pos
sible if one asks that observables are a sufficiently wide set 
and close an associative algebra. 

Such a conclusion stems from a detailed analysis of the 
properties of Kiihlerian functions in general, almost Kiihl
erian manifolds. This analysis, omitted in Ref. 1, is the 
object of the present paper. In Sec. II, we shall provide two 
characterizations of Kiihlerian functions; in Sec. III, we 
will show that the integrability of the almost complex 
structure is strictly connected with a condition of associa
tivity on Kiihlerian functions; in Sec. IV, we will discuss 
the link between the holomorphic sectional curvature of 
the manifold and the closedness of the set of Kiihlerian 
functions with respect to *v product. 

It is our opinion that these results have some interest 
even independently of the physical implications of Ref. 1. 
Indeed, from a purely mathematical viewpoint, they tell us 
how to associate to an almost Kiihlerian manifold a non
commutative algebra (the smooth functions with *v prod
uct) and how to recognize certain geometrical properties 
of the manifold analyzing a selected subspace of this alge
bra (the Kiihlerian functions). 

II. CHARACTERIZATION OF KAHLER IAN FUNCTIONS 

Throughout this paper, in dealing with almost Kiihle
rian manifolds, we shall maintain all the definitions and the 
notations introduced in Sec. 2 of Ref. 1. Furthermore, in 
agreement with Definition 4.3 of Ref. 1, we shall say that 
the set of the real Kiihlerian functions on an almost Kiihl
erian manifold is jull if the differentials of such functions 
at any point of the manifold span the whole cotangent 
space at that point. For the sake of brevity, we shall always 
omit the adjective "smooth" when speaking of tensor fields 
on the manifolds under examination; thus expressions such 
as "a vector field," "a one-form," etc. will stand for "a 
smooth vector field," "a smooth one-form," etc. 

In this section, we will provide two characterizations 
(algebraic and geometrical) of the Kiihlerian functions on 
an arbitrary almost Kiihlerian manifold (Jf, J, g). The 
algebraic characterization is given by the following. 

Proposition 2.1: For JEC'" (Jf,C) , let §) f be the linear 
map 

The following statements are equivalent, for every 
vER\ {O}: (a) j is Kiihlerian; (b) §) f is a derivation with 
respect to the Riemann bracket; (c) §) f is a derivation 
with respect to the Kiihler bracket; (d) §) f is a derivation 
with respect to the 0 v product; and (e) §) f is a derivation 
with respect to the *v product. 2 

Proof By Jacobi's identity, §) f is a derivation with 
respect to the Poisson bracket for every JEC'" (Jf,C). 
Using this fact, and keeping in mind that 
< , > = « , » + i{ , }, we are easily led to the conclu
sion that (b) and (c) are equivalent. Furthermore, §) f is a 
derivation with respect to pointwise product, and thus (b) 
and (d), (c), and (e) are equivalent. It remains to show 
that (a)<:>(b); we can restrict our considerations to real 
functions. 

Let J, I ,kEC'" (Jf,R) and let X, Y, Z be the vector 
fields I dj, I dl, I dk. Then, 

§) f( (I,k» = - L x(g( Y,Z» 

= - (Lxg)(Y,Z) -g(LxY,Z) -g(Y,LxZ), 

«§) J,k» =g( - LxY,Z) , «(I,§) tk» =g( Y, - LxZ ) , 

and so §) f( (I,k» equals «§) tk,l) + «k,§) J» if and 
only if 
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(Lxg) (Y,Z) =0. 

This equation holds for arbitrary I, k if and only if 
L~ = 0, i.e., if and only if j is Ktihlerian. • 

After the algebraic characterization of Ktihlerian func
tions provided by the previous proposition, we come to the 
geometric one. To obtain it, we must introduce the Rie
mannian connection on JI. This is the unique connection 
on JI such that Vg = 0 and the torsion tensor is zero, i.e., 

VxY - VyX - [X,Y] =0, (2.1) 

for every pair X, Y of vector fields. Of course, here we 
denote by V the covariant derivative induced by the con
nection.3 In particular, we shall work with the double co
variant derivatives VVj:=V(Vj) of smooth real-valued 
functions on JI, and with the covariant derivative V J of 
the almost complex structure. For jECOO (JI,R), VVj, as a 
bilinear form on JI, is symmetric: 

(2.2) 

for xEJI,xx,YxETxJl. This is a well-known property of 
torsion-free connections. Regarding V J, it will be viewed as 
a section of .5t' 2 ( T JI, T JI) (the vector bundle of base JI 
whose fiber at any point x of JI is the Banach space of 
bounded bilinear maps from TxJl X TxJl to T~), in 
such a way that 

(Vy.T)X=VJ(X,Y), (2.3 ) 

for every pair X, Y of vector fields. It is known4 that the 
almost complex structure is integrable if and only if 
VJ=O. 

We can now return to Ktihlerian functions. We start 
with the following lemma. 

Lemma 2.2: Let jECOC(JI,R), and put X:=I dj. 
Then, for every pair Y, Z of vector fields, 

(Lxg)( Y,Z) =VVj(JY,Z) + VVj(JZ,Y) 

+ (Vj,VJ(Y,Z) + VJ(Z,Y». 
(2.4) 

Proo/" Let Y, Z be any pair of vector fields on JI. 
Then, 

(Lxg) (Y,Z) =Lxfg( Y,Z» - g(LxY,Z) - g( Y,LxZ) 

=Vxfg(Y,Z» -g(VxY - VyX,Z) 

-g(Y,VxZ - VzX), 

where we have used Eq. (2.1) to re-express LxY 
[X, Y] and L xZ = [X,Z]. Since V xfg( Y,Z» 

= g(V xY,Z) + g( Y,V xZ), from the previous equation it 
follows 

(Lxg)(Y,Z)=g(VyX,Z) +g(Y,VzX). (2.5) 

We now remember that X=I dj=IVf. Then, 

g(VyX,Z) =g«VyI)Vj,Z) + g(/(VyVj ),Z). 

We further make use of the identity 

g(la,Z) = (a,JZ) , (2.6) 
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holding for every one-form a and every vector field Z, 
from which follows taking the covariant derivativeS 

g«Vyl)a,Z)= (a,(V y.T)Z) , (2.7) 

for every one-form a and every pair Z, Y of vector fields. 
Applying (2.6) and (2.7) with a = Vj, we get 

g(VyX,Z) = (Vj,(VyJ)Z) + (VyVj,JZ) 

= (Vj,VJ(Z,Y» + VVj(JZ,Y). 

In the same way, one treats the term g( Y,V zX) in Eq. 
(2.5). The final result is Eq. (2.4). • 

Proposition 2. 3: Let jECOO (JI ,R). Then,f is Ktihlerian 
if and only if for every pair Y, Z of vector fields 

VVj(JY,JZ) =VVj( Y,Z) - (Vj,VJ( Y,JZ) 

+ VJ(JZ,Y». (2.8) 

Proo/" Let X: =1 dj; then j is Ktihlerian if and only if 
Lxg = o. ButLxg = o if and only if (Lxg)(Y,JZ) = o for 
every pair Y, Z of vector fields. Writing down explicitly the 
equation (L~) (Y,JZ) = 0 with the help of Lemma 2.2, 
we obtain the wanted result. • 

The previous proposition provides the geometrical 
characterization of Ktihlerian functions; as we see, it puts a 
condition on the behavior of the "covariant Hessian" VV j 
with respect to the almost complex structure J. Note that 
in the integrable case this condition simply means that VV j 
is J invariant. On this we shall return later. 

III. ASSOCIATIVITY AND INTEGRABILITY 

In this section, we fix our attention on associators for 
triples of Ktihlerian functions with respect to the *v prod
uct. We show that the vanishing of such associators is 
strictly connected with the integrability of the almost com
plex structure J. 

We start with a few identities about the covariant de
rivative of the almost complex structure in general, almost 
Ktihlerian manifolds. 

Lemma 3.1: For every triple X, Y, Z of vector fields 
(a) VJ(JX,Y) + JVJ(X,Y) =0; 
(b) g(X,VJ( Y,Z» + g(Y,VJ(X,Z» = 0; 
(c) g(X,VJ(JY,Z» + g(Y,VJ(JX,Z» = o. 
Proo/" (a) and (b) are obtained taking the covariant 

derivatives of the identities J(JX) = - X and 
g(X,JY) + g( Y,JX) =0. Furthermore, from (b) and the J 
invariance of g we get 

g(X,VJ(JY,Z»= - g(JY,VJ(X,Z»=g(Y,JVJ(X,Z». 

By (a) this implies (c). • 
We now express *v associators for triples of Ktihlerian 

functions in geometrical terms. 
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Lemma 3.2: Let I, I, k be real Kahlerian functions. 
Then, for every VER\{O}, 

= < <1,1>,k> - <I, <I,k> > 

= - 2(V/,VJ(IVk,GV/». (3.1 ) 

Proof: The first equality in (3.1) is obtained trivially 
for every triple of smooth functions and will hold in par
ticular for real Kahlerian functions. The rest of the proof 
will be devoted to the second equality. 

From the very definition of Kahler bracket [Eq. (2.7) 
of Ref. 1], we compute 

< <1,1>,k> - <I, <I,k> > 

=[« «/,/»,k» - «/,«(I,k» » - {{/,l},k} 

+ {/,{/,k}}] + i[ « {/,l},k» + {( ( l,l) ),k} 

- « 1,{/,k}» - {/,( (I,k) )}]. 

Furthermore, using point (b) of Proposition 2.1, it is easily 
shown that the imaginary part of the associator vanishes. 
Hence, 

< <1,1>,k> - <I, <I,k> > 

=« «/,/»,k» - «/,«(I,k» » -{{/,l},k} 

+ {/,{/,k}}. (3.2) 

This equation tells us that the associator of I, I and k with 
respect to < , > is the difference of the associators with 
respect to « , » and {, }. We now compute these two 
associators. 

By definition 

« « 1,/) ),k» = (V(V/,GV/),GVk). 

The covariant derivative V(V/,GV/) can be computed us
ing the properties of V and the identity (a,Gf3) = (f3,Ga), 
holding for every pair a, f3 of one forms on vIt; the result 
is 

(V(V/,GV/),X) =VV/(GVI,X) + VV/(GVI,X), 

for every vector field X. In particular, for X = GV k, we 
obtain 

« « 1,/»,k» =VV/(GVI,GVk) + VV/(GVI,GVk). 

From this, we also obtain, interchanging the roles of I and 
k, a similar expression for « I, ( (I,k» ». Subtracting, we 
get 

« «/,l),k» - «/,«(I,k» » 

=VV/(GVI,GVk) - VVk(GVI,GV/). (3.3 ) 

Now let us pass to the Poisson bracket. From the definition 
of { , } and the identity / = - JoG, 

{{/,l},k}=(V(V/,JGV/),JGVk). 
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By a slight modification of the technique employed to com
pute « « 1,/) ),k», we get 

{{/,l},k}=VV/(JGVI,JGVk) - VV/(JGVI,JGVk) 

+ (V/,VJ(GVI,JGVk». 

This also allows us to express {/,{/,k}} and thus, subtract
ing 

{{/,l},k} - {/,{/,k}} 

=VV/(JGVI,JGVk) - VVk(JGVI,JGV/) 

+ (V/,VJ(GVI,JGVk» - (Vk,VJ(GV/,JGVI ». 
From Eqs. (3.2)-(3.4), it follows 

< <1,1>,k> - <I, <I,k> > 

= - (VV/(JGVI,JGVk) - VV/(GVI,GVk» 

- (V/,VJ(GVI,JGVk» + (VVk(JGVI,JGV/) 

- VVk(GVI,GV/» + (Vk,VJ(GVI,JGVI ». 
Now, let us use for I and k the characterization of Kahl
erian functions provided by Proposition 2.3; in this way we 
obtain 

< < l,l > ,k > - <I, < I,k > > 

= (V/,VJ(JGVk,GV/» - (Vk,VJ(JGVI,GV/». 

We finally apply point (c) of Lemma 3.1 with the substi
tutions X = GV k, Y = GV I, Z = GV I. Inserting the result 
in the previous equation and reexpressing JG as - /, we 
obtain the second equality in (3.1). • 

Proposition 3.3: Let VER\ {O} be arbitrarily chosen. If 
the almost complex structure J is integrable, for every tri
ple I, I, k of complex valued Kahlerian functions the as
sociator (/*)h.x - I*v(l*.x) vanishes. 

As a partial converse, if %(vIt,R) is full and the as
sociators of all triples of Kahlerian functions vanish, then J 
is integrable. 

Proof: By linearity arguments, if suffices to consider the 
associators for real Kahlerian functions. If VJ = 0, by 
Lemma 3.2 the *v associators of all triples of real Kahle
rian functions vanish. Conversely, the vanishing of such 
associators means 

(V/,VJ(IVk,GVl) =0, 't//,k,/E%(vIt,R). 

In the case %(vIt,R) is full, this implies VJ = O. • 
We point out that Proposition 3.3 does not mean that 

%(vIt,C) with *v product is an associative algebra when J 
is integrable. Indeed, in general *v product does not close 
in %(vIt,C). Necessary and sufficient conditions for clos
edness will be provided in the next section, under the as
sumption of integrability. 

IV. ALGEBRAIC CLOSEDNESS AND CURVATURE 

Throughout this section, the almost complex structure 
J will be assumed integrable; thus (vIt,J,g) is a Kahler 
manifold. Our purpose is to discuss the connection between 
the closedness of % (vIt,C) with respect to *v product and 
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the constancy of the holomorphic sectional curvature. It is 
convenient to recall briefly all the machinery of curvature 
in Kahler manifolds. 

We shall denote by R the curvature tensor of the met
ric connection; R can be viewed as a section of the tensor 
bundle .!L'3(TJI,TJI) (see Ref. 6). Rather than with R, 
we shall work with its completely covariant version K. This 
is the quadrilinear form on JI defined by 

(4.1 ) 

for xEJi,Xx,Yx,Zx,WxET".Jr. The defect in commutativity 
in the second covariant derivative of anyone-form a is 
expressed through K as follows: 

VVa(X,Y,Z) =VVa(X,Z,Y) + K(X,Ga,Z,Y) (4.2) 

for every triple X, Y, Z of vector fields. 
The tensor K has some remarkable properties of sym

metry and invariance that we quote here: For 
xEJi,Xx,Yx,Zx, WxET".Jr. 

Kx(Xx,Yx,Zx,Wx) 

=Kx(Xx,Yx,JxZx,JxWx) 

=Kx(Xx,Yx,Zx,Wx)' 

(4.3 ) 

(4.4) 

(4.5) 

Finally, if xEJi and 1Tx is a Jx-invariant two-plane of 
T".Jr, the holomorphic sectional curvature c( 1Tx) is de
fined by 

c(1Tx):=Kx(Ux,Vx,Ux,Vx), (4.6) 

where (Ux, Vx) is any orthonormal basis of 1Tx' The Kahler 
manifold (JI,J,g) is said to be of constant holomorphic 
sectional curvature c( cER) if 

C( 1Tx) =c, 

for every xEJi and every Jx-invariant two-plane 1Tx of 
T".Jr. This property is satisfied if and only if K = cH, 
where H is the quadrilinear form on JI defined by 

+ gx(JxXx,Zx)gx(JxYx, Wx) - gx(JxXx, Wx) 

xgAJxYx,Zx) 

+ 2gx(JxXx,Yx)g(JxZx,Wx)}' (4.7) 

We now come to closedness of %(JI,C) with respect 
to the *v product for a fixed veR, {O}. Since J is integrable, 
the characterization of real Kah1erian functions provided 
by Proposition 2.3 becomes rather simple and effective. 
Equivalent formulations are 
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VV I(JX,JY) = VV I(X, Y) (4.8) 

for every pair X, Y of vector fields, or 

%1=0, (4.9) 

where %:COO (JI,R)-Sec(.!L'2(TJI,R») is the second
order differential operator defined by 

(%1 )x(Xx,Yx) = (VVI )x(JxXx,JxYx) 

- (VVI )x(Xx,Yx) 

for xEJi,Xx,YxETxJl. 

(4.10) 

We now remember l that the closedness of %(JI,C) 
with respect to the *v product is equivalent to the closed
ness of %(JI,R) with respect to the 0v product. Let I, I 
be real Kahlerian functions; then 10 v I is Kahlerian if and 
only if % ( 10 v l) = O. In order to evaluate % ( 10 v I), we 
start from the computation of %« 1,/»; subsequently, we 
shall compute % (f/). 

Lemma 4.1: For I,/E%(JI,R), 

%( (/,/» (X,Y) 

= - K(GV/,X,GV/,Y) + K(GV/,JX,GV/,JY) 

- K(GV/,X,GV/,Y) + K(GV/,JX,GV/,JY) , 

for every pair X, Y of vector fields. 

( 4.11) 

Proof Let us compute VV« 1,/» =VV(V/,GV/). By 
standard manipulations we get 

VV« 1,/) )(X,y) =VVV/(GV1,x,Y) + VV/(G(VyV/),X) 

+ VVV/(GVI,x,Y) 

+ VV/(G(VyVI ),X). 

Now, from the J-invariance of VVI and g 

G(VJyVl)= - G«VyVl)°J)=JG(VyV/). 

From here and from the J-invariance of VV I, 

VV/(G(V JyV/),JX) = VV/(JG(VyV/) ,JX) 

= VV/(G(VyVl) ,X). 

(4.12) 

In the same way one shows that the term 
VV1(GeVyVI ) ,X) in Eq. (4.12) is invariant under the sub
stitution X, YI---+JX,JY. Therefore, 

VV( (/,l) (JX,JY) - VV( (1,1» (X,Y) 

=VVV/(GV/,JX,JY) - VVV/(GV/,X,Y) 

+ VVV/(GV/,JX,JY) - VVV/(GV/,X,Y). 

We now observe that from 

. VV/(JX,JY) =VV/(X,Y), 

it follows, taking the covariant derivative, 
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VVV/(JX,JY,Z) =VVV/(X, Y,Z) , (4.14 ) 

for any triple X, Y, Z of vector fields. Furthermore, apply
ing Eq. (4.2) with a = VI, we obtain 

VVV/(X,Y,Z) =VVV/(X,Z,Y) + K(X,GV/,Z,Y), 

or, using the symmetry of VVV I in the first two arguments 
(that follows from the symmetry of VV I ) 

VVV/(X,Y,Z) =VVV/(Z,x,Y) + K(X,GV/,Z,Y). 
(4.15 ) 

Equations (4.14) and (4.15) together give 

VVV I(Z,JX,JY) = VVV I(Z,x, Y) + K(X,GV I,Z, Y) 

- K(JX,GV I,Z,JY) , 

that is, using Eq. (4.3), 

VVV I(Z,JX,JY) = VVV I(Z,x, Y) - K( GV I,X,Z, Y) 

+ K( GV I,JX,Z,JY). (4.16 ) 

From Eqs. (4.13) and (4.16) the thesis is easily inferred. 
To get it, it suffices to insert in (4.13) the equation ob
tained specializing (4.16) to the case Z=GV/, and its anal
ogous with I and I interchanged. • 

Lemma 4.2: For I, I in %(..4,R), 

%( II)(X,Y) 

=H(GV/,X,GV/,Y) - H(GV/,JX,GV/,JY) 

+ H(GV/,X,GV/,Y) - H(GV/,JX,GV/,JY), 
(4.17 ) 

for every pair X, Y of vector fields, where H is the quadri
linear form on ..4 defined in Eq. (4.7). 

Proof For every pair X, Y of vector fields, 

VV(fI)(X,Y)=jVV/(X,Y) + lVV/(X,Y) 

+ (V/,X) (V/,Y) + (V/,X) (V/,Y). 

From here and from the J-invariance of VV I, VV I it fol
lows 

% ( II)(X, Y) = (V I,JX) (V I,JY) + (V I,JX) (V I,JY) 

- (V/,x) (V/,Y) - (V/,x) (V/,Y). 
(4.18 ) 

But, from the explicit expression of H, it follows, after 
some manipulations, 

H(GV/,X,GV/,Y) - H(GV/,JX,GV/,JY) 

= -!(V/,Y)(Vl,X) +!(V/,JY)(V/,JX) 

+ Hv I,JX) (V I,JY) - !(V I ,x) (V I, Y). ( 4.19) 

Summing to Eq. (4.19) the analogous one obtained inter
changing the roles of I and I, and comparing with (4.18), 
we obtain the wanted result. • 

Proposition 4.3: If the Kahler manifold (..4,J,g) has 
constant holomorphic section curvature 2Iv, (vER \ {O} ), 
then %(..4,C) is closed with respect to *" product. 

As a partial converse, if %(..4,R) is full and 
% (..4,C) is closed with respect to *" product, then 
(..4,J,g) has constant holomorphic sectional curvature 
2Iv. 

Proof We shall use the fact, already outlined, that the 
closedness of %(..4,C) with respect to *" product is 
equivalent to the closedness of %(..4,R) with respect to 
0" product. 

Assume (..4,J,g) has constant curvature 2Iv. Then, 
K= (1/v)H and thus, comparing Eqs. (4.11) and (4.17), 
we obtain that for every pair I, I of real Kahlerian func
tions one has 

%« 1,1» = - (2/v) %( II) (4.20) 

that is %(!v( ( 1,1» + II) = O. This tells us that the 
product 10 j is again a Kahlerian function. 

Conversely, if % (..4,R) is closed with respect to 0v 

product, for every pair 1,1 of real Kahlerian functions Eq. 
(4.20) holds. Reexpressing % « 1,1» and % (II) via 
Eqs. (4.11) and (4.17) and using the fullness assumption 
we are easily led to the conclusion that for xE..4' and 
Zx,X x' Wx, YxETx..4 , 

= - (2/v)Hx(Zx,Xx,Wx'yx) + (2Iv)Hx(Zx,JxXx,Wx,JxYx) 

- (2Iv)Hx( Wx,xx,Zx,Yx) + (2/v)Hx( Wx,JxXx,Zx,JxYx)' (4.21) 

We want to show that this equation implies Kx 
= (2Iv)Hx' Indeed, let us apply (4.21) with the substitu
tions Xx = JxZx,Wx =Zx,Yx= JxZx- We obtain 

(4.22) 

But Kx and (2Iv)Hx both satisfy Eqs. (4.3)-(4.5); there-
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fore, as shown in Ref. 4, Chap. IX, Proposition 7.1, Eq. 
(4.22) implies Kx = (2Iv)Hx' • 

We conclude with a few remarks. Proposition 4.3 ad
mits a limiting version with v = 00, if one replaces *" and 
0" product with Kahler and Riemann bracket, respectively 
[this is natural, since in the definitions of *" and 0v the 
terms containing < , > and « , » are dominating as v 
grows to infinity]. The v = 00 statement is easily estab
lished by a trivial modification of the proof of 4.3, and 
sounds as follows: If (..4,J,g) has constant sectional holo
morphic sectional curvature 0, then %(..4,C) is closed 
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with respect to < , >; if %(1,R) is full and %(1,C) 
is closed with respect to < , >, then (1,J,g) has constant 
holomorphic sectional curvature O. 

Obviously enough, the standard model for a Kahler 
manifold of zero curvature is a complex Hilbert space with 
(the real part of) the scalar product regarded as a metric; 
the standard model for the negative curvature case is also 
known. 4 

I R. Cirelli, A. Mania, and L. Pizzocchero, J. Math. Phys. 31, 2891 
(l990). 

2 In Ref. I, we were prevalently interested in the case v> 0 because of 
applications to quantum mechanics where v = fl. In the present frame
work, which is a bit more abstract, we shall also admit the possibility 
that v is negative. The case v = 0, in which both 0,. and *,. product 
become pointwise product, is of a particular nature; for example, for 
v = 0 points (d) and (e) in Proposition 2.1. are not equivalent to (a), 
(b), and (c). 

1 The theory of connections in vector bundles is well known in the finite
dimensional case. A suitable formulation is possible also in the Banachic 
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case (or in the Hilbertian case, for Riemannian connections), in which 
all the results needed here can be generalized from finite dimensions. 

4S. Kobayashi and K. Nomizu, Foundations of Di.lferential Geometry 
(Wiley, New York, 1969), Vols. I and II. 

5 In order to avoid misunderstandings, we explain in which sense the 
identity (2.7) is the covariant derivative of the identity (2.6). Equation 
(2.6) tells us that A=B, where A and B are the sections of 
!f2(T*JI X T.£,R} such that A(a,Z}=g(Ia,Z} and 
B(a,Z} = (a,JZ) for everyone form a and every vector field Z. From 
A =B it follows V yA = V yB for every vector field Y; but, for every pair 
Z, Y of vector fields and everyone-form a, (V yA) (a,Z) and (V yB) 
X (a,Z) are just the left and the right side of (2.7). Similar manipula
tions will be frequently used in this paper, without any further com
ments. 

6R. S. Hamilton, "The inverse function theorem of Nash and Moser," 
Bull. Am. Math. Soc. 7, 65 (l982). The theory of infinite-dimensional 
connections proposed in this reference is suitable for a more general 
framework than the one in which we work here (indeed, it is formulated 
in the context of Fn!chet manifolds and Frechet vector bundles). We 
quote this paper only to give an indication on how to define the curva
ture tensor. 
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The Backlund transformation (BT), an infinite number of conservation laws, and the inverse 
scattering transform (1ST) of a model integrodifferential equation for water waves in fluids of 
finite depth [Yo Matsuno, J. Math. Phys. 29, 49( 1989)] are constructed by employing the 
bilinear transformation method. The model equation is also shown to pass the Painleve test. 
These facts prove the complete integrability of the equation. Both the deep- and shallow-water 
limits of various results thus obtained are then investigated in detail. In addition, a new 
method to evaluate conserved quantities for pure N-soliton is developed by utilizing actively 
the time part of the BT. It is found that the structure of conservation laws exhibits peculiar 
characteristics in comparison with those of usual water wave equations such as the Benjamin
Ono and the Korteweg-de Vries equations. The most important problem left open in this paper 
is to solve various 1ST equations. 

I. INTRODUCTION 

In this paper, we consider the following integrodifferen
tial evolution equation: 

U/ + Ux - 2uu/ + 2ux L'" U/ dx - Tu/x = 0, U = u(x,t), 

where the operator T is defined by 

Tu(x,t) = _1_ pf'" {coth[1T(Y - X)] 
~ -00 28 

( 1.1a) 

- sgn(y - x) }u(y,t)dY, (1.1b) 

and the sUbscripts t and x appended to u denote partial dif
ferentiation. 

Equation (1.1) has already been proposed as a model 
equation describing wave phenomena in fluids of finite 
depth. 1 The parameter 8 in (1.1 b) represents the depth of 
fluids. In the deep-water limit 8-+ 00, it reduces to the equa
tion 

u/ + U x - 2uu/ + 2ux Loo u/ dx - Hu/x = 0, (1.2a) 

where H is the Hilbert transform given by 

Hu(x,t) =~pf'" u(y,t) dy. (1.2b) 
1T -00 y-x 

On the other hand, in the shallow-water limit 8-+0, if we 
introduce the new variables 'T and S by the relations 

'T = ~3/8t, 

s=~3/8x, 

( 1.3a) 

( l.3b) 

and use the expansion formula (B8) in Appendix B, Eq. 
( 1.1) reduces to the shallow-water wave equation that has 
already been proposed by Hirota and Satsuma2 

U r + Us - 2uur + 2us Isoo U r dS - urss = O. (1.4) 

Therefore, Eq. (1.1) is an intermediate version between Eqs. 

( 1.2) and (1.4). In this respect, it should be remarked that 
an evolution equation of the form3,4 

u/ + Ux + 2uux + Tuxx = 0 (1.5) 

is known as an intermediate equation between the Benja
min-Ono (BO)5,6 and the Korteweg-de Vries (KdV) equa
tions. The mathematical structure ofEq. (1.5) is now com
pletely understood. 7

-
9 However, the characteristics of Eq. 

( 1.1) are quite different from those of Eq. (1.5) as shown in 
this paper. 

The multisoliton solutions1,2 of Eqs. (1.1), (1,2), and 
( 1.4) have already been obtained by employing the bilinear 
transformation method. 10-12 In particular, the properties of 
solutions ofEq. (1.2) have been studied in great detail 13 and 
it was found that it exhibits an algebraic N-soliton solution 
expressed in terms of Pfaffians. 14 

The purpose of the present paper is to construct the 
Backlund transformation (BT), an infinite number of con
servation laws and the inverse scattering transform (1ST) of 
Eq. (1.1) and to prove its complete integrability. Both the 

deep- and shallow-water limits are then taken for various 
results thus obtained and which give rise to the correspond
ing ones for Eqs. (1.2) and (1.4), respectively. Throughout 
this paper, we mainly use the bilinear transformation meth
od l 0-12 as a mathematical tool. 

In Sec. II, the BT, an infinite number of conservation 
laws, and the 1ST are constructed for Eq. (1.1). It is also 
demonstrated that Eq. (1.1) passes the so-called Painleve 
test. 15-18 In Sec. III, the deep-water limit of the results ob
tained in Sec. II is investigated in detail. In addition to this, 
the conserved quantities are evaluated explicitly for pure N
soliton solution and an initial condition evolving into pure N 
solitons is briefly discussed. In Sec. IV, the shallow-water 
limit is considered in the same way. Section V is devoted to 
concluding remarks where a few comments are made con
cerning problems left open in this paper. In Appendix A, the 
formulas of bilinear operators are noted for the convenience 
of the reader unfamiliar with the bilinear formalism. Finally, 

2904 J. Math. Phys. 31 (12). December 1990 0022-2488/90/122904-13$03.00 @ 1990 American Institute of Physics 2904 



                                                                                                                                    

in Appendix B, various properties of the singular integral 
operators T and H are described. 

II. STUDY OF EQ. (1.1) 

First of all, let us bilinearize Eq. (1.1). For the purpose, 
we introduce the following dependent variable transforma
tion: 

D,g+"I_ -D,g_"l+ = -i(g+l_ +g_I+) 

+v(g+l_ -g_I+), (2.7a) 

Dxg+"I_ + Dxg_ '1+ = -i(1-8- 1
) 

X(g+l_ -g_I+) 

+p(g+l_ +g_l+ ),(2.7b) 

D,Dxg + '1+ =pD,g + '1+ + vDxg + "1+ + K/+ g +, ; a 1+ 
u=--ln-

2 ax 1-' 
(2.1a) (2.7c) 

with 

1+ (x,t) =/(x - w,t), 
1- (x,t) =/(x + i8,t) , 

(2.1b) 

(2.1c) 

where/(z,t) is an analytic function of z and it is assumed that 
I(z - ;8,t) has no zero in the complex region O<Im z<28. It 
then follows by using the Cauchy residue theorem that 

1 a2 

Tux = ---(/+1-) +8- l u. (2.2) 
2 ax2 

Substituting (2.1a) and (2.2) intoEq. (1.1) and integrating 
once with respect to x, we obtain the following bilinear equa
tion for 1+ andl _ :1 

[i(1-8- I )D, +iDx +D,Dx]/+"I_ =0. (2.3) 

Here, the bilinear operators D, and Dx are defined by the 
relation 

D7'D~/+ '1- = (:t - :r,r (! - a~,r/+ (x,t) 

Xf- (X',t')lt'=" 
x'=x 

(m,n=O,l, ... ). (2.4) 

Equation (2.3) is the basic equation and plays a fundamen
tal role in this section. 

A. Backlund transformation 

In this subsection, starting from the bilinear equation 
(2.3) we construct the BT in bilinear form and then trans
form it into ordinary form. 

1. BT In bilinear form 

We now construct the BT of Eq. (1.1) in bilinear form. 
Let another solution of Eq. (2.3) be g ± ' namely, 

[i(1-8- I )Dt +iDx +D,Dx]g+ 'g_ =0, (2.5) 

and consider the following equation: 

P=g+g_ [i(1-8- I )Dt +iDx + DtDx]/+ '1-

- ([;(1- 8- I )Dt + iDx + DtDx] 

Xg+ ·g_}/+I_ =0. (2.6) 

Obviously, iff ± is a solution ofEq. (2.3), theng ± gives an 
another solution and vice versa. We prove that Eq. (2.6) is 
satisfied identically by the following system of bilinear equa
tions that relate I ± and g ± and hence these equations con
stituteaBTofEq. (2.3): 
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D,Dxg _ '1- =pD,g _ '1- + vDxg_ '1- + Kg -1-. 
(2.7d) 

Here, p, v, and K are arbitrary parameters that may be relat
ed to each other by specifying boundary conditions. To show 
the above BT, we first use (A3) and (A4) to modify (2.6) 
into the form 

P = Dt{g_I+ . [Dxg+ '1- +i(1-8- I )g+I_]} 

+Dx[g_l+ '(Dtg+ '1- +ig+I_)] 

+ (DtDxg + "1+ )g -1- -g +1+ DtDxg - "1-. 
(2.8a) 

Substituting (2.7c) and (2.7d) into (2.8a) and using (A3), 
P is transformed into 

P = Dt{g_I+ . [Dxg+ "1-

+(;(1-8- 1
) -p)g+I-]) 

+ Dx{g_I+ . [Dtg+ "1- + (i-v)g+l_ p. (2.8b) 

Finally, introducing (2.7a) and (2.7b) into (2.8b) and us
ing (AI) and (A2), Pbecomes 

P = -Dt(g_l+ 'Dxg_ '1+) 

+Dx(g_l+ 'Dtg_ '1+) =0. (2.Sc) 

This completes the proof ofEq. (2.6). 

2. BT in ordinary form 

In order to rewrite the BT in ordinary form, it is conven
ient to introduce the potentials u and v by 

u = {i/2) In (/ + II _ ), 

v = {i/2)ln(g + Ig _ ). 

It then follows from (2.2) and (2.9) that 

(2.9a) 

(2.9b) 

f± =I±.o[ + 2iP 'F (u-uo) +8-
1 f:"" (U-Uo)dX]. 

(2. lOa) 

g± =g±.o[ + 2iP 'F (v-vo) +8-
1 f:"" (V-Vo)dX]. 

(2.lOb) 

Here, P ± are integral operators defined by 
A. 

P ± =!(1 ± in, (2.11 ) 

anduo =u( - oo,t),vo =v( - oo,t),f±.o =f± (- oo,t), 
g ±.o = g ± ( - 00 ,t). If we subtract (2.7d) from (2.7c) 
after substituting (2.10) into these equations and define the 
function w by 

w = v - u, (2.12) 

with the boundary conditions 
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W( + oo,!) = W( - oo,t) = wo , (2.13) 

then, we obtain the time part of the BT as follows: 

w,x - w, Twx - Wx Tw, + 8 - Iwx J: co w, dx 

+8- I(w-wO )w, 

= J.tw, + VWx - 2u,x' (2.14 ) 

Integrating (2.14) and using (B5), we obtain an important 
relation 

J: co w, dx = O. (2.15 ) 

This fact will be used in Sec. II B to derive conservation laws. 
The space part of the BT stems by substituting (2.10) 

into (2. 7b) and the result is expressed in the form 

2iw 2iP _ w x - 8 - 1 (w - wo ) + 2iu - i (1 - 8 - I) + J.t 
e = x . 

2iP + w x + 8 - 1 (w - wo ) + 2iu - i (1 - 8 - I) - J.t 

(2.16) 

Similarly, Eq. (2.7a) can be rewritten as 

tliw = 

A 

2iP _ w, - 8- 1 r- co w, dx + 2iu, - i + v 

- 2{P + W, + 8- 1 r- co w, dx + 2iu, - i-v' 
(2.17) 

Equation (2.17) may be regarded as a time part of the BT in 
placeofEq. (2.14). Now, by taking Ixl--+oo in (2.17) and 
using (2.13) with the boundary conditions 
u( ± oo,t) =wx ( ± oo,t) =O,oneseesthatwoisexpressed 
in terms of v as 

Wo = (1I2i)ln [ ( v - i) / ( v - i) ] . (2.18) 

Furthermore, if we equate (2.16) and (2.17) and then take 
Ix 1--+ 00, we find that J.t is related to vas 

J.t = - (1 - 8- 1)/v. (2.19) 

It should be remarked here that w also satisfies the fol
lowing equation: 

(2ux - 1 )w, + (2u, - 1 )wx + Tw,x + 2w,wx = O. 
(2.20) 

To show this, we first introduce (2.9) into (1.1) and then 
integrate once with respect to x to obtain 

u, + Ux - Tu,x - 2u,ux = 0, 

v, + Vx - Tv,x - 2v,vx = O. 

(2.21a) 

(2.21b) 

Subtracting (2.21a) from (2.21b) and noting (2.12) leads to 
Eq. (2.20). It can be verified by direct calculation with the 
aidof(BlO) thatEqs. (2.14), (2.16), (2.17),and (2.21) are 
all compatible. 

Remark 1: One can use the BT presented here to gener
ate multisoliton solutions for Eq. (1.1). However, since this 
problem has already been solved by a more direct method on 
the basis ofEq. (2.5),1 we restrict ourselves only on the one
soliton solution. For this case, we start with a vacuum solu
tion ofEq. (2.3), namely,/+ =/_ = 1. Then, Eqs. (2.7) 
reduce to the following system of linear differential equa
tions for g ± : 

2906 J. Math. Phys., Vol. 31, No. 12, December 1990 

g+.,-g_,,= -i(g+ +g_)+v(g+ -g_), 
(2.22a) 

g + ,x + g _ ,x = - i(1 _ 8 - I)(g + - g _ ) 

+J.t(g+ +g_), (2.22b) 

g + ,'x = J.tg +,' + vg + ,x + Kg + , (2.22c) 

g _ ,'x = J.tg _,' + vg _ ,x + Kg _ , (2.22d) 

It is easy to see that Eqs. (2.22) exhibit the solutions ofthe 
forms 

g + = a cosh(r/28)(x - ct - XOi - ;8), 

g_ =,Bcosh(r/28)(x-ct-xo1 +;8), 

with the choice of the parameters 

K= - (J.tv+ 1_8- 1
), 

J.t = ;[ ( 1 - 8 - 1 + ~ cot' ~) 

(2.23a) 

(2.23b) 

(2.23c) 

(2.23d) 

(2.23e) 

Here, c is a propagation velocity of the soliton given by 

c = (1 - 8- 1 + 8-lrcot r) -I, (2.23f) 

a and ,B are constants with the ratio 

~ = - ( 1 - 8 - 1 - iJ.t + ~ cot ~) 

(2.23g) 

and r is an arbitrary constant within the range 0 < r < 1T. It 
then follows from (2.1a) and (2.23) that 

(r/28)sin r 
U 1 = , 

cosh(r/8)(x - ct - X OI ) + cos r 
(2.24) 

which is nothing but a one-soliton solution of Eq. (1.1).1 

B. Conservation laws 

In this subsection, we derive an infinite number of con
servation laws of Eq. (1.1). For the purpose, it is most 
straightforward to employ the results obtained in subsection 
B 2. We first put 

co 

W = Wo + L WjEj (wj ( ± 00,1) = 0, j= 1,2, ... ), 
j~1 

E= -2v/(1-8- 1
). 

Then, Eq. (2.15) implies that 

Ij=J:oo wjdx (j=1,2, ... ), 

(2.25a) 

(2.25b) 

(2.26) 

are conserved quantities. Substitution of (2.19) and (2.25b) 
into (2.16) yields 
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2i(w - Wo ) In{l + (aE) 2/4 + iE(1 + iaEl2) 
A 

X [ U + (i128)( W wo) + P _ W x ] } 

-In{1 + (aE)2/4 - iE(1- iaE!2) 

X [u - (i128)(w wo) +P + Wx j}, 
(2.27) 

II = f:"" udx, 

13 = - f: 00 flu3 _!U2 + !uTu" +!(1 - 8- I )u}dx, 

where a= 1 - 8- 1
• Finally, substituting (2.25a) into 

(2.27) and comparing the coefficients of E j on both sides of 
(2.27), we can derive Wj successively by means of purely 
algebraic procedure. It is easily seen that only I 2j + 1 (j 0, 
1, ... ) survive and I 2j (j = 1, 2, ... ) vanish identically. In
deed, the first three of I 2j + I read in the forms: 

(2.28a) 

(2.28b) 

Is = f: 00 nus -i(3 + 8 I)U4 +H¥u3 
- 8u2 + (4 - 38- 1 

- 8 2)U - uxx ] Tu" + U(6 +8- 1 _8- z)u3 

+ !(2u - 1 + 8 - I){ TUx )2 - ~(2 - 8 - 1 - 8 2)U2 + ~(2u - 1 )u/ + -h< 1 - 8 1 )2U }dx. (2.28c) 

It is observed that I 2j+ I always includes a term u2
j+ I. The 

lack of I 2j in (2.28) is a remarkable feature of conservation 
laws when compared with those of Eq. (1.5). In fact, Eq. 
( 1.5) has a conserved density that includes a term u J in I j for 
allj (Ref. 8). Finally, it is worthwhile to remark that Eq. 
( 1.1) also has an independent conserved quantity of the 
form 

(2.29) 

in addition to (2.28). The constancy of (2.29) in time is 
verified by using Eq. (2.35) below and (B5). 

Remark 2: The evaluation of the jth conservation law 
for pure N-soliton solution of Eq. (1.1) is an interesting 
problem since this may provide an approximate method to 
obtain amplitudes of solitons evolving from arbitrary initial 
conditions. However, we have not as yet suitable procedure 
for the purpose. The main difficulty is found to arise due to 
the right-hand side ofthe formula (B7). Indeed, if this term 
vanishes, integration of Eq. (2.14) twice with respect to x 
would yield a desired result. In order to overcome the diffi
culty, we must probably rely on the 1ST method. Neverthe
less, for the special cases for both deep- and shallow-water 
limits, the evaluation of I j can be performed completely as 
will be demonstrated in Sec. III B 2 and Sec. IV B 2, respec
tively. 

C. Inverse scattering transform 

The 1ST of Eq. (1.1) is easily derived by employing a 
standard procedure in the bilinear formalism. II

•
12 First, we 

define the wave functions if; ± by the relations 

if; + = g + 1/+ , 
if;- =g 1/_. 

(2.30a) 

(2.30b) 

Substituting (2.30) into (2.7) and using (2.9) and (2.10), 
we find the following system oflinear differential equations: 

(if;+ +if;-)x 

2907 

= i(2ux - 1 + 8- 1)(if; + - if;- ) + p(if;+ + if; _ ), 
(2.31a) 
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I 
(if;+ - if;- ), 

=i(2u t -1)(if;+ + if; ) +v(if;+ if;-), (2.31b) 

if; + .tx = pif; +.' + vif; +.x - (28 - I Ut - 4iP _ u,X K)if; + , 
(2.31c) 

A 

if; ,tx =pif; -,t + vif; -.x - (28- l ut + 4iP + Utx K)if; _. 
(2.31d) 

It is easily verified by a cross differentiation, namely, 
if; + ,tx = if; + .xt that Eqs. (2.31) yield Eq. (1.1) as a compati
bility condition. Notice also that Eqs. (2.31) must be com
plimented by the relation 

(1 +iT)ln~-i8 If x ln~dx 
if; + .0 - 00 if; + .0 

= (-1 +iT)ln~ i8- 1 fX ln~dx, 
if;-.o -00 if;-.o 

(2.32) 

which stems from (2.1), (2.2), and (2.30), where 

if;+.o =g+,ol/+.o =g+ (- oo,t)I/+ (- oo,t), 
(2.33a) 

if;-.o g-.ol/_,o =g_ (- 00,t)1/_ (- oo,t). 
(2.33b) 

A system of equations (2.31) and (2.32) constitute a com
plete set of the 1ST for Eq. (1.1). 

Remark 3: One final comment to be noted here is con
cerned with the initial value of ut • It can be obtained from 
u (x,O) as follows. Let us introduce a function v through the 
relation 

v = 1"" u, dx, (2.34) 

and introduce (2.34) into Eq. (1.1). Integrating the resul
tant equation, one finds 

- v + u + 2uv + Tvx = 0. (2.35) 

Ifwesolve Eq. (2.35) for a given initial condition u(x,O), we 
can get v(x,O), from which Ut (x,O) follows immediately by 
differentiating (2.34). 
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D. Painleve test 

The Painleve test provides a useful information about 
integrability of given system of equations. Ablowitz, Ra
mani, and SegurlS conjectured that every ordinary differen
tial equation (ODE) obtained by an exact reduction of a 
partial differential equation (PDE) solvable by the 1ST 
method possesses the Painleve property, namely, solutions 
for ODEs have only poles as movable singularities. Thus the 
Painleve property is seen to be closely related to integrability 
of PDEs. A drawback of the above-mentioned procedure is 
that one must always reduce the PDE to the ODE. In order 
to overcome this point, Weiss, Tabor, and Carnevale l6 have 
proposed a direct method that is applicable to PDEs them
selves and showed that almost all soliton equations have the 
Painleve property. 16.17 

Recently, Grammaticos, Dorizzi, and Ramani l9 

showed that the conjecture by Ablowitz, Ramani, and Segur 
can also be applied to nonlinear integrodifferential evolution 
equations such as the BO equation and Eq. (1. 5 ). In this 
subsection, following the idea due to Grammaticos, Dorizzi, 
and Ramani,I9 we show that Eq. (1.1) has the Painleve 
property. 

In the beginning, it should be observed that the problem 
under consideration is essentially a two-space dimensional 
problem. Indeed, Eq. (1.1) may be interpreted as an equa
tion that describes internal waves propagating in the x direc
tion in two-layered fluids, the depth of the bottom layer be
ing lJ while that of the upper layer being very shallow 
compared with the former one. Under this situation, the fol
lowing Laplace equation for the velocity potential V must be 
satisfied in fluids: 

Vxx + Vyy =0, 

V= V(x,y,t), (- 00 <X< 00, -lJ<;y<;O), (2.36a) 

together with the boundary condition 

V = Vo (x,t), at y = 0. (2.36b) 

Although Grammaticos et al. 19 imposed another boundary 
condition Vy = ° at y = - lJ, we found it inappropriate for 
Eq. ( 1.1). Indeed, this condition is shown to be incompatible 
with condition (2.38) given below. Now, Eq. (1.1) is equiv
alent to the following system of first-order PDEs: 

Ut + Vx = 0, at y = 0, 

U - V - Vy + 2UV = 0, at y = 0, 

with a subsidiary condition 

Vy = - TVx ' at y = 0, 

where U = U(x,y,t). Indeed, if we put 

U(x,O,t) = u(x,t), 

V(x,O,t) = v(x,t), 

(2.37a) 

(2.37b) 

(2.38) 

(2.39a) 

(2.39b) 

then, the above fact readily follows from (2.34) and (2.35). 
Before performing the Painleve test, it should be remarked 
that a solution ofEq. (2.36) satisfying the boundary condi
tions (2.36b) and (2.38) exists and it reads explicitly in the 
form 
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1 foo V(x,y,t) = - dz Vo (z,t) 
211' - 00 

x f: 00 dk [cosh ky + c(k)sinh ky]eik(X-Z), 

(2.40a) 

where 

c(k) = coth klJ - (klJ) - I. (2.40b) 

One can verify (2.40) by using the Fourier transform meth
od and the formula (B4). 

Now, let us begin the Painleve test. First, note that the 
general solution ofEq. (2.36a) is readily written as 

V = F(x + iy,t) + G(x - iy,t), (2.41) 

where F and G are arbitrary functions. The above expression 
implies that the singularities ofEq. (2.36a) propagate along 
the characteristics x - iy = X(t) and x + iy = ¢J(t). Next, 
consider the singularity manifold .,p = x + iy - ¢J(t) where 
¢J ( t) is an arbitrary function of t and expand U and Varound 
the singularity .,p = ° as 

00 

U = L Uj.,pj- m (U; = U;(t),j = 0,1, ... ), (2.42a) 
j=O 

00 

V= L ~.,pj-n + G(x - iy,t) 
j=O 

(~ = ~(t),j = 0,1, ... ), 

(2.42b) 

where m and n are positive integers. These are determined by 
an analysis ofthe leading-order singularities in Eq. (2.37). 
The result is 

m=n= 1 (2.43 ) 

Finally, substituting (2.42) with (2.43) into (2.37), ex
panding G around .,p = ° as 

G=.r G.~j).,pj (G(j)=ajG(~,t) I . ),(2.44) 
j=O J. ax X=¢>-IY 

and then taking the limity .... O, we can determine the coeffi
cients U; and ~ successively by balancing various powers in 
.,pj. We quote only the final results as follows: 

Uo = - i12, 

Vo = - i¢JJ2, 

VI = - ¢JtUI - G(O) + ¢JJ2 -!, 
(j+ 1)¢JtU;+2 - (j+ 1)~+2 

= U;+I.t +G(j+l)/jl (f~0), 

¢JtU;+2 + (j+2)~+2 

(2.45a) 

(2.45b) 

(2.45c) 

(2.45d) 

= -i(U;+1 - ~+I) +iG(j)/jl-jG(j+I)/(j+ 1)1 
j 

-2i L U;-k+dVk+1 +G(k)/kl) (j~0). 
k=O 

(2.45e) 

In these expressions, UI is taken to be an arbitrary function, 
which means that a resonance condition for UI is satisfied 
automatically. From (2.45d) and (2.45e), we see that U; 
and ~ (j;p2) are uniquely expressed in terms of the two 
arbitrary functions ¢J and UI • Hence, the expansions (2.42) 
are ofPainleve type. This completes the proof that Eq. (1.1) 
has a Painleve property. 
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Before concluding this subsection, we briefly discuss 
both the deep- and shallow-water limits of the results pre
sented here. For the deep-water limit /) - 00, it follows from 
(2.40b) that 

c(k) = sgn(k) + 0(/)-1). (2.46) 

Substituting (2.46) into (2.40a), we obtain 

Vy Iy=o = _1_ foo dz Vo (z,t) foo dk Ik leik(X-Z) 
21T - 00 - 00 

= - HVo,x (x,t) = - H Vx I y = 0' (2.47) 

where the formula (B11) has been used. Then, Eq. (1.2) 
follows by combining Eqs. (2.37) and (2.47). 

For the shallow-water limit /)-+0, since 

c(k) = k/j/3 + 0(/)3), (2.4S) 

the relation corresponding to (2.47) becomes 

V I _ =~foo dz V; (zt) foo dkk 2eik(X-Z) 
y y-O 61T -00 0' -00 

= - (/j/3)Vxx Iy=o. (2.49) 

Thus we find that Eqs. (2.37) and (2.49) together with the 
scalings (1.3) reproduce Eq. (1.4). The above two limits 
imply that Eqs. (1.2) and (1.4) also possess the Painleve 
property. 

III. STUDY OF Ea. (1.2): DEEP-WATER LIMIT 

In this section, we consider the deep-water limit /)-+ 00 

of various results presented in Sec. II. Since the limiting pro
cedure can be performed quite simply, we shall be concerned 
only with conservation laws and related topics. 

A. Conservation laws 

In order to obtain conservation laws, we use the BT. The 
time part and the space part of the BT are derived from 
(2.14) and (2.16), respectively, by taking the limit /)- 00. 

The results are expressed as follows: 

W,X - w,Hwx - wxHw, =IlW, + VWx - 2u,x, (3.1) 

e2iw = _ 2iP - Wx + 2iu - i + Il , (3.2a) 
2iP + Wx + 2iu - i -Il 

where P ± are projection operators given by 

P ± =!(1 ± iH). (3.2b) 

If we impose the boundary conditions 

w( + oo,t) = w( - oo,t) = wo, 

(2.1S) and (2.19) reduce, respectively, to 

Wo = (1/20 In[(v-i)/(v+i)], 

Il = - 1/v. 

(3.3 ) 

(3.4) 

(3.5) 

It is obvious from (3.1), (3.3), and (B12) thatthe quantity 

f: 00 (w - wo)dx 

is conserved. 
Let us now derive an infinite number of conservation 

laws ofEq. (1.2). We first expand was 
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00 

w = Wo + L WjE
j
, 

j= I 

where 

E= -2v, 

(3.6a) 

(3.6b) 

and substitute (3.6) into (3.2). It turns out by using (3.4), 
(3.5), and (3.6b) that 

2i(w - wo ) = In (1 + ~/4 + iE(1 + iE/2)(u + P _ wx )] 

-In[ 1 + ~/4 - iE( 1 - iEl2) 

(3.7) 

One can also derive (3.7) directly from (2.27) by noting 
p ± -P ± and a-I in the limit of /)- 00. Now, 
Wj (j = 1,2, ... ) are determined successively by comparing 
the same powers of E j on both sides of (3.7). The first three 
of the nontrivial conservation laws are written explicitly as 
follows: 

II = f: 00 u dx, (3.Sa) 

13 = - f: )!(U - !)3 + !uHux + f4]dx, (3.Sb) 

Is = f: 00 B(u - US + K'fU3 - Su2 + 4u - Uxx )Hux 

+!U(Hux)2+~(2u-3)u! + Tio]dx. (3.Sc) 

The above expressions are also obtained directly by taking 
the limit /) .... 00 in (2.2S). 

B. Evaluation of conservation laws 

In this subsection, we evaluate conservation laws for N
soliton solution of Eq. (1.2). A new method developed here 
is independent of the 1ST, and is based on a previous work by 
the author.20 First, we derive the corresponding result for 
the one-soliton solution, namely, I 

u = U I = a/[ a2(x - ct - X ot )2 + 1], (3.9a) 

where a is an amplitUde such as 0 <a < 1, XOI is a phase 
constant and c is a propagation velocity given by 

c=(1-a)-I. (3.9b) 

For the above one-soliton solution, it is obvious that W must 
have the following simple functional dependence on t and x 

W = w(x - ct - X ot ), 

so that 

W, = -CWx • 

(3.10) 

(3.11) 

Substitution of (3.11) into (3.1) leads, after integrating 
once with respect to x, to 

Wx - 2 f~ 00 wyHwy dy = (Il- ;)(W - wo) - 2u l · 

(3.12) 

Integrating once again and using (3.5), (3.6b), and (BI6), 
one arrives at the formula 

f OO ~ 
(w-wo)dx= . 

- 00 1 - (a - I)(El4f 
(3.13) 
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This expression is interpreted as a generating function for 
conservation laws. The final step for obtaining ~ consists of 
substitution of (3.6) into (3.13) to yield 

f ~Ej=1T f 2- 2(j-IJ(a_1)j- lE2j-\ (3.14) 
j= 1 j= I 

and comparison of the coefficients of ~ on both sides of 
(3.14). The result is very simple and it reads as follows: 

12j+l=1T(a-l)j/22j (j 0,1, ... ), (3.15a) 

12j =0 (j=1,2, ... ). (3.15b) 

The generalization of (3.15) to N-soliton solution UN is 
done quite easily since after lapse of large time, UN is repre
sented by a superposition of one-soliton solutions: 1 

(3.16a) 

with 

cn =(1-an )-I, O<an<1 (n=I,2, ... ).(3.16b) 

Thus the relations corresponding to (3.15) become 

N (an - l)j 
I 2j+ I = 1T L 2j (j = 0,1, ... ), 

n= I 2 
(3.17a) 

I 2j = 0 (j = 1,2, ... ). (3.17b) 

C. Initial condition evolving Into pure solitons 

In order to solve the initial value problem of Eq. (1.2) 
for arbitrary initial conditions, one must solve the 1ST equa
tions. However, if we use (3.17) and an explicit form of N
soliton solution, we can find an initial condition evolving 
into pure solitons after lapse oflarge time. For the BO equa
tion, a useful method has already been developed for the 
purpose.21 In the present case, it has been conjectured that 
the initial condition of the form 

U(x,O) = NA /(x2 + A 2), (3.18 ) 

would evolve into pure N solitons, where A is a positive con
stant. 13 We now proceed to verify the conjecture at least up 
to N = 4. Let an N-soliton solution ofEq. (1.2) expressed in 
terms of bilinear variable be IN (x,/). Then, it is obvious that 
the initial condition (3.18) evolves into pure N solitons if the 
equation 

IN(X,O) = (x - iA)N, (3.19) 

holds identically for arbitrary values of x. For the first few N, 
the explicit forms of IN (x,O) are given as follows: I 

h = SIS2 - B12 , 

h = SIS2S3 - B23 Sl - B13 S2 B12s3, 

h = SIS2S3S4 B34SIS2 - B24S l S3 - B23 S1S4 

- B I4SZS3 - B\3S2S4 - B12 S3S4 + B12 B34 

(3.20a) 

(3.20b) 

+ B\3BZ4 + B 14 B23 , (3.20c) 

where 

2910 

(j = 1,2, ... ,N), (3.20d) 

ak )/(aj - ak )2 (j:j=k,j,k = 1,2, ... ,N), 
(3.20e) 
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O<aj < 1(j= 1,2, ... ,N). (3.200 

In general, it is shown that IN can be expressed in terms of 
Pfaffians. '4 One can observe by comparing the coefficients 
ofxi(j= O,l, ... ,N - I) on both sides ofEq. (3.19) that it 
yields a system of N algebraic equations for N unknowns ai' 
a2, •.. , aN and hence there exist solutions. 

A general method to obtain aj is as follows. First, intro
duce the following fundamental symmetric functions of 
aj(j= 1,2, ... ,N): 

N 

SI = L aj' 
j=1 

N 

S2 = L ajak' 
j,k= 1 
(j<k) 

N 

(3.21a) 

(3.21b) 

SN = II aj> (3.21c) 
j= I 

and then rewrite the algebraic equations in terms of these 
new variables. This is always possible because of the symme
try property of N-soliton solution with respect to 
a· (j = 1,2, ... ,N). By solving these equations, 
s' (j = 1,2, ... ,N) are expressed as functions of A. Finally, 
~j (j = 1,2, ... ,N) are determined from the algebraic equa-
tion of order N 

N L ( - 1 )jsjA N-j = 0 (so = 1). (3.22) 
j=O 

It should be remarked, however, that certain restriction 
must be imposed on A to satisfy conditions (3.2Of). It is also 
interesting to observe that if (3.18) evolves into pure N soli
tons, Sj (j = 1,2, ... ,N) are calculated directly from the rela
tions 

N 

1T L (an - l)i/22j = 12j+ dO) (j = 1,2, ... ), (3.23) 
n=1 

which stem from (3.17). Here, I 2j+ I (0) are conserved 
quantities evaluated at an initial time t = 0 by using (3.18). 
One may also employ (3.23) to obtain approximate values of 
an for general initial conditions which would evolve into a 
train of solitons and tail parts. 

Now, we write down the results for N = 2,3,4. 
(a) N = 2 
In this case, (3.22) becomes 

A 2 - U -2(U - I)A +A -3(U -1) = 0, (3.24) 
and al and a2 are given explicitly by 

a l = {U -1- [(A - I)(U _l)]112}/A2, (3.25a) 

a2 = {U - 1+ [(A - I)(U 1)] 112}/A 2. (3.25b) 

The condition for A is now expressed as 

A >A;;) g;;2.62, (3.26) 

where A. ;;) is the largest root of the algebraic equation 

A2-3A+I=0. (3.27) 

(b) N = 3 

A 3 -9A -2(A_l)A2+~ -4(gA,2_IU+3)A 

-~A-5(gA,2-1U+3)=0, (3.28) 
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(3.29) 

Here, A. ~) is the largest root of the algebraic equation 

A. 3 _ 6A. 2 + ljA. -! = O. (3.30) 

(c) N = 4 

A 4 _ SA. -2(U _ 3)A 3 + SA. -4(4A. 2 - lOA. + 5)A 2 

_ lU -6(SA. 3 _ 24A. 2 + ISA. - 3)A 

+ 3A. - 7 (SA. 3 _ 24A. 2 + lSA. - 3) = 0, 

A. >A.;':) S!f6.15. 

(3.31 ) 

(3.32) 

Here, A.~) is the largest root of the algebraic equation 

A. 4 _ lOA. 3 + 27A. 2 - 2U + 3 =0. (3.33) 

For N = 3,4, the amplitudes may be written explicitly by 
using the famous formulas of Cardano and Ferrari. Instead 
of doing this, we have presented numerical values of OJ for 
some A. in Table I(N= 3) and Table II(N =4), where the 
amplitudes are ordered such that OJ < Ok for j < k. 

Although the above procedure becomes complicated for 
large N. asymptotic expressions of the amplitudes 
OJ (j = 1,2, .. , ,N) forlarge values orA. are derived easily. To 
show this, by observing (3.25) we put 

x = iAy, (3.34a) 

oj=oJIA. (j=1,2, ... ,N), (3.34b) 

in (3.19) and take the limit A. -+ 00. Then, (3.19) becomes 

iN(Y'O) = (y - ON, (3.35) 

where iN is an N-soliton solution of the BO equation12
•
22 

given by 

tN(Y'O) =detM, (3.36a) 

with the N X N matrix M: 

{
y - laj - I (j = k), 

M = (mjk) = 2/(Oj _ Ok) (j=/=k). (3.36b) 

Thus, we see from Ref. 21 that OJ (j = 1,2, .. , ,N) coincide 
with the N roots of the Laguerre polynomial of order N: 

- N C~Aj LN(A)= L (-1)j . -.-=0, 
j-O J!. 

(3.37a) 

where ~) is the binomial coefficient 

(N'I N! 
oj ) = (N - j)!j! . 

(3.37b) 

For the special case of N = 2, the above results are easily 
confirmed with the aid of (3.25), (3.34b), and (3.37). 

TABLE I. Amplitudes of solitons for N = 3. 

A- 0, °2 OJ 

5.0 0.086 0.432 0.922 
7.0 0.061 0.313 0.728 
9.0 0.047 0.246 0.596 

11.0 O.oJ8 0.203 0.503 
13.0 0.032 0.172 0.434 
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One final remark to be noted here is that the equation 
corresponding to Eq. (2.35), namely, 

-v+u+2uv+Hv" =0, (3.3S) 

can be solved explicitly for the initial condition (3.1S). We 
quote only the results. The solution of Eq. (3.3S) is ex
pressed in the form 

(3.39) 

Here, aj (j = 1,2, ... ,N) are determined uniquely from the 
following system of linear algebraic equations 

(1 
'-1) N~I (2r)! An 

- II. at - "'" ( ,)222r2 2r+ 1 a r + 1 = H'II., 
r= 1 r. II. 

U(N - j)aj - [1- (j + 1)/A. )aH 1 

N [2(r-j-l)J!(r-j)r 
+ r=~2 [(r- j)!F22(r- J-1)A. 2(r-j)-1 

Xa r = 0 (j= 1,2, ... ,N -1). 

If we write these equations in a matrix form as 
A 

Au = (3, 

(3.408) 

(3.40b) 

(3.41) 

with the column vectors u = (aJ...'a2, •. , ,aN r and 
(3 = (NA.,O, ... ,O)t and an N X Nmatrix A, then the equation 

A 

det A = 0 yields an algebraic equation of order N for A.. Let 
the largest root of the equation be A. ~). It is now conjectured 
that the restriction for A. would be A. > A. :"N). The conjecture 
is found to be true for N = 2,3,4 for which the explicit forms 
of the algebraic equations are already given, respectively, by 
(3.27), (3.30), and (3.33). It is an interesting open problem 
to verify the conjecture for general N. 

IV. STUDY OF EO. (1.4): SHALLOW-WATER LIMIT 

In this section, the shallow-water limit 8-0 of the re
sults presented in Sec. II is considered. Although the limit
ing procedure is somewhat complicated in comparison with 
the deep-water limit, it can be done straightforwardly. 
Hence, we shall not enter into the details of the derivations of 
the BT and the 1ST and describe only the final results. How
ever, the properties of conservation laws are investigated in 
detail. 

A. Conservation laws 

We first derive the BT as a first step to obtain conserva
tion laws. In the limit~-+O, the function defined by (2.12) is 
expressed with the aid of (1.3), (2.tb), (2.1c), and (2.9) as 

TABLE II. Amplitudes of solitons for N = 4. 

A- 0, °2 OJ 0. 

7.0 0.047 0.244 0.568 0.936 
9.0 0.037 0.190 0.455 0.799 

11.0 0.030 0.156 0.380 0.690 
13.0 0.025 0.133 0.325 0.606 
15.0 0.022 0.115 0.285 0.538 
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(4.1 ) 

Suggested by this expression, we introduce the new variable 
W through the relation 

(
6 )-1/2 a 

W="'3 w=3 a'S In1' (4.2) 

together with the scaled parameters jj and v 
jj = - (36) -1I21l, (4.3a) 

v= (36) 1I2V. (4.3b) 

Substituting (1.3), (4.2), (4.3), and (B8) into (2.17) and 
expanding with 6, one finds after neglecting higher-order 
terms in 6: 

w,.+.!.wJCO WTd'S= -2U,.+.!.VW+ 1. (4.4) 
3 - co 3 

The boundary value Wo == Wo ( ± 00,7') is obtained by using 
(2.18), (4.2), and (4.3b) as 

Wo = -3/v. (4.5) 

Equation (4.4) with (4.5) represents the time part of the 
BT. If we take'S ..... 00 in (4.4) and use (4.5), we obtain 

f: co W,. d'S = 0, (4.6) 

and this relation implies that the quantity 

(4.7) 

is conserved. 
The space part of the BT follows similarly by introduc

ing (2.18), (2.19), (4.2), (4.3), (4.5), and (B5) into (2.16) 
and performing the limiting procedure as follows: 

Wss + (Ws + 2u - 1) W + ~W3 = 3(v- 1 
- v- 3). 

(4.8) 

It is useful to note that Eq. (4.4) and Eq. (4.8) can also be 
derived from a pair of the BT ofEq. (1.4) expressed in terms 
of bilinear variables II with the aid of ( 4.2) and the formulas 
(A6)-(A8). 

In order to derive conservation laws, we first introduce 
the following quantities 

Wj = (6/3)(j-1J/2Wj (j= 1,2, ... ), 

E = (6/3) -112£. 

It then follows from (2.25), (4.2), and (4.9) that 
co 

W= Wo + L WjE
j
. 

j=1 

(4.9a) 

(4.9b) 

(4.10) 

Notice that (2.25b), (4.3b), and (4.9b) yield a relation 

E = 2v. (4.11) 

Expanding I as 
co 

1= L IjE
j
, (4.12) 

j= I 

and substituting (4.10) and (4.12) into (4.7), one finds that 

Ij = f:co Wjd'S (j=1,2, ... ), (4.13) 

are conserved quantities. If we use (4.9) and 
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Wo = - 3/v= - 6/E, (4.14) 

Eq. (4.8) is rewritten in the form 

Wss + (Ws +2u)W+~(W- Wo)3- (2/E)(W- WO )2 

- (1 - ~) ( W - Wo ) = o. ( 4.15) 

Finally, substituting (4.10) into (4.15) and taking the coef
ficients of Ej (j = 1,2, ... ) zero, we obtain the recursion rela
tions that generate Wj. One then finds that only ~ with oddj 
survive. Explicitly up toj = 11, they read as follows: 

II = f: co U d'S, (4.16a) 

- 1 Jco 13 =- ud'S, 
12 - co 

(4.16b) 

1- 1 Jco (3 3 2 3 2 3)d s = --- u --u --us --u S, 
108 -co 2 2 4 

(4.16c) 

(4.16d) 

1- 7 Jco (4 4 3 9 2 3 2 
9 = --- U --u --uus +-uss 7776 - co 7 2 4 

9 2 3 2 3 )d --u +-us --u S 
14 28 56 ' 

( 4.16e) 

1- 1 Jco (6 3 s 75 3 2 45 4 
II = U - U - - u Us - - u 

157464 - co 4 16 

225 2 2 9 2 2 51 4 15 3 495 2 
+"""8 u Us + u uss - 16 Us + 4" u + 32 uUs 

9 2 63 2 3 2 63 2 45 2 
- uUss - 32 uUm + "2 uss + 64 um + 32 u 

135 2 171 2 9 2 9 )df: - ""'64 Us - ""'64 uss + 64 usm + 128 u !:>. 

( 4.16f) 

These quantities can also be derived from (2.28) by intro
ducing the sealings ~ = (6/3) -j/2~(j= 1,2, ... ) in addi
tion to ( 1.3 ). It is quite interesting to observe that in (4.16), 
only II , Is , 17 , and III are independent. Indeed,I3 and 19 are 
represented in terms of these quantities as 

(4.17a) 

(4.17b) 

The peculiar structure of these conserved quantities will be 
clarified in the following (see C). 

B. Evaluation of conservation laws 

We now develop a new method to evaluate conservation 
laws for N-soliton solution. For the purpose, we use actively 
the time part of the BT. In the beginning, we do this for a 
one-soliton solution of Eq. (1.4): 
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U = U I = 3a2 sech2 a(s - C1' - SOl) [c = (1 - 402
) - I J. 
(4.18) 

It then turns out that W has the following functional form 

W=W(S-CT-SOI ). (4.19) 

Substituting (4.19) into (4.4) and integrating once with re
spect to S, we obtain after some modifications 

3Ws + (W - WO )2 

+ ( - ! + :)(W- Wo ) +6u l =0. ( 4.20) 

This is an equation of the Riccati type. Owing to the second 
term on the left-hand side of Eq. (4.20), one cannot rely on 
the method developed in Sec. III B. Indeed, for Eq. (3.12) 
corresponding to Eq. (4.20), the second term on the left
hand side has been shown to vanish identically by integrat
ing with respect to x from - 00 to 00. However, lucldy in the 
present case, the difficulty is overcome as follows. We start 
by introducing new variables Yand 1/ through the relations 

W - Wo = 3Ys/Y, (4.21a) 

1/ = a(s - CT- SOl)' (4.21b) 

and setting 

- 3 + ;; = __ 6 + (1 - 40
2
)£ _ 6au. (4.21c) 

;; C £ 2 

Then, Eq. (4.20) becomes 

(4.22) 

Furthermore, if we make a change of the independent vari
able 1/ as 

~= (l-tanh1/)/2, (4.23) 

Eq. (4.22) is transformed into the form 

~(l-~)Y" + (1 +u-2~)Y, +2Y=0. (4.24) 

Equation (4.24) is a special case of the following hypergeo
metric differential equation of Gauss23 

~(1-~)Y" + [y- (a+p+ l)~JY, -apy=O, 
(4.25) 

with a = 2, P = - 1, and y = u + 1. As is well known,23 a 
solution of Eq. (4.25) regular at ~ = 0 is represented by an 
infinite series 

Y -F( Q .1") _ ~ (a)n(P>n ~n - a,p,y,!:1 - £.. - , 
n=O (Y)n n! 

(4.26a) 

with 

(a)n =a(a+ l)···(a+n-l}. (4.26b) 

If we note the boundary condition limlsl_ ao Y = const 
which is a consequence of ( 4.21a), we find that an appropri
ate solution ofEq. (4.24) satisfying the boundary condition 
is written in a finite series of the form 

Y=F(2, -1,u+ 1;~) = 1- [2I(u+ OK. (4.27) 

Using the above expression, one can easily evaluate the 
quantities given by ( 4.13 ). Indeed, it follows from (4.7) and 
(4.21a) that 
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i = [31n YJ"'= +'" ",= ao 

= [31n YJf:? 

= 31n[ (u + 1)/(u - 1)]. (4.28) 

Substitution of (4.12) and (4.21c) into (4.28) leads to 

(4.29) 

Expanding the right-hand side of (4.29) with £ and then 
comparing the coefficients of £j on both sides, one arrives at 
the final result as follows: 

i -6 ~ e 1-;+I) 
21+ I-£.. 2' + 1 

,=0 'J- r 

a2j - 2,+ 1(1 _ 402 )' 
X (j=0,1, ... ), (4.30a) 

12' 

i 2l = 0 (j = 1,2, ... ). (4.30b) 

Explicitly, the nonzero lj up toj = 11 read in the forms 

i l = 60, (4.31a) 
- a 
13 = 2"' (4.31b) 

is = - -1..(a5 - ~a3 - -1.. a) (4.31c) 
12 4 16' 

i7= _~(a7_~a3 647 a), (4.31d) 
63 16 

(4.31e) 

(4.310 

The generalization of the above results to those for an N
soliton solution is obvious. One may simply replace (4.30a) 
by the expressions 

i -6 ~ ej-~+I) 
1j+ I-£.. 2' + 1 

,=0 'J-r 

N a2j - 2,+ 1(1 _ 401 )' XL n n 

n= I 12' 
(j=0,1, ... ), 

(4.32) 

where 3a~ represents the amplitUde of the nth soliton. 

C. Structure of conservation laws 

As easily observed from the explicit expressions (4.31) 
for i21 + I , all these quantities are not independent. One can 
confirm by direct calculation that the relations (4.17) hold 
for ( 4. 31 ). This fact provides a useful information about the 
structure of conservation laws. In this subsection, we show 
that i1i+ 1 (j=/:3n + l,n = 0,1, ... ) are only independent 
conserved quantities. In other words, if 2j + 1 is equal 
to an odd integer times 3, namely, 2j + 1 = 3(2n + 1) 
(n = 0,1, ... ), then i 2l + I are expressed as a linear combina
tion of independent conserved quantities. It is sufficient to 
prove this statement only for (4.31) since the corresponding 
result for an N-soliton solution readily follows from (4.32). 
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First, we note from (4.29) that i 2j + I is also written in 
the form 

6.12 - (2j+ 1)/2 
j . = [(v'3a + ~ 1 _ a2 )2j+ I 
2)+1 2j+l 

- (v'3a_~I_a2)2j+1]. (4.33) 

If we put 

a = cos fJ, 

then, (4.33) becomes 
_ 2'3 - (2j-I)/2 
121+1 =-----

" 2j + 1 

(4.34) 

x [cos2
j+ l(fJ - ;) + cos2

j+ l(fJ + ;)]. (4.35) 

Using the well-known formulas 

cos2j + I fJ = 2 -2j ± (2j + l)cOS(2j - 2r + 1)fJ, 
r=O r 

( 4.36a) 

cosfJl + cos fJ2 =2c0s!(fJI +fJ2 )COS!(fJI -fJ2), 
(4.36b) 

(4.35) is modified as 
_ 2- 2(j-1)3-(2j-I)/2 
121+1 =-------

" 2j + 1 

j (2j + 1) 1T XL cos-(2j - 2r+ 1) 
r=O r 6 

xcos(2j - 2r + l)fJ. (4.37) 

This is a desired form. However, it is sometimes more con
venient to express (4.37) in terms of a. To do so, we use the 
formula 

cos(2j + l)fJ = ± (- 1 )r(2j + 1) (2j + 1 - r) 
r=O 2(2j+ l-r) r 

X (2 cos fJ)2j -2r+ I. (4.38) 

Substitution of (4.34) and (4.38) into (4.37) yields, after 
some manipulations, the following alternative expression for 
i 2j+1: 
_ 12-(j-I) j 

I ~ (2a)2r+ I 
2j+ I = 2v'3(2j + 1) ,-=-o 

xjf (-I)S(2r+2s+ 1) 

s=o 2r+s+ 1 

x(2(j--:-r-S) + 1)(2r+s+ 1) 
]-r-s s 

1T 
Xcos-[2(r+s) + 1]. 

6 
(4.39) 

It is seen from (4.39) that i 2j+ I with 2j + I,O(2n + 1) 
includes a term a2j + I as a maximum power of a, but for 
2j + 1 = 3 (2n + 1) it lacks the term and instead has a2j - I 

as a corresponding term. 
Under these preparations, let us now prove the depen

dence of conserved quantities mentioned at the beginning of 
this section. For the purpose, consider the following quanti
ty: 
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where 

rJ = cos !!...(2j + 1 )cos(2j + 1 )fJ, 
6 

2- 2(j_l)3-(2j-I)/2 
c· = ----'''''--....:.....-----
) 2j+ 1 

(4.4Ob) 

(4.4Oc) 

and anJ are unknown constants determined later. One then 
modifies (4.40) in the form 

_ 3n 3n-j (2(j + r) + 1) 
J6n +3 = L L a nJ +r cj+rrJ· (4.41) 

j=O r=O r 
Furthermore, if a nJ (j = 0,1, ... ,3n) satisfy the following 
system of linear algebraic equations: 

3n-j (2(j + r) + I) L anJ+ r cj + r 
r=O r 

(
6n+3 ) = 3n + 1 _ j c3n + I (j = 0,1, ... ,3n), ( 4.42) 

then, (4.40) becomes 

_ 3n ( 6n + 3 ) 
J6n +3 = j~O 3n + I _ j c3n + IF]. (4.43) 

However, one easily sees by noting F3n + I = a that J6n + 3 

coincides with i 6n + 3 and tijis means that i 6n + 3 is expressed 
by a linear combination ofI2j+ I (j = 0, I, ... ,3n). The exis
tance of a nJ is obvious since the determinant constructed 
from the coefficients of a nJ in (4.42) is 

3m 

II Cr 
r=O 

and hence never vanishes due to (4.4Oc). Thus we have fin
ished the proof. 

Remark 1: The similar structure of conservation laws 
exists2

4-26 for the Sawada-Kotera(SK) equation:27 

UT + 180u2us + 30(uusss + ususs ) + usssss = 0, 
(4.44) 

for which the 1ST problem has been partially solved.26,28 

Remark 2: The discussion on the dependence of conser
vation laws developed here is based on an N-soliton solution. 
However, since the conservation laws hold for arbitrary ini
tial conditions, the conclusion obtained in this section gives a 
necessary condition for the dependence. Nevertheless, the 
investigation of lower conservation laws [see (4.17), for in
stance] strongly suggests that it is also sufficient. This is an 
interesting problem to be pursued further. 

Remark 3: The 1ST equations arise naturally from 
(2.31) by noting the relations 

t/J ± = ~ = exp( += ;/j ~)~ . 
f± ax f 

If we define the wave function t/J by 

t/J=glj, 

( 4.45) 

(4.46) 

substitute (4.46), (1.3), and (4.3) into (2.31) and take the 
limit /j -+ 0, we obtain the following system oflinear differen
tial equations 
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3t/lrs VrPs - (2ur - 1)t/l, 
t/lm + (2u - 1 )t/ls = [tt/l, 

(4.47a) 

(4.47b) 

which constitute the 1ST of Eq. (1.4). It is important to 
remark that the space part of the 1ST (4.47b) is essentially 
the same form as that corresponding to the SK equation 
( 4.44 ).25,26 

V. CONCLUDING REMARKS 

In this paper, starting from the bilinear form of a model 
equation for water waves in fluids of finite depth we have 
constructed the BT , an infinite number of conservation laws 
and the 1ST for the equation. Then, both the deep- and shal
low-water limits of various results thus obtained have been 
investigated in detail. In particular, the structure of conser
vation laws has been clarified and it was found that it exhib
its quite peculiar characteristics in comparison with those of 
usual water wave equations such as the BO and the KdV 
equations. 

The most important open problem left in this paper 
would be to solve various 1ST equations. In this respect, it 
should be remarked that the space part of the 1ST equation 
for the shallow-water wave equation considered in Sec. IV 
has the same form as that for the SK equation. However, one 
must keep in mind that the 1ST problem for the SK equation 
has been solved only partially. 26,28 For instance, the explicit 
form of N-soliton solution has not been derived as yet within 
the framework of the 1ST formalism. Concerning this point, 
it may be instructive to note that Hirota recently found Pfaf
fian expressions of N-soliton solutions for the SK and related 
equations29 and derived a new type of linear integral equa
tion30 that corresponds to the well-known Gel'fand-Levitan 
equation. The above-mentioned problems must be studied 
further in future works. 
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APPENDIX A: FORMULAS OF BILINEAR OPERATORS 

The following formulas are easily verified by direct cal
culations using the definition of bilinear operators (2.4), 
where f, /" g, and g' are functions of t and x and 
t/J = In(flg),p = In(fg): 

DJ'/ = 0, (AI) 

D,(fg'DJ'g) = Dx(fg'DJ'g), (A2) 

f'g'DJ'g (DJ"g')fg=Dxg'ff'g, (A3) 

f'g'D,DJ-g- (D,DJ'·g')fg 

= (D,DJ'·f)g'g-f'jD,DS'·g 

+ D, [g1'(DJ"g)] +Dx [g1' (DJ"g)], (A4) 

exp(ioDx )fg =f(x + io)g(x - 10), (AS) 

DJ·glfg ¢x, (A6) 

D,DJ-glfg=p,x +¢,¢x' (A7) 

D~'glfg ¢xxx + 3¢xPxx + ¢!. (A8) 

2915 J. Math. Phys., Vol. 31, No. 12, December 1990 

APPENDIX B: PROPERTIES OF OPERATORS T AND H 

The following formulas are obtained by employing the 
Fourier transform method together with the Chauchy resi
due theorem and the formulas 

(coth kl 8 + coth k28]coth(kl + k2)8 

lim coth k8 sgn(k). 
6-"" 

(BI) 

(B2) 

In the following,j( k) denotes the Fourier transform off(x): 

f(k) = - f(x)e ikx dx, - 1 f"" 
211' - 00 

and the existence off(O) is assumed. 

1. T operator 

Teikx = i[coth kO - (llkO) ]eikx
, 

f:oo (fTg+gTf)dx=O, 

f: "" Tfdx = 0, 

foo fX 1 f"" 
_ "" dx _ "" J;, TJ;, dy - -u; _ "" f2 dx 

= - 11'8 f: 00 f(k)f( k) (k Isinh k8)2dk, 

Tf= ~ fx + :; Ixxx + 9!S 8
5
f= + 0(8

7
). 

A. 

Ifwe define the operator Tby 

A. foo 1 11'(y-x) Tf(x) = P - coth fey) dy, 
-0028 28 

(B3) 

(B4) 

(BS) 

(B6) 

(B7) 

(B8) 

(B9) 

then, for the functions such that limk _ o f(k) = O(k) and 
limk_o g(k) O(k) 

"A A A A 

T(f/'g+gTf) = (Tf)(Tg) -fg· 

2. H operator 

Heikx = 1 sgn(k)eikx
, 

f: 00 (f Hg + gHf)dx = 0, 

f:"" Hfdx=O, 

H2f= -f, 

H(fg) = H [(Hf)(Hg)] + fHg+gHf, 

f: 00 dx f: "" J;,HJ;, dy = 0. 
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Solutions of the classical Maxwell-Klein-Gordon equations are investigated for which the 

Klein-Gordon field is assumed to be ",(x) = aeiP"Jd'. It is shown that for this class the 
exponential factor can be "gauged away" and the resulting system of equations can be reduced 
to a single (complicated) nonlinear equation. Furthermore, the electromagnetic four-potential 
field becomes massive "absorbing scalar particles." The steady-state (or stationary) subclass of 
the resulting system of equations is examined. It is proved that in absence of any magnetic 
field, the steady-state system does not have a solution. In the simple case for which four
potential components A I' depend on one spatial coordinate, the equations are completely 
solved and explicitly analyzed. 

I. INTRODUCTION 

Exact (nontrivial) solutions of any system of interact
ing quantized fields are not known. A system of interacting 
classical fields is much easier to investigate. The initial-value 
problem of the classical Maxwell-Dirac equations has been 
studied I in this decade. Exact plane-wave solutions of the 
Maxwell-Dirac equations have been examined recently. 2 

Exact solutions of the coupled Einstein-Maxwell-Klein
Gordon equations have been found3 throughout the last 2 
decades. 

A particular plane-wave solution of the combined Ein
stein-Klein-Gordon-Dirac-Maxwell equations (where the 
curvature was due to the Takeno metric), has been given by 
Brill and Cohen.4 

Procedures for exact integration ofthe differential equa
tions in these papers bypass completely perturbative tech
niques that are plagued with "divergence difficulties." 

In this paper, we seek solutions of Maxwell-Klein-Gor
don (MKG) equations with Klein-Gordon field 

",(x) = aiP"x!'. In elementary wave mechanics such a wave 
function represents a momentum eigenstate. It turns out 
that for any complex wave field with "minimal electromag-

netic interaction" the factor iP"x!' can be "absorbed" by a 
gauge transformation. Therefore, the wave function 

",(x) = aeiP"x!' is gauge equivalent (also physically equiva
lent) to the constant-valued wave function ",(x) = a. With 
such an assumption, we study MKG equations in Sec. III. It 
is proved that the electromagnetic four-potential A I' (x) and 
the charge-current four-vector j(x) are timelike every
where and furthermore these vectors are constant multiples 
of each other. Moreover, the four-potential field A I'(x) sat
isfy the Proca equations, and thus photons acquire mass as it 
were, absorbing scalar particles or mesons. 

In Sec. IV, MKG equations with constant-valued wave 
functions are further simplified by the additional assump
tion that MKG fields are in steady state or stationary. It is 

a) Current address: Okanagan College, Kelowna, British Columbia VI Y 
4X8, Canada. 

proved that in the absence of magnetic fields, the steady
state equations have no solution. Furthermore, it is proved 
that if at a point of a spatial domain, the potential A o(x) 

attains a minimum, then solutions of the steady-state equa
tions do not exist on that spatial domain. 

In the last section, under the simplifying assumptions 
"'( x) = a and the A I' are functions of a single spatial coordi
nate, the MKG equations are completely integrated. The 
electromagnetic field tensor, symmetrized energy-momen
tum-stress tensors are explicitly computed for these solu
tions. Moreover, the total energy and momentum of the 
MKG fields inside a bounded spatial cylindrical domain are 
explicitly obtained. 

II. NOTATION AND FIELD EQUATIONS 

The flat space-time differentiable manifold is denoted 
by M. A Minkowski coordinate chart is used for M. The 
symbol : = is used for definitions and the symbol == is used 
for identities. A space-time event, which is an element of M, 
is coordinatized by x: = (XO,x l ,X2,X3), where XO denotes the 
time coordinate. A Greek index takes values in {O, 1 ,2,3} and 
a Roman index takes values in {1,2,3}. The signature of the 
metric is assumed to be - 2 so that the metric tensor 
[ 17l'v] = diag [ 1, - 1, - 1, - 1]. Einstein's summation 
convention is used for both types of indices. The physical 
units are chosen so that Ii = c = 1. The electromagnetic 
four-potential components are indicated by A I' (x). The par
tial derivatives are denoted by a,.. We shall usually assume 
that in a domain DC lR4 (corresponding to a domain in M), 
the Klein-Gordon function", is of the differentiability class 
<G'2(D;C) and the four-potential function A I' are of the dif
ferentiability class <G'3(D;lR). In such a domain DClR4, the 
coupled MKG equations (which are Poincare covariant as 
well as gauge invariant) are the following: 

k(x): = Hal' + ieA I'(x)] 

X [al' + ieAI' (x)] + m2}",(x) = 0, 

MI'(x): = avFI'V(x) - j(x) = 0, (2.1 ) 
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FI'Y (x): = ayAI' (x) - al'Ay (x), 

j(x): = ie{[al' - ieA I'(x) ]~(x)rp(x) 

- ~(x) [a I' + ieA I'(x)] rp(x)}. 

Here, e and m are charge and mass parameters associated 
with the Klein-Gordon field and the bar stands for the com
plex conjugation. In this combined system of quasilinear, 
second-order partial differential equations, there exists one 
differential identity, viz. 

al'MI' + ie[~(x)k(x) - k(x)rp(x)] =0. (2.2) 

This identity holds even if MI'=I=O, k(x) =1=0. In the system of 
equations (2.1) we have six (real) unknown functions and 
five (algebraically and differentially) independent equa-

I 

tions. Therefore, to make the system determinate, we are 
entitled to add one subsidiary condition which is not incon
sistent with the system (2.1). We choose the subsidiary con
dition to be the Lorentz-gauge condition: 

L(x):=aI'AI'(x) =0. (2.3) 

The system of equations (2.1), (2.3) is invariant under the 
restricted gauge transformation: 

¢(x) = rp(x)eieA.(x), 

AI'(x) = AI' (x) -aw·.J.(x), (2.4) 

[]A,: = al'al'). = O. 

The symmetrized energy-momentum-stress tensor 
components for the combined MKG fields are given by 

-1JI'V {[(a" - ieA "(x»~] [(a" + ieA" (x»rp] - m2Irp(x) 12} - FI''' (x)F\(x) + !1Jl'yFaP(x)Fap (x). 
(2.5) 

There exist four differential identities: 

aJ)I'V - k(x){[al' + ieA I'(x) ]rp} - k(x) 

X {[a I' - ieA I'(x)]~} + Fl'v (x)MV(x) =0. (2.6) 

The identities (2.6) are valid even in the case when k (x) =1= 0, 
MV(x) =1=0. 

The general solution of a system of partial differential 
equations contain arbitrary junctions. In the present system, 
(2.1), (2.3), the most general solution should contain at 
least three real-valued and two complex-valued arbitrary 
functions. 

III. PLANE-WAVE SOLUTIONS 

Let us assume that the special plane-wave function of 
the Klein-Gordon field is of the form: 

. xl' 
rp(x) =ae-'P" , (3.1) 

where a is an arbitrary complex constant. Assuming that 
e =1= 0, we can define a gauge function A,(x): = Pl'xl'le. It sat
isfies the wave equation []A, = 0 everywhere. Therefore, we 
are entitled to make a gauge transformation (2.4) on the 
wave function in (3.1) to obtain: 

,. . xii . xl' 
rp(x) = rp(x)eie"(X) = (ae -'P" )e'p" = a, (3.2) 
A 

AI' (x) = AI' (x) - pl'le. 

Dropping the circumflexes in the sequel, the system of equa
tions (2.1), (2.3), with (3.2) reduces to 

Choosing the upper sign, A I'(x) is future-pointing every
where whereas choosing the lower sign A I'(x) is past point
ing everywhere in D. [A o(x) is zero nowhere]. 

(ii) By Eqs. (3.3a) and (3.3c) the algebraic identity 

Im[k(x)/(ae)] - L(x) =0 
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k(x) = [m2 - e2A l'(x)AI' (x) + ie(al'A I')]a = 0, 
(3.3a) 

MI'(x) = DA I'(x) + 2e21al2A I'(x) = 0, (3.3b) 

(3.3c) 

In case a = 0, we have k(x) =0 and (3.3b), (3.3c) re
duce to the usual Maxwell equation. However, in case a =1=0, 
some interesting properties for the combined field emerge 
from the system (3.3a), (3.3b), (3.3c). 

Theorem 3.1: Let DC R4 correspond to a domain of flat 
space-time M. Let the potentialfunctions A I'E'G' 3 (D;R) and 
the field equations (3.3a), (3.3b), (3.3c) hold in D with 
m =1= 0, e =1= 0, a =1= O. Then (i) there exist two distinct subcases 
of solutions corresponding to A I'(x) being future-pointing 
timelike or else being a past-pointing timelike vector field; 
(ii) there exists an algebraic identity Im[k(x)1 
(ae)] - L(x) =0; (iii) the charge-current four-vector 
j(x) is a constant multiple of A I'(x); (iv) the four-potential 
functions A I'(x) satisfy the Proca equations. 

Proof (i) By Eq. (3.3a) we have 

Re[k(x)/a] = m2 - e2A l'(x)AI' (x) = O. 

Therefore, 

A l'(x)AI' (x) = (mle)2. (3.4) 

Since (mle)2 > 0, A I'(x) must be timelike everywhere in D. 
Solving the quadratic relation (3.4), we obtain two branches 
(or two distinct functions): 

follows immediately. 
(iii) The charge-current vector fieldj(x) from equa

tions (2.1) and (3.3b) is given by 
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(iv) Equation (3.3b) is equivalent to the Proca equa
tion: 

(3.5) 

where M: = ~elal. Thus the proof of the theorem is com
plete. .. 

Now we shall attempt to solve the system (3.3a), 
(3.3b), and (3.3c). To solve the Lorentz gauge condition 
(3.3c) we introduce the differential one-form: 

A(x): = AI' (x)dxl-'. 

The corresponding dual three-form is 

A *(x) = illl'Y).pA P(x)dxl' I\dxY I\dxA, 

where TJI'Y;'P is the totally antisymmetric pseudotensor. The 
exterior derivative 

dA *(x) = - (al'A I'(x»)dxo I\dx l l\dx2 I\dx3=0. 

Therefore, by the converse ofthe Poincare lemma (in a con
tractible domain DCR4), there exists a two-form 

a(x) = !al'Y (x)dxl-' 1\ dxY 

such that 

A *(x) = da(x) = !(a!,ay;, (x) + aya;.!, (x) 

+ a;. a!'y (x »dxl-' 1\ dxY 1\ dx;'. 

The above equation implies that 

A(x) =A **(x) = (da)·, (3.6) 

A !'(x) = ayal'Y. 

Conversely, A !'(x) = aya!'Y [aY!'(x) = - a!'Y(x)] satisfies 
(3.3c). Equation (3.6) gives the general solution of (3.3c), 
where a!'Y are arbitrary functions of class ~ 4 (D;R). Substi
tuting (3.6) into (3.3b) or (3.5) we obtain: 

ay [Da!'Y(x) + M 2a!'Y(x)] = O. (3.7) 

Using the techniques of differential forms we can derive 

Da!'Y(x) + M 2a!'Y(x) = TJ!,Y;'p(a;.Bp (x) - apB;. (x», 
(3.8) 

where the functions Bp belong to ~s(D;R), but otherwise 
arbitrary. The general solution of (3.8) can be written as 

a!'Y(x) = a~~) (x) + a~;) (x), 

Da~~) (x) + M2a~~) (x) = 0, (3.9) 

a~;) (x) = f G(x - x')ifY;'p(a ~Bp - a ~B;. )d 4x'. 

Here, a~~) (x) is an arbitrary solution of the Proca equation 
and G (x - x') is an inhomogeneous Green's function for the 
Proca equation. The remaining equation (3.4) can be ex
pressed as 

TJI'V [a;.(a1;) (x) + at;) (x»] [aa(a~::) (x) + a~:) (x»] 

= (m/e)2. (3.10) 

In this stage, MKG equations have been reduced to one non
linear equation (3.10). Equation (3.10) involves the four 
functions B;. and six Proca functions a~;) (x). Therefore, 
Eq. (3.10) is highly underdetermined. Nevertheless, it is not 
easy to integrate (3.10) in general. 
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IV. STEADY-STATE FIELD EQUATIONS 

We shall define, in general, the steady state of stationary 
state of the MKG fields by the following criteria: 

auf =0, ( 4.1a) 

( 4.1b) 

In case of the field equations (3.3a), (3.3b), the condition 
(4.1a) implies that 

(4.2) 

Let us denote a spatial point by x = (X\X2,X3) in a do
main DCR3

• The field equations (3.3a), (3.3b), (3.3c) by 
(4.2) reduce to 

[A o(x) F = t5jk Aj(x)A k(X) + (m/e)2, 

V 2A o(x) _ M2A o(x) = 0, 

V2A k(X) - M2A k(X) = 0, 

akA k(X) = O. 

(4.3a) 

(4.3b) 

(4.3c) 

( 4.3d) 

Now we shall prove a theorem on the above system of 
equations in case ofthe absence of any magnetic field. 

Theorem 4.1: Let DCR3 correspond to a contractible 
domain of the spatial submanifold of M. LetA!'E~3(D;R) 
and the steady-state field equations (4.3a)-( 4.3d) hold in D 
with M =1=0, e=l=O, m =1=0. If, furthermore, Fij (x) =0 in D, 
then there exists no solution of the system (4.3a)-( 4.3d) in 
D. 

Proof Since A iE~3(D;R) and D is contractible, the 
equations Fij (x) = ajAi - aiAj =0 imply the existence of a 
function AE~4(D;R) such that Ai (x) = aiA. Equation 
(4.3d) reduces to V2A = O. Therefore, the equations (4.3c) 
yield M 2a kA = O. Since M =1=0, we must have 
A k(X) = a kA =0. Thus the equations (4.3a) gives 
A o(x) = ± (m/e). Substituting this result into (4.3b) 
yields + M2(m/e) = O. This condition contradicts the hy
potheses that M =1=0 and m=l=O. • 

It is clear from Theorem 3.1 that the charge-current 
vector field I" (x) can be either future-pointing timelike or 
else past-pointing timelike. Let us choosej"(x) to be future 
pointing in D. We shall prove another theorem about the 
consequences of this implication. 

Theorem 4.2: Let DCR3 correspond to a bounded do
main of the spatial submanifold of M. LetA !'E'G'3(D;R) and 
the steady-state field equations (4.3a)-( 4.3d) hold in D 
with M =1=0, e=l=O. Letj"(x) be future pointing in D. Iffur
thermore, A o(x) attains a minimum at some point xmED so 
that for all XED, A o(xm ) <A o(x), then the system (4.3a)
(4.3d) has no solution in D. 

Proof When I"(x) is future pointing, then lex) > O. 
Therefore, A o(x) = - M - 2l(x) < O. By Eq. (4.3b) it fol
lows that V2A o(x) = M2A o(x) <0. As a consequence of 
A !'E~3(D;R) and HopPs theoremS on elliptic differential 
inequalities, it follows that A o(x) is constant valued and 
AO(x) =Ao(xm ). ByEq. (4.3b) andM=I=O, we must have 
A o(x) =0 for all XED. Therefore,l(x) = - M2A o(x) =0, 
which contradictsl(x) >0. .. 
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v. A SPECIAL CLASS OF STEADY-STATE SOLUTIONS 

We shall investigate the steady-state field equations 
(4.3a)-( 4.3d) under the special assumption that A P depend 
on one independent variable. In case 

J IAP=J2AP=0, (5.1) 

Eq. (4.3d) implies that A 3 is constant valued. Therefore, the 
field equation v2A 3 - M2A 3(X) = OwithM #0 can be sat
isfied only by the choice 

A 3 (x)=0. (5.2) 

Equations (4.3b) and (4.3c) can be integrated to obtain 

A o(x) = a l e
Mx' + a2 e - Mx', 

A I (x) = bl e
Mx' + b2 e - MX', (5.3 ) 

A 2(X) = CI e
Mx' + c2e- MX', 

where aI' a2, bl , b2, cl , C2 are arbitrary constants of integra
tion. Using (5.2), (5.3) Eq. (4.3a) yields 

2[a l a2 -bl b2 -CI C2 _!(m/e)2] 

+ (ai - bi - ci )e2MX' 

+ (a~ -b~ -cDe- 2MX'=0. (5.4) 

Since the set off unctions {I, e2MX', e - 2MX'} is linearly inde
pendent on an interval, the identity (5.4) implies that 

al a2 -bl b2 -CI C2 = (m/e)2/2, 

ai-bi-ci=o, (5.5) 

a~ - b ~ - c~ = O. 

The general solution of the nonlinear relations (5.5) is as 
follows: 

a2 = (m/e)2{2a l [1- COS(tPl - tP2 )]}-I, 

bl = a l cos tPl' 

CI = a l sin tPl' 

b2 = a2 cos tP2' 

C2 = a2 sin tP2' 

(5.6) 

where a l #0, and tPl - tP2 #2mT, but otherwise aI' tPl' and 
tP2 are arbitrary real constants. The electromagnetic four
potential components are 

Ao (x) = al ~x3 + aze- Mx', 

Adx) = - (a l costPleMX3 +az costPze-Mx'), (5.7) 

Az (x) = - (a l sin tPI eMx3 + az sin tPze-Mx'), 

A3 (x)=O. 

The electromagnetic field tetlS'or components and charge
current vector components are 

FI2 (x) = FOI (x) = FOl (x) =0, 

F31 (x) = M(a l cos tPl eMX' - a2 cos tPz e - MX\ 

, M' 
F23 (x) = - M(a l sin tPl eMx - a2 sin tP2 e - X), 

F03 (x) = M(a l e
Mx' - a2 e - MX'), 

Fpv (x)FPV(x) = 4M21a1 2, (5.8) 

j o(x) = _ M2(a l e
Mx' _ a2 e - MX') , 
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jl(X) = -Mz(al COStPI~x3 +a2 costPze-MX3), 

jZ(x) = -Mz(al sintPI~x3 +a2 sintPze-MX3), 

j3(X) =0, 

sgn(f(x» = - sgn(al ). 

Using Eqs. (2.5), (5.7), some of the components of en
ergy-momentum-stress tensor ofMKG fields are 

000 (x) = M21al2 + 2M2(a~ e2Mx3 + ai e - 2Mx') > 0, 

010 (x) = - 2M2(ai cos tPI e2Mx3 + a~ cos tP2 e - 2Mx
3
), 

020 (x) = -2M2(ai sintPle2Mx' +ai sintP2e-2MX3), 

030 (x) =0, (5.9) 

[000 (x) _M2IaI 2]2_ [010 (X>]2 

- [020 (x>] 2 _ [030 (x>] 2 

= 8(mlal )4[ 1 - COS(tPI - tP2)] -I. 

Let us choose a bounded cylindrical domain D 
= B X (hI ,h2 ), where the base BCR2

• In such a case, the 
total energy and momentum components of the coupled 
MKG fields inside the domain D are given by 

Po: = L 000 (x)d 3X 

= {M 2 1a1 2 + M(h2 - hI) -I [af (lMh, _lMhl) 

_ ai (e - 2Mh, _ e - 2Mhl) ]} V(D), 

PI: = L 010 (x)d 3X 

M(h h) - I [2 A. (2Mh, 2Mhl) = - 2 - I a l cos '1'1 e - e 

2 A. (-2Mh, -2Mhl)] V(D) - a2 cos '1'2 e - e , 

P2 : = L °zo (x)d 3X 

- M(h h) -I[ 2 . A. (2Mh, 2Mhl) - - 2 - I al sm'l'l e - e 

2 • A. (-2Mh, -2Mhl)] V(D) - a2 sm '1'2 e - e , 

P3 : = L 030 (x)d 3X =0, 

where V( D) stands for the volume of the cylindrical domain 
D. The above integrals usually diverge for an unbounded 
domain. The total mass in the cylinder may be represented 
by 

J'YJpvPPpv = F(h l ,h2 ,tPI ,tP2) V(D), 

where F is a known complicated function. 
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Using an Op-*-algebraic approach, noncommutative analogs of the Ito formula of classical 
stochastic calculus within the framework of the Hudson-Parthasarathy formulation of Boson 
quantum stochastic calculus are proven. 

I. INTRODUCTION 

In classical probability theory, the stochastic integral, 
first defined by Ito, I and extended by Kunita and Watanabe2 

and by Meyer,3.4 plays an important role. As a result of that 
notion of integration, it has been possible, for example, to 
discuss stochastic differential equations and diffusion pro
cessesS

-
7 that are significant in the understanding of various 

natural phenomena. It is, therefore, interesting that, in re
cent times, several publications dealing with noncommuta
tive extensions8-1O of classical stochastic integration have ap
peared. 

In this paper, we present results that are the noncommu
tative analogs of the well-known Ito formula II for the Boson 
quantum stochastic integral introduced by Hudson and 
Parthasarathy.lo Our algebraic approach enables us to in
clude unbounded linear operators as integrands, in distinc
tion to the consideration in Ref. 10. 

This contribution is organized as follows. In Sec. II, we 
present the fundamental concepts and notation that feature 
in the subsequent discussion. We introduce Op-*-algebras I2 

of unbounded linear operators on certain Hilbert spaces and 
consider some locally convex completions of the algebras in 
Sec. III. The complete locally convex spaces are employed in 
Sec. IV where we present noncommutative versions of the 
Ito formula. ll We note that extensions of the Ito formula 
have appeared in various contexts such as those concerning: 
Hilbert-space-valued processes; 13 Banach-space-valued pro
cesses; 14 processes in abstract Wiener spaces; IS processes in 
infinite dimensional manifolds; 16 operator-valued pro
cesses;17.18 and quantum stochastic processes. 10.19.20 We re
mark that the noncommutative extension of the Ito formula 
presented in Ref. 10. Theorem (4.5) is a special case of 
Theorem (4.10) of this paper. 

II. FUNDAMENTAL CONCEPTS AND NOTATION 

If !¥ is a Hilbert space, then 11'11.'2" and (.,.).'2" denote its 
norm and inner product, respectively. Furthermore, the fol
lowing notation is used throughout the paper: 

ds = Lebesgue measure; 

I = any Borel subset of R+ == [0,00 ); 

.5Y = some fixed Hilbert space; 

L ~ (/,ds) = set of all (equivalence classes) of .5Y -val
ued functions/ on I such that f / dsllf(s) II~ < 00; 

7t"(/) = L ~ (/,ds); 

7t" = 7t"(R+); 

B{7t"(/» = Banach space of all endomorphisms of 
7t"(/); 

L K:'n (/) = linear space of all 7t"(/)-valued, locally 
bounded, Lebesgue measurable functions on I; 

L B(~I)) (/) = linear space of all B{7t"(l)-valued, local
ly bounded, Lebesgue measurable functions on I; the 
members of L i(~/») (/) act pointwise on 7t"(/); 

r(7t"(/» = Boson Fock space21.22 over 7t"(/). 

It is well known22 that the exponential vectors in 
r(7t"(/» generate a dense linear subspace. Recall that an 
exponential vector is of the form: 

fl(/) = ; (n!)-1/2(/®/® ... ®/)", /EK(/), 
,,=0 

where (/®!® .. , ®/)0==1 and (/®/® ... ®/)" is the n
fold tensor product of / with itself. 

For /e7t"(/) and 1TEL B(~/») (/), introduce the linear 
operators 0 ( /), 0* ( /), and A ( 11"), defined on the linear span 
V{fl(/);/E7t"(/)}, as follows: 

o(/)fl(g) = (f,g).r(l)fl(g), 

d 
o*(/)fl(g) = dx fl(g+x/)Ix=o, 

A(11")fl(g) = ! fl(e'''Tg)x=o, ge7t"(/). 

Observe that 0 (/) and 0* (/) ,/EK(/), are the annihilation 
and creation operators of quantum field theory;21 A( 11") is the 
so-called gauge operator. 

It is noteworthy that the linear span of the exponential 
vectors is not left invariant under the action of the operators 
0* ( /) and A ( 11"). But in the subsequent discussion, we need a 
dense domain that is left invariant under the action of arbi
trary polynomials in the operators 0 ( /), 0* ( /), and A ( 11") 

for any /e7t" (/) and 1TEL B(~/)) (/). Such an invariant sub
space of r(7t"(/» is obtained as follows. 

Let 6 (I) be the linear subspace of r{7t" (I» generated 
by 

{fl ( /) ;/E7t" (/) } 

and 

--- fl (/ + xg + el"'"h) x = 0: / ,g,he7t"(/) , { 
a,,+m I 
ax"ay" y=O 

1TEL i(:1n1)) (I), n,m = 1,2, ... } . 

Then, 6(/) is a dense subspace of r(7t"(/» which is invar-
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iant under the action of any member of the polynomial alge
bra generated by 

{a (j) ,a· (g),A(1T);(,g,eK(I),1TEL B(;JnI») (l)}. 

For feK(I) and 1TEL B(;Jnl)) (I)} the closures of a(J), 
a· ( f), and A ( 1T) (denoted again by the same symbols) act 
on @.l(I). We set 

@.l([O,t)])=@.l,; @.l([t,oo»=@5', teR+. 

III. QUANTUM Op·*·ALGEBRAS AND ASSOCIATED 
LOCALLY CONVEX SPACES 

We employ Op-·-algebras in the sequel. Those algebras 
and some associated spaces are introduced in this section. 

A.Op-*·algebras 

If Y is some dense subspace of a Hilbert space [1, with 
the inner product (.,. > ~, we write m:(Y) for the set of all 
linear operators that leave Y invariant and possess ad joints 
whose domains contain Y. Then, m:(Y) is a unital ·-alge
bra, called an Op-·-algebra, 12 when equipped with the invo
lutionx .... x· defined by (SI'XS2) ~ = (X·SI!S2),~' SI,S2eY. 
We write 1 for the unit ofm:(Y). 

In the sequel, fJI always denotes some fixed Hilbert 
space and £e is the Hilbert space: 

£e=f!lt ® r(,w'). 

Since,w' = ,w'( [O,t) ) EB ,w'( [t, 00 », for each teR +' it follows 
that £e admits the factorization: 

£e £e, ® r(,w'([t, oo)}) for each teR+, 

where 

£e, fJI ® r(,w'([O,t»), teR+, 

The space £eo is identified with fJI and called the Initial 
space. 

Throughout this paper, 1$ denotes a dense subspace of 
fJI. Then ff=1$ ®@5isdensein£e.Moreover, ff t =1$ ®@5, 
and @.l' are dense in £el and r(,w')([t,oo »), respectively, 
for each teR+. Hence, the Op-·-algebras m: ( ff I ) ® 1 t and 
I, ® m:(@.ll) may be identified with Op-·-subalgebras of 
m: ( ff ), where 1, and l' are the units in m: ( ff, ) and m: (@.l' ), 
respectively. In the sequel, we set m:( ff) m:( ff t) ® It 
=m:,; and 1, ®m:(@5')=m:'. 

B. The space m:( 1'2) 

For ae1$ X,w', with a = (uJ), let 1I'lIa be the semi
norm on m: defined as follows: 

IIblia = IIbu®fi(J)IIff" hem:. 
Then, we write 1'2 for the locally convex topology generated 
by {Ii' II" :ae1$ X,w'} and denote the 1'2-completion ofm:, m:" 
and m:', teR+, by m:( 1'2), m: t (1'2)' and m: t (1'2)' respectively. 

In the sequel, Fin (1$ X,w') denotes the collection of all 
nonempty finite subsets of 1$ X,w'. For each 
HeFin(1$ X,w'), we define II'IIH on m:( 1'2) as follows: 

IIxliH = suplixlla , xem:( 1'2)' 
aEH 
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C. The space ..t"'g')«m:( 1'2»n,.sfI) 

Let f!lJ be a complete locally convex space whose topol
ogy is generated by the family {III'III 6' c5e~} of semi-norms. 
Then, ..t"'(m:( 1'2),f!lJ) denotes the collection of all continuous 
linear mappings from m: ( 1'2) into f!lJ. For 
l1e..t"'(m:( 1'2),f!lJ), l1[X] denotes the value of 11 at the point 
xem:( 1'2)' 

Let l1e.Y(m:(1'2),f!lJ). Then, by [Ref. 23, Theorem 
III. I. I ], for each 8e~, there exist a positive number C6,." and 
a member 1HI(8,11) of Fin(1$ X,w') such that 

(.) 11111[X] 1116";;c6,n Iix IIH(6,n)1 for all xem:(l';), 

In the sequel, IHI ( . ) is a fixed, but otherwise arbitrary, map 
from ~ into Fin (1$ X,w'). Using (.), we introduce the sub
set 'yIOI(m:( 1'2),f!lJ) of .Y(m:( 1'2),f!lJ) as follows. 

Definition: Let l1e.Y (m: ( 1'2)' f!lJ). Then, we say that 11 lies 
in 'y0(m:( 1'2),f!lJ) . if for each c5e~, we have 
11111[X] 1116 ";;cllxIlH(6) for allxem:( 1'2)' where cis some posi
tive constant depending on 8,11, H(·). 

Remarks: ( I) The set 'y(OI(m:( 1'2),f!lJ) is a vector space. 

(2) We shall next equip 'y(OI(m:( 1'2),f!lJ) with a 
topology. 

Let.xt be a family of bounded subsets ofm:( 1'2) such that 
the linear hull of ~E.<Y' {xeE> } is dense in m: ( 1'2)' Then, for each 
(8,E»e~.xt, define 111'1116,0 on 'y(O)(m:( 1'2),f!lJ) as follows: 

111111116,0 = inf{c:11111[x1l116";;cllxIlH(6),'d £eeE>}, 

l1e'yIO)(m:( T2),f!lJ)· 

The completion of 'y(OI(m: ( 1'2) ,f!lJ) in the locally convex 
topology [which we call the (.xt)-topology in the sequel] 
determined by the family 

{111'llls,@ :(8,E»e~ X.xt} 

of semi-norms will be denoted by .Y~~) (m:( 1'2),f!lJ). 
If, for j = 1,2, ... ,n, .xtj is a family, as above of bounded 

subsets ofm: ( 1'2) such that ~E.<>" {xeE> }is dense in m: ( 1'2)' then 
J 

we define 

.Y~~'X"'X.<>"jl «m:(T2)Y,f!lJ) 

= .Y~~J) (m:( T2)'.Y~~,x". X.<>"j_ ,) «m:( 1'2) Y- I,f!lJ), 

j 1,2, ... ,n, 

with .Y~?J,,,) «m:( 1'2»O,f!lJ) = f!lJ. 
It is then evident that .Y~~, x ... x.<>" n) «m:( 1'2W,f!lJ) is 

isomorphic to the linear space, denoted again by 

.Y~?J,'X"·X,<.t") «m:(T2W,f!lJ), of all the multilinear map
pings of (m: ( 1'2»n into f!lJ that are separately continuous in 
the (.xtIX·· ·X.xt n )-topology. 

If .xt 1 = ... = An =.xt and .xt consists of all the bound
ed subsets of m:( T2)' then we denote 
..t"'~~x"· x.<.t) «m:( T2»",f!lJ) simply by .YbO) «m:( 1'2W,f!lJ). 
Furthermore, we write .YiO)(m:( T2),m:( 1'2» as .YiO)(m:( 1'2»' 

Let us now conclude this section by introducing the no
tion of differentiation that we employ in this paper. 

Definition: Let qm: ( 1'2» be the linear space of all con
tinuous mappings ofm: ( T2) into itself. Then by the derivative 
(if it exists) of tfEqm:( T2» we mean a map '1// from m:( 1'2) 
into .YiO)(m:(T2» such that the expression 
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(l/s)(t/'(y + sz) - t/'(y» - t/" (y)[z] (O#SE( - 00,(0» 

converges, for eachyem( 1"2)' to the zero member ofm( 1"2) as 
s tends to zero, uniformly with respect to z in any bounded 
subset ofm( 1"2)' 

Remark' (i) It is evident that any derivative is unique. 
(ii) Higher-order derivatives of members of qm( 1"2» 

are defined analogously by iteration. 
(iii) In the sequel, C" (m( 1"2» is the linear space of all 

members of qm ( 1"2» that are m-times differentiable. 
(iv) If ¢'EC" (m ( 1"2», we write t/'(m) for its mth deriva

tive. Then, t/'(m) is a map from m(1'2) into 2'~0)«m(1"2»m, 

m(1'2»' 
Notation: The symbol C 1,2(R+ X m( 1'2)' m( 1'2» denotes 

the linear space of all continuous mappings t/' from 
R+ X m( 1'2) into m( 1"2) with the properties that (1) for each 
yem( 1"2)' the map tl---+t/'(t,y) is differentiable in m( 1"2); and 
(2) for each tER+, the map y.--+t/'(t,y) lies in C 2(m( 1"2»' 

Remark' In the sequel, differentiation with respect to 
tER+ will be denoted by a dot. 

IV. THE ITO FORMULA 

In this section, we present results that are the noncom
mutative generalizations of the Ito formula ll of classical 
probability theory. To this end, we utilize the theory ofsto
chastic integration expounded by Hudson and Parthasar
athy in Ref. 10. 

We employ the following notions concerning m-valued 
stochastic processes over R+. 

Definition: A map b:R+ -- m is called an adapted process 
if b(t)Emu for tER+. 

Remark: We denote the set of all adapted processes by 
Ad(m). It is clear that Ad(m) is a *-algebra when endowed 
with the operations of pointwise addition, multiplication, 
scalar multiplication, and involution. 

Definition: A member b of Ad(m) is called the follow
ing. 

( 1) simple, in case b has a representation of the form 
00 

b(') = L X(tn"n+,](')bn, 
n=O 

where 0 = to<tl < ... <tn' with tn -- 00 as n-- 00, bnEm'n' 
and XI is the indicator function of ICR+; 

(2) 1'2-continuous, in case the map t -- b(t) is continuous 
from R+ into m(1"2); and 

(3) 1'2-locally square integrable, in case the map 
tl---+llb(t) lIa, from R+ into itself, is Lebesgue measurable for 
each aE!» X JY and 

fdsllb(s)lI~ < 00, for each t>O. 

Notation: (1) The collection of all the members of 
Ad(m) that are simple (resp. 1'rcontinuous) will be denoted 
by Ad(m)sim (resp. Ad(m)con)' 

(2) We write Ad(m,1' 00) for the completion of 
Ad(m)con in the locally convex topology 1'00 generated by 
the family 

{1I·lla."oo :aE!» XJY, 0 < tER,} 

of semi-norms, where 
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lib lIa",oo = sup Ilb(s) lIa, 0 < tER+, bEAd(m)con' 
0.;; • .;;, 

( 3) The symbol L 2 ( m,1'loc ) denotes the completion of 
the vector space of all1"rlocally square integrable members 
of Ad(m) in the locally convex topology 1"loc induced by the 
family 

{1I'lla",loc :aE!» xJY, 0 < tER+} 

of semi-norms, where 

lib II~",IOC = f dsllb(s) II~· 
Here, b is 1"2-10cally square integrable, aE!» XJY, 0 < tER+. 

Quantum stochastic integrals: Let/, geL ;:IOC(R+) and 
11EL ;'!K) (R+). For tER+, define Af(t),A ;(t), and A,,(t) 
as follows: 

Af(t) = a(fXIO,,» ® }', 

A ;(t) = a*(gXIO,,) ) ® }', 

A,,(t) = A. (11'XIO,,) ) ® }'. 

Then, by Ref. 10, Proposition 4.1, the processes A f' A ;, and 
A" lie in Ad(m)loc and hence in L 2 (m,1'loc ). 

In Ref. 10, Hudson and Parthasarathy develop stochas
tic integration with respect to the processes A f, A ;, and A,,: 
we refer to Ref. 10 for details. Of interest to us in the sequel is 
the following result. 

Theorem (4.1): (Hudson and Parthasarathylo): Let E, 
F, G, H lie in L 2 (m, 1'loc ) and X be the process given by 

(*) X(t) = f (E(r)dA,,(r) + F(r)dAf(r) 

+ G(r)dA ;(r) + H(r)dr), 

tER+. Then, for O..;;s..;;t < l' and each aE!» XJY, 

IIX(t) -X(s)II~,,;;ca(1") r dre'-r{IIE(r)lI~ + IIF(r)ll~ 

+ IIG(r)lI~ + IIH(r)II~}, 
where Ca (1') is a positive constant that depends also on/, g, 
~ . 

Remark: (1) Notice that, from the above result, it fol
lows that X lies in Ad(m)con and hence also in L 2 (m,1"loc ). 

(2) It is for the stochastic integral given by (*) that we 
present a generalization of the Ito formula in the sequel. To 
this end, we shall utilize the following notion of adaptedness 
of maps. 

Definition: We call a map B: R+ X m ( 1'2) 
--L ~0)«m(1"2»m, m(1"2» adapted provided that 

(1) for each tER+, B(t,Y) (PI ,P2··"P m ) lies in m, (1'2) 
whenever YEm, (1"2) and PjEm" andj = 1,2, ... ,m; and 

(2) for each tER+, YEm, (1"2)' Rj = PjQjEm with PjEm, 
and QjEm',j = 1,2, ... ,m, we have 

B(t,Y) (R 1,R2,· .. ,Rm ) 

= B(t,Y) (P1,P2,· .. ,P m) 'QIQ2" ·Qm· 

Remark' (1) The notion of adaptedness for the map 

B:m( 1'2) --L ~O) «m( 1"2»m,m( 1"2» 

is analogous to that introduced above. 
(2) We now state the main results of this paper. 
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Theorem (4.2) (Ito formula): Let 7> 0 be fixed and 
¢'EC 1.2([0,7] X ~(72)'~( 72», with partial derivatives;p, tI/, 
and t/J". Suppose that 

( 4.2.1) the maps ;p, t/!, and t/J" are continuous from 
[0,7] X~(72) into~(72)' 2"iO)(~(72»and 2"iO)«~(72»2, 
~(72»' respectively; 

(4.2.2) the maps t/J' and t/J" are adapted; 

t/J(t,x(t» - t/J(O,xo) 

(4.2.3) E, F, G, HEAd(~)con; 
(4.2.4) XoE~(72) and 

X(t) = Xo + f {E(s)dA 1T (s) + F(s)dA,(s) 

+ G(s)dA;(s) +H(s)ds}, tE[0,7]. 

Then 

= f ds{ip(s,x(s» + t/J'(s,x(s»[H(s)] + t/J"(s,x(s»(F(s),G(s»} 

+ f {ip(s,x(s) )[E(s) ]dA1T (s) + t/J'(s,x(s) )[F(s) ]dA,(s) + t/J'(s,x(s»[ G(s) ]dA ; (s)} 

+ f {t/J"(s,x(s) )(E(s),E(s) )dA1T (s) + t/J"(s,x(s) )(F(s),E(s) )dA,(s) + t/J"(s,X(s) )(E(s),G(s;)dA ;(s)}, tE[0,7] . 

• 
Theorem (4.3): Let SEC2(~( 72» with partial derivatives S' and S". Suppose that the maps S' and S" are adapted and are 

continuous from ~(72) into 2"iO) (~( 72» and 2"iO)«~( 72»2, ~« 72», respectively. 
Then, for fixed 7 > 0, IE [0,7] and all real numbers a, p, r, 

S(aL\.,. (t) + PA,(t) + rA; (t» - s(O) 

= f {,8rs"(aA1T (s) +PA,(s) + rA ;(s»«I,I)ds+ (as'(aA 1T (s) +A,(s) + rA ;(s»[I] 

+ a2s"(aA1T(s) +PA,(s) + rA ;(s»(l,l»dA".(s) + (ps'(aA 1T (s) +PA,(s) + rA ;(s»[I] 

+aPs"(aA1T (s) +PA,(s) +rA;(s»(I,l»dA,(s) + (rs'(aA".(s) +PA,(s) +rA;(s»[l] 

+ (ars "(aA1T (s) + pAles) + rA ;(s»(l,I»dA ;(s)}. 

N 

• 
Notation: Let 'qE2"iO) «~( 7 2»m, ~(72»' Then, by the 

separate continuity of 7J and Ref. 23, Theorem 111.1.1, it 
follows that to each aE~ X K, there corresponds a positive 
number c'1/.a, depending on 7J, and members 
HI(a), ... ,Hm (a)EFin(~ XK), independent of 7J, such 
that 

(4.6)N.I I t/J'(tn_I,x(tn_d)[X(tn) -X(tn_d] 

for all (xl, ... ,xm )E[~( 72)] m. 
Now, let 0 1, O2, ... ,0m be bounded subsets of ~(72 )' 

Then, we use the notation: 

1117Jllla.0, ..... 0m 
= inf{c'1.a : (4.4) holds 't/xj E0jj = 1.2 •...• m}. (4.5) 

Remark: In what follows, we prove only Theorem (4.2) 
because the proof of Theorem (4.3) is only slightly different, 
in view of the boundedness in ~ ( 72) ofthe set: 

{A1T (t2) - A1T (11), A,(t4) - A,(t3),A ;(t6) 

- A ;(ts): O<tl <t2<7, 0<t3<t4<7, 0<tS <t6<7}. 

Proposition 4.6: Let the hypotheses of Theorem (4.2) 
hold with E, F, G, H lying in Ad(~)sim' Suppose that 
O=tO<tl< .. ·<tN=t is a partition of [O,t], 1E(0,7]. 
Then, the sum 
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n=( 

converges in ~(72 ) to the expression 

(4.6) 00.1 f {t/J'(s,x(s» [H(s) ]ds 

+ t/J'(s,x(s) )[E(s) ]dA1T (s) 

+ t/!(s,x(s»[F(s) ]dA,(s) 

+ t/J'(s,x(s»[G(s)]dA;(s)}, 0<t<7. 

Proof: Let 0 = to<t( < ... <tN = t be a partition of 
[O,t], 0 < t<7, and 

00 

E(') = I EnX[ln.tn+ ,) (.), 
n=O 

00 

F(') = I FnX[tn.tn+ ,) (.), 
n=O 

00 

G(') = I GnX[ln.ln+ ,) (.), 
n=O 

00 

H(') = I Hn [tn.tn+ ,) (.), 
n=O 
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N 

2: tl/(tn - I ,x(tn - I »[ X(tn) - X(tn - t>] 
n=1 

= nil tl/(tn - I ,x(tn - I »[{~ I {H(s)ds + E(s)dA". (s) + F(s)dAf(s) + G(s)dA ;(s) ] 

N 

= 2: {tP'(tn - I ,x(tn - I »[ H(tn - I )] (tn - tn - t> + tP'(tn - I ,x(tn - I » [E(tn _ I ) ](A". (tn) - A". (tn - I » 
n=1 

+ tP'(tn-I,x(tn-1 »[F(tn_l) ](Af(tn) -Af(tn-I» + tP'(tn_ 1 ,x(tn-I »[G(tn_I)](A ;(tn) -A ;(tn-I »}, 
by the adaptedness of tP'. Then, using once more the adaptedness ofthe maps tP' and the definition of the stochastic integral, we 
see that (4.6) N,t converges in m( 7'2) to (4.6) co,t> for each te[O,t]. 

• 
Proposition 4.7: Let the hypotheses of Theorem (4.2) hold. Then asN-- 00, with maxI<n<Nltn - tn_ 1 1--0, the expres

sion (4.6) N,t converges in m( 7'2) to the expression (4.6) co,t. 
Proof: By Ref. 10, Proposition 3.2, every member of L 2 (m, 7'loc ) is the 7'loc -limit of a sequence of members of Ad (m) sim . So, 

let {Em}l<m< co ,{Fmh<m< co ,{Gm}l<m< co' and {Hmh<m<co be sequences in Ad(m)sim which converge inL 2(m,7'IOC) to E, 
F, G, and H, respectively. Since 7'loc is finer than 7'loc and E, F, G, Hare 7'2-continuous, by hypothesis, and hence are contained 
in Ad(m,7' co ), we may assume that {Em h <m< co ,{Fm}l<m< co' {Gm}l<m< co' and {Hm h<m< co are contained in Ad(m,7' co ) 

and converge there to E, F, G, and H, respectively. Then, {Xm }I<m< co is contained in Ad(m,7' co) and converges there to X, 
where 

Xm (t) = f {Hm (s)ds + Em (s)dA". (s) + Fm (s)dAf(s) + Gm (s)dA ;(s)} 

and 

X(t) = f {H(s)ds + E(s)dA". (s) + F(s)Af(s) + G(s)dA ;(s)}, t [0,7']. 

Hence, for some sufficiently large mo, there is a bounded subset 0"'0 of m ( 7'2) such that 

(4.7.1) {E(s),F(s),G(s),H(s),x(s):O;;;;s < rlU{Em (s),Fm (s),Gm (s),Hm (s):O;;;;S;;;;7'}U 

U{Em (s) - E(s),Fm (s) - F(s),Gm (s) - G(s),Hm (s) - H(s):O;;;;s;;;;rlu 

U{Xm (s) - X(s):0;;;;s;;;;rlC0mo ' for all m>mo' 
Set 

(4.7.2) sup sup IlltP'(s,x)llla,0 = Ca,,,,,.ae~x7f? 
0< s< T xeS m" ,"" 

Then, Ca,,,,,, is finite for each a, since (t,x) --tP'(t,x) is continuous from [0,7'] Xm(7'2) into ~~O)(m(7'2»' 
By Proposition (4.6), the expression of (4.6) co,t is valid when the integrands lie in Ad(m)sim' Now, let (4.6)~":1 be the 

expression (4.6) co,t with E, F, G, H, X replaced by Em ,Fm ,Gm ,Hm,xm , respectively. Then, we shall show that (4.6)~":1 
converges in m(7'2) to (4.6) co,t as m-- 00. To this end for each ae~ X7f?, we have 

II (4.6) ~":1 - (4.6) co,t II~ = II f {( tP'(s,xm (s»[ Hm (s)] - tP'(s,x(s) HH(s) ])ds + (tP'(s,xm (s»[ Em (s)] 

- tP'(s,x(s) HE(s)] )dA". (s) + (tP'(s,xm (s»[ Fm (s)] - tP'(s,x(s) [F(s) ])dAf(s) 

+ (tP'(s,xm (s»[Gm (s)] - tP'(s,x(s)HG(s)] )dA ;(s)lII~ 

;;;;'lea (7')eT f ds(llltP'(s,xm (s»III~,0.",{IIHm (s) - H(s) 1I~(a) + IIEm (s) - E(s) 11~(a) 
+ lIP m (s) - F(s) 1I~(a) + II Gm (s) - G(s) 1I~(a)} + IlltP'(s,xm (s» - tP'(s,x(s»III~,0n",{IIH(s) 1I~(a) 

+ IIE(s) 11~(a) + IIF(s) 1I~(a) + IIG(s) 1I~(a)}) 

where JEI(a) is some member ofFin(~ X7f?) depending only on a, and using (4.1) and (4.5), 

;;;;2ea (7')eTCa ,mo f ds(IIHm (s) - H(s) 1I~(a) + IIEm (s) - E(s) 1I~(a) + IIFm (s) - F(s) 1I~(a) + IIGm (s) - G(s) 1I~(a» 

+ 2ea (7')eT L dsllltP'(s,xm (s» - tP'(s,x(s»III!,0m" (H(s) 11~(a) + IIE(s) 1I~(a) + IIF(s) 1I~(a) + IIG(s) 1I~(a»' 
for all m>mo, where 0"", is as described in (4.7.1) and using (4.4), (4.5), and (4.7.2). Thus, using the fact that 
{Emh<m< co ,{Fmh<m< co ,{Gm}l<m<co' and {Hmh<m<co converge in Ad(m,7' co) and inL 2 (m,7'\oc ) to the same limitsE, F, 
G, H, respectively, and the continuity of the map tP': [0,7'] X m( 7'2) --(m( 7'2»' we conclude that (4.6) ~":1 converges in m( 7'2) to 
(4.6) co,t for each te[O,7'] as m -- 00. This ends the proof. 
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• 
Proposition (4.8): Letthe hypotheses of Theorem (4.2) hold. Suppose that 0= to < tl < ... < tN = tis a partition of [O,t], 

tE(O,7]. Then, as N-- 00, with maxI,n,Nltn - tn_II--O, the sum 
N 

(4.8)N,,:= L t/!"(tn-I,x(tn_I»(X(tn) -X(tn_I),x(tn) -X(tn_l» 
n~1 

converges in ~(72 ) to the expression 

(4.8) "",I: = f{t/!" (s,x(s) )(F(s),G(s) )ds + t/!"(s,X(s) )(E(s),E(s) )dA". (s) 

+ t/!"(s,X(s»(F(s),E(s»dAf(s) + t/!"(s,X(s»(E(s),G(s»dA ;(s)}, tE(O,t]. 

Proof: As in the proof of Proposition (4.6), it is easy to show that the assertion of the present Proposition is valid when E, 

F, G, H all lie in Ad(~)sim' 
To complete the proof, let {Emh,m, ,,,,' {Fmh,m< "", {Gmh,m< "", {Hmh,m< "", and {xmh,m< "" be as in the proof of 

Proposition (4.7), and write (4.8)~~1 for the expression (4.8)"",1 with E, F, G, H, X replaced by Em' F m, Gm, H m, X m, 
respectively. Then, we shall show that (4.8) ~~1 converges in ~(72 ) to (4.8) "",I' as m -- 00. To this end, for each aEPfl XK, we 
have 

11(4.8)~~1- (4.8)"""II~ 

= 111' {t/!"(s,xm (s»(Em (s),Em (s» - t/!"(s,x(s»(E(s),E(s)})dA".(s) 

+ (t/!"(s,xm (s»(Fm (s),Em (s» - t/!"(s,x(s»(F(s),E(s»)dAf(s) 

+ (t/!"(s,xm (s»(Em (s),Gm (s» - t/!"(s,X(s»(E(s),G(s»)dA ;(s) 

+ (t/!"(s,xm (s»(Fm (s),Gm (s» - t/!"(s,x(s»(F(s),G(s»)ds} I I: 
<fCa (7) fds{IIt/!"(S,xm (s»(Em (s),Em (S» - t/!"(s,x(s»(E(s),E(s»ll~ 

+ 1It/!"(S,xm (s»(Fm (s),Em (S» - t/!"(S,x(s»(F(s),E(s»II~ 

+ IW'(s,Xm (s»(Em (S),Gm (S» - t/!"(S,x(S»(E(S),G(s»ll~ 

+ 1It/!"(s,xm (s»(Fm (S),Gm (S» - t/!"(s,x(s»(F(s),G(s»II~}, 

using Theorem (4.1) and the adaptedness of t/!". The above integral may readily be estimated. To indicate the trend of 
argument, let us estimate the integral of the first integrand. 

Set 

sup sup III t/!" (s,x) III a,@ '@ = Aa,mo ' 
c<s<r xeem" tn., m.. 

Then, Aa,,,,,, < 00, since the map t/!": [0,7] X ~(72 ) --+ 2'bO)«~( 72»2, ~(72» is continuous. 
Now 

(4.8) ~~1.E == l' dsllt/!"(s,xm (s) )(Em (s)Em (s» - t/!"(s,x(s) )(E(s),E(s) )II~ 

<l"" ds{IIIt/!" (s,xm (s» - t/!" (s,x(s» III~,@"",@"" 'IIE(s) 1I~,(a) IIE(s) 11~,(a) 

+ 111t/!"(s,xm (s»III~,@"",@"JIIE(s) - Em (s)II~,(a) IIE(s) - Em (s)II~,(a) 

+ IIE(s) 1I~,(a) IIE(s) - Em (s) 1I~,(a) + IIE(s) - Em (s) 1I~,(a) IIE(s) 1I~,(a»} 

<C~~r.,JIE(S) 1I~,(a) )1' dsl I It/!"(s,xm (s» - t/!"(s,x(s»III~,@"",@"" IIE(s) 1I~,(a) 

+ A ~,mo { sup IIE(s) - Em (s) 1I~,(a) (' dsIlE(s) - IIEm (s) 1I~,(a) 
O,S,1" Jo 

+ sup IIE(s) 11~,(a) (' dsIIE(s) - Em (s) 11~,(a) + sup IIE(s) 11~,(a) (' dsIlE(s) - Em (s) 1I~,(a)}' 
O,S<I Jo O,s<I Jo 

for a sufficiently large mo and all m>mo, with 0"", as in Proposition (4.7). Using the fact that {Em}l,m< "" converges both in 
Ad(~,7 "" ) and inL 2(~,7IOC) to the same limit E, we conclude that (4.8)~~i.E converges to zero as m-- 00, for each tE(0,7]. 
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The otherintegrals in the estimate for II (4.8) ~":1- (4.8) "".1 II~ are similarly shown to converge to zero for each IE(O,1"] as 
mo-. 00. Hence (4.8)~":1 converges in m(1"2) to (4.8)"".1 for each tE(O,I]. This concludes the proof. • 

ProofofTheorem {4.2}: Let 0 = 10<11 < ... <tN = lbe a partition of [O,t], tE(O,1"]. Then 

tf.(t,x(t» - .,(O,xo) 
N 

= L (tf.(I",x(t,,) 
,,=1 

N N 

= L (tf.(tn,x(tn) tf.(ln - 1 ,x(t,,))) + L (tf.(tn 1 ,x(tn» - tf.(1" 1 ,x(tn - 1 ») 
n=1 n=1 

N . N 

= L (t" - tn - I )tf.(tn - 1 ,xUn» + L .,/(t" - 1 ,xU" - 1 » [XU,,) X(t" - 1 )] 
n=1 11=1 

N t 
+ "~I Jo da(l 

where 

r(tn_l,tnX,a) = .,"(t,,-I,x(tn I) + (XUn ) -X(t,,_1 »a) - .,"(In_I,x(t,,_I)) 

Now, in view of (4.2.1), the sum l:~ I (I" - tn _ 1 )iM.t" _ 1 ,x(t" » converges in m( 1"2) to S~ ds ¢fs,x(s» asN -. 00, with 
max1<n<N Itn - I" _ 1 1-.0. 

Next, for each aE!JJ X K, we have 

II "tl (I" - In - I) L da{iPf.t" - \ + (In - In - 1 )a,x(tn» - ¢ftn - 1 ,x(t,,»} II a 

N . 

<;( max It" - I" \ J) L sup 11tP(1" 1 + (t" - I" \ )a,x(t,,) - tP(ln \,X(t,,»IIa 
\<n<N ,,=IO<a<\ 

and 

II "tIL da(1-a)r(ln_ p t",x,a)(X(tn) -X(t,,_1 ),x(I,,) -xu" I »lla 
N 

<;( max IIX(t,,) - X(t" -IUH,(a) ).( max IiX(t,,) - xu" - tlIiH 2 (a» L sup Ijr(tn- pln,x,a) Ila.ex.ex' l<n<N l<n<N n = 1 O<a<\ 

where ex is the subset 

ex = {X(t) -X(s):O<;S<I<;1"} 

ofm(1"2)' which, by Theorem (4.1), is bounded in m(1"2), 
and using the notation of (4.5). 

Hence, using (4.2.1) and the 1"2-continuity of X, it fol-

lows that asN-. 00, with max lIn -In II-.O,thesums 
l<n<N 

and 

ntl.c da( 1 - a) r(t" I ,tIl ,x,a) (XUn ) - X(t" - I ), 

X(t,,) - X(t,,_1 » 
converge in m( 1"2) to zero. 

Finally, by applying Propositions (4.7) and (4.8) to the 
second and third sums in the expression for 
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I 
tf.(1,x(t» - .,(O,xo), the assertion of Theorem (4.2) is ob
tained. This concludes the proof. • 

Remark: (1) Let K" be the n-fold direct sum of K 
with itself, X = R ® r(Kn ), where R is some fixed Hilbert 
space, and O(f) be an exponential vector in r(Kn), for 
f€K". For fj€K and 1Tj EL ;<'~) (R+), define the opera
tors aj(jj), a;(jj), and Aj (1Tj ),j= 1,2, ... ,n, on the linear 
span V{O(f):f€Kn

} as follows: 

aj (jj )O(g) = (/j,gj ),w·O(g) 

1 n d n Xfr· /l,j(1Tj )u(g) = - u(gl EB'" EBgj _ 1 se Jgj 
dx 

s"'sgn)lx=o 

" g = ED gj€K", j = 1,2, ... ,n. 
j= 1 
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In a manner analogous to how@5 was constructed in Sec. 
II, we can construct a dense subspace e, containing 
v{n (f) :feK"}, which is invariant under the action of any 
member of the polynomial algebra generated by 

{a/ .. !;),aj(gj),).j1l'j:h,gjeK,1T'j eL B{.1r) (R+), 

j = 1,2, ... ,n}. 

Let D be a fixed dense subspace of f!ll. Then E == D ® e is 
dense in ~n. We set ~(E) ==W, ~(Et) ® It ==Wt and 
It ® ~(et) = WI and denote the 1"2-completions of these by 
W( 1"2)' Wt (1"2)' and Wt (1"2)' respectively. For fj,gk and 
1T'j eL B(:!r) (R+), defineAIj(t), A ~(t), and A 1T,(t), tER+, by 

AJj(t) = aj(JjXro,I» ® It, A ~(t) = aj(gjXro.t» ® It, 

A1Tj(t) = Aj (1T'jXro,t) ) ® It, 

j = 1,2, ... ,n. These operators feature in Theorem (4.9) be
low. 

(2) If ¢'EC2«~( 1"2»n, W( 1"2» and Y, P, QE(W( 1"2»n, 
with P = (Pl, ... ,Pn ) and Q = (Ql> ... ,Qn), then ¢/( Y) [P] 
and ¢" ( Y) (P,Q) may be written as follows: 

¢/( Y) [P] = .Ij= 1 ¢'j (Y) [lj], 

where ¢' J (Y)E.2"~O){W( 1"2» is thejth partial derivative of ¢ 
at the point Y, and 

¢,(t,X(t» - ¢(O,Xo) 

¢" (Y) (P,Q) = .Ij= l.Ik= 1 ¢Jk (Y) (Pk,Qj)' 

where ¢Jd Y)E.2"~O)«W( 1"2»1, W( 1"2» is the (j,k)-mixed 
partial derivative of ¢ at the point Y. 

(3) The d-dimensional fonn of the Ito fonnula is estab
lished by methods analogous to those already indicated 
above in the case d = I. Since the requisite notation becomes 
considerably more involved, we shall only state the result. 

Theorem (4.9): Let 1" > ° be fixed and 
¢'EC 1,2( [0,1"] X (~( 1"2»n ,W( 1"2»' with partial derivatives~, 
¢j, ¢:ik' 1 <.j,k,n. ~uppose that 

(i) the maps ¢, ¢j, and ¢Jk' l<.j,k, are continuous 
from [0,1"] X (W( 1"2»n into W( 1"2)' .2"~O)(W( 1"2»' and 
.2"~0)«W(1"2»2, W(1"2»' respectively; 

(ii) the maps ¢j and ¢Jk' 1 <.j,k,n, are adapted; 
(iii) {Hj,Ejk,Fjk,Gjk:I<.j'd,l<k<n}CAd(~)con; 
(iv) Xo = (XOj )' with XOjE~( 1"2)' 1 <.j<d, and 

X = (X;) with 

X; (t) = XOj + r {Hj (s)ds + i (Ejk (s)dA
fTk 

(s) Jo k t 

+ Fjk (s)dAfk (s) + Gjk (s)dA:k (S»}, 

tE[O,1"] , 1 <.j<d. 

Then 

= f dS{~S,x(S)) + jtt ¢j(s,x(s»[ Hj(s» + jtl Itt ktl ¢JI(s,X(s»(Flk (s),Gjk (sn} 

+ jtt kit f {¢j(s,x(s»[ Ejk (s»dA1Tk (s) + ¢:j(s,x(s»[ Fjk (s»dAfk (s) + ¢:j{S,x(s»[ Gjk (s»dA:. (s)} 

d d d r 
+ j~t I~t k~t Jo {¢JI(S,x(S) )(Elk (s),Ejk (s) )dAfT, (s) + ¢J1(S,x(S) )(Flk (S),E,;k (s»dAr. (s) 

+ ¢JI(S,x(S) )(Elk (s),Gjk (s»dA :k (s)}, tE(O,1"]. 

Remark: The following immediate consequence of 
Theorem (4.9) is important in its own right. 

Corollary (4.10): Let 1" > ° be fixed. Suppose that 

(i) {Hj,Ejk,Fjk,Gjkif= 1,2,I,k,n}EAd~con' 
(ii) Xo= (XOj )' with XOjEW,j= 1,2, and X= (Xj), 

with 

X;(t)=XOj + r{Hj(s)ds+ i (Ejk(s)dAfT.(s) Jo k t 

+ Fjk (s)dAfk (s) + Gjds)dA:. (s»), j 1,2, 

tE(O,1"] . 

Then 

X t (t)X2(t) 

= XOtX02 + [Xt,x2L 

+ .c {dXt (s)X2(s) + Xl (s)dX2(s)}, 

where 
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[Xt,x2L = ktl f ds{F1ds)G2k (S) 

+F2k (S)Glk (S)}, tE(O,1"]. 

• 

Remark: (1) Notice that X; (t) lies in W for each tER+ 
andj= 1,2. Hence the product Xl (t)X2 (t) exists for each 
tER+. 

(2) The above result is an integration by parts fonnula. 
(3) The noncommutative extension of the Ito fonnula 

presented in Ref. 10, Theorem 4.5 is a special case of the 
above Corollary since, unlike in Ref. 10, Theorem 4.5, we do 
not assume that the integrands in the integrals defining X; • 
j = 1,2, are bounded. 

(4) Applications of the results of this paper will appear 
elsewhere. 
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A posterior SchrOdinger equation for continuous nondemolition 
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A continuous model for a nondemolition observation of an atom is given. An equation for the 
corresponding instrument is found and a stochastic dissipative Schrodinger equation for the 
unnormalized posterior wave function of the atom is derived. It is shown that the continuously 
observed isolated atom relaxes to the ground state without mixing. 

I. INTRODUCTION 

The time evolution of a quantum system, say atoms, 
under a continuous observation of photon emission can be 
obtained in the framework of quantum stochastic theory of 
nondemolition measurements recently developed in Refs. 1-
5. This theory is based on the quantum stochastic counting 
method worked out by Hudson and Parthasarathy for quan
tum processes in Ref. 6 and the notion of output quantum 
fields introduced by Gardiner and Collet.7 Under the as
sumption of completeness of the nondemolition observation 
of the system, we give a direct derivation of a new stochastic 
linear dissipative wave equation, obtained in Ref. 8, by using 
a quantum filtering nonlinear equation, called a posterior 
Schrodinger equation in the case of a continuous measure
ment, if the observed information is taken into account. As it 
is shown in Ref. 9, the equation of such a type describes the 
continuous nonmixing collapse of the wave packet whose 
propagation depends on the measurement data up to the 
present instant of time t> O. It allows us to explain the Zeno 
paradox for a free quantum particle by finding a watchdog 
effect for the posterior wave packet. 9 In this paper we apply 
the derived equation for the description of the posterior re
laxation of an atom continuously observed by measuring the 
emitted photon field. In contrast to the prior dynamics, the 
posterior dynamics for the complete observation of the out
put Boson field gives the relaxation without the mixing of 
any quantum state of the finite-level atom to its ground state. 
The impossibility to obtain this intuitively obvious result 
from the usual Schrodinger equation for an isolated atom 
can be considered as a quantum paradox of the Zeno kind if 
one ignores the perturbation of the quantum dynamics un
der an observation, which is described in this paper. 

II. A MODEL OF CONTINUOUS OBSERVATION 

Let us consider a quantum system, i.e., "atom + one
dimensional Bose field," the unitary evolution of which sat
isfies in the singular coupling limit the quantum stochastic 
SchrOdinger equation in the Ito sense:6

•
7 

dU+KUdt= (L®dB + -L + ®dB)U, U(O) =1. (1) 

aJ On leave of absence from M.I.E.M., 109028 Moscow, USSR. 

Here K = L + L /2 + iH Hz, His a Hamiltonian of the atom, 
and L is some operator of the atom coupled to the Bose noise 
B(t), defining together with their Hermitian conjugates 
L + ,B + (t) the "interaction Hamiltonian" 

Hint =ili(L®dB + -L + ®dB)/dt. 

The noise is described by creation and annihilation pro
cesses, 

B + (t) = f b + (r)dr, B(t) = f b(r)dr, (2) 

where [b(t'),b +(t)] =t5(t-t') = (b(t')b +(t». The 
last means that the initial state is taken as the product of a 
state for the atom and the vacuum state of the quantum 
noise. 

In the case of photon emission, one should take L as an 
operator proportional to the annihilation operator A in the 

energy representation H = ~ i'~ I € m 1m) (m I of the atom: 

L=/TA, A= f rmlm-I)(ml, 
m~1 

A + = f rmlm)(m -II, (3) 
m~ I 

where 1m) is an eigenvector of the operator H, having the 
discrete spectrum. 

The output Bose field7 is described by the annihilation 
process that for all s>t remains unchanged in the Heisenberg 
picture: 10 

'" B(t) = U + (t)B(t) U(t) = U + (s)B(t) U(s), s>t. 

'" '" It means that the process B, as well as B + , satisfy the non-
demolition principle4

•
5 

'" '" [B(r),X(t)] = U + (t) [B(r),x] U(t) = 0, r<J, (4) 

with res~t to any operator X of the atom in the Heisenberg 
pictureX(t) = U + (t)XU(t). As it is proven in Ref. 5, the 
condition (4) gives us the possibility to define the posterior 

'" mean values of X(t) under the condition of observation of 
'" '" any nonanticipating function of Band B + up to the 

momentt. 
Let us consider the continuous measurement of the out

put field coordinate process 
'" '" '" Q(t) = B(t) + B + (t) = U + (s)Q(t)U(s), s>t, 

where Q = B + B + is the input Wiener process. Due to the 
commutativity of the Hermitian process Q(t) with Q(t') for 
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any t, t', the output nondemolition process Q is self-nonde
molition i.e., nondemolition in the sense of 11 

A A 

[Q(t'),Q(t)] =0, 'dt,t'. (5) 

Also, the exponential output process 

Y(I,t) = exp{f l(r)dQ(r) }, 

is nondemolition and self-nondemolition for any integrable 
c-valued function l(t). 

Let us find the equation for the generating map 

r(l,t):x~r(l,t) [X], 

r(l,t)[X] = J exp{f I(r)dq(r) }Jt(dq)[X], (6) 

of the corresponding instrument J' 12 on the algebra of oper
ators X of the atom. By the definition of the instrument it 
defines, in the Schrodinger picture, the time evolution 
p--+p'(dq) of an initial state p:X~p [Xl of the atom to the 
state pt(dq) = poJt(dq), normalized on the probability 
p/(dq') = p[J'(dq) [I]] of the observed event dq up to the 
instant t> O. The generating map can be found from the con
dition 

(¢lrU,t)[X]¢) = (Y(l,t)X(t», (7) 

where the mean value (.) is taken with respect to the initial 
pure state being the product of the wave function ¢ of the 
atom and the vacuum state vector of the noise. To this aim 
one should find the quantum stochastic equation for 
A AA 

G = YX, using the Ito formula 
.............. AA A. A. A A 

d(YX) =dYX+ YdX+dYdX, (8) 

and Heisenberg quantum stochastic Ito equations6 

A A. A AA A. AA 

dX + (K +X +XK -L + XL)dt 
AA A A 

= [X,L ]dB + + [L + ,x ] dB, (9a) 
A AA A A AA 

dY=IYdQ+!l2Ydt, dQ= (L+L +)dt+dQ, (9b) 
A A 

K(t) = U + (t)KU(t) , L(t) = U + (t)LU(t). 

We shall do it directly by applying the Ito formula for the 
A 

product G = U + GU, where 

G(t) = Y(t)X, Y(l,t) = exp{f l(r)dQ(r) } , 

obtaining (9) for 1 = 0, G = X, and X I, G = Y, respec
tively. Taking into account that 

dG lG dQ + !I2G dt, for G(t) X exp{f 1 dQ } , 

we have from ( 1) and the multiplication rules 

dB dB + = dt, (dB)2 = dB + dB (dB + )2 = 0, 

iG = dU + GU + U + dG U + U + G dU + dU + dG U 

+dU+ GdU+ U+ dGdU 
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= U + (L + G + G(l- L + »U dB 

+ U +«(I-L)G+ GL)UdB + 

+ U + (!f2G - K + G - GK + L + GI 

+ L + GL + IGL) U dt. 
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It helps to write the equation for mean value (7) as 
A 

d(G(t» (17(t)I!l2G-K+G-GK 

+ I(L +G + GL) + L +GL 117(t)dt, 

where17(t) = U(t)1j, 1j = ¢®a"" and a", is the vacuum vec
tor of the noise: 

dB(t)U(t)1j = U(t)dBU)1j = 0, 

for dB(t) = B(t + dt) - B(t). 

Hence, the generating map r defined in (7), satisfies the 
forward differential equation 

:t r[X] r[ ~ flx -K + X -XK 

+/(L +X+XL) +L +XL l (10) 

with the initial condition r(l,O) [X] = x. 

III. A POSTERIOR QUANTUM DYNAMICS 

Now we shall obtain the solution ofEq. (10) in the form 

r(l,t)[X] = f Y(l,q')V*(q')XV(qt)dv(q'), (11) Jot 
where v is the standard Wiener probability measure on the 
space n of conti!tuous trajectories q = [q(t)jt>O] of the 
observed process Q, restricted to the space nt = {qt IqEn} of 
thelrajectories stopped at t: qt = [q(r)lr<t], and Y(l,qt) 
= Y( I,t) (ql. Comparing (6) and (11) and taking into ac
count that Y(l,t) (q) = exp S~ I(r)dq(r) one can represent 
the instrumentJ'(dq):X~J(dq') [X] as an absolutely con
tinuous one with respect to dv(q): 

J(dq')[X] = V + (q')XV(q')dv(q'). (12) 

In order to prove it, let us identify the standard Wiener pro
cess with the input process Q, having the standard measure 
on its spectrum n with respect to the vacuum state. We shall 

A 

show that the stochastic propagator V(t)(q) = V(q'), de-
fining for any trajectory q = [q(t)] the posterior evolution 

A 

V( q'): ~ V( q') ¢ ~ X (t) (q) for the unnormalized stochas-
tic wave function XU) of the atom, satisfies the stochastic 
Schrooinger equation 

dV+KVdt=LVdQ, V(O) =I. (13) 

Indeed, if V satisfies Eq. (13) in the Ito sense, then 

d( V + XV) = dV + XV + V + X dV + dV + X dV 

= V+ (L + X +XL)VdQ 

- V + (K + X + XK - L + XL) V dl. 

It gives the recursive filtering equation 

d~[X] +~[K+X+XK-L +XL]dt 

= ~[L + X +XL ]dQ, 

~(O) [Xl X for the stochastic map, 

(14) 

~(t)[X] = V + (t)XV(t), ~(t)(q) = ~(q'), (15) 

defining a selective instrument ~(q')[X] 

= V + (q')XV(q') for any trajectory q = [q(t)]. Taking 
into account that 
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d( Y(1) <I> [X ]) 

= dY(1) <I> [X ] + Y(l)d<l>[X ] + dY(1)d<l>[X ] 

= Y(l)<I> [IX + L + X + XL ]dQ 

+ Y(1)<I> [!/2X - K + X -XK 

+ I(L + X +XL) +L + XL ]dt, 

and averaging it with respect to the standard Wiener mea
sure one obtains ( 10) for the mean value ( 12) of the product 
Y(1,q') <I> (q') [X]. So, the wave function X(t) = V(t)t/I, sat
isfies the stochastic dissipative equation 

A 

dX+ (L +LI2+iHlli)X dt =LX dQ, X(O) =t/I, 
(16) 

A 

with respect to the output process Q, coinciding with Q in the 
Schrooinger picture. It is normalized on the probability den
sity 

p(q') = (V(q')t/lW(q')t/I) =p(t)(q), (17) 
A 

of the observed process Q with respect to the standard Wie-
ner measure of the input process Q. It follows from the inte
gral representation that 

A A 

(Y(l,t)X(t» 

= r Y(1,q') (V(q')t/lIXV(q')t/I)dv(q') JOI 
= r Y(1,q')p(q')(X)(q')dv(q') JOI (18) 

of (7), giving for X = I the mean value of (6) for the expo
nential output process (6) as the generating function of the 
output probability measure 

df..t(q') = p(q')dv(q'). (19) 

The formula ( 18) defines the posterior mean value (X) (q') 
as 

(X)(q') = (qJ(q')IXqJ(q'»=(X)'(q), 

in terms of the normalized posterior wave function 
~(t)(q) = qJ(q'), qJ(q') = X(q')/p(q') 112 satisfying the 
nonlinear stochastic wave equation 

~ + <l + L 12 + iiI lli)~ dt = L~ iQ, (20) 

w~ere L(Q. = L - Re(L )', iI(t) = H -Ii Re(L )'Im L, 
dQ(t) = dQ(t) - 2 Re(L)' dt, obtained in Ref. 8 from the 
filtering equation derived in Ref. 4. It can be found directly 
from (16) by using the Ito formula for X = e~ :dX = de ~ 
+ e ~ + de~, where de ~ = L Re(L )'i dt, for C(t) 

= <X(t) + X (tW12, satisfying the stochastic equation 

de + (Re(L )')2e dt 12 = Re(L )'e dQ, e(O) = 1. 
A _ 

This gives a Girsanov transformation ~Q to another Wie
ner process Q with respect to (19) for p(q') = lC(t) 12 (q). 

IV. AN OBSERVATION OF PHOTON EMISSION 

Let us consider the stochastic model of a continuous 
observation of photon emission described by the coupling 
operator L = {J: A, A > 0, defined in (3) in the energy repre
sentation of the atom. The linear posterior wave equation 
(16) 

dX + (AA + A /2 + iH lli)X dt = {J: AX dQ, 
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gives in the energy representation the following chain of sto
chastic equations: 

iIxm + "mxm dt= ~(m + I)A xm+ I dQ, xm (0) = Cm' 

(21) 

for the coefficients Xm of the expansion 
~ ~ 

X(t) = L Im)xm (t), t/I = L Im)cm· 
m=O m=O 

The complex parameters "m = mA 12 + iEm/1i appearing in 
(21 ) are the eigenvalues of the normal operator 
K = AA + A 12 + iH Iii, corresponding to the eigenvectors 

1m), for which A 1m) = rmlm - 1) holds. The chain (21) 
is finite if the initial state X(O) = t/I has zero coefficients 
Cm = 0, m>M for some M < 00, as it always happens in the 
case of the M-Ievel atom. . 

Let us show that the solution of the system (21) can be 
written in terms of the multiplicative stochastic integral on 
the set n' of all finite chains T = (tp ... ,t/) ,I = 0,1, ... , 0 
<II < ... <11'<,1, as 

A (t)= -"m'l (2I rl(m+ ITI)I)1I2 Xm e /I. Cm+lrl 
0' m! 

Xe - am(r) dQ( T), (22) 

for m = 0,1, .... In (22) ITI denotes the length 1 = l:lEr X(t) 
of the chain T, am (T) = l:lEr (A/2 + imm + n(t) )t, mn = En 
- En _ I' n(t) = l:SEr X(s - I) - the number of t in the 
chain T = (tl , ... ,t/) counted from its end, dQ( T) 

= filer dQ(t), filer dQ(t) = dQ(t1 ) .. 'dQ(t/) for T 
= (tl , ... ,t/), and for any integrable function of I of T 

en' f 0' I( T)dQ( T) denotes the sum of the repeated stochas
tic integrals 

L/(T)dQ(T) 

= /toi>'I> '.:: L,,>ol(tP ... ,t/)III dQ(tj)' (23) 

Indeed, representing the integral (23) for 

1m (T) = (A Irl (m + ITI )!lm!)I12cm + Irl e - am(r), 

as 

r I(T)dQ(T) =/(0) + (' dQ(r) r I(T,r)dQ(T), 
J~ 1 Jw 
where 1(0) = Cm for the chain T = 0 of the length 
1 = 101 = 0, and 

1m (T,r) = ~A(m + 1 )/m + I (T) exp{ - (A/2 + imm + I )r}. 

Taking into accountthat "m + I - "m = A 12 + imm + I' one 
can rewrite (22) in the form of the recursive stochastic equa
tion 

xm(t) 

= e - "m'cm - f e"m('-') ~A(m + 1 )xm + I (r)dQ(r). 

(24) 

This gives the system of stochastic integral equations 

zm(t) =Cm + f~(m+ 1)A e(Xm-Xm+I)'zm+ I (r)dQ(r), 
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for zm (I) = e xmtxm (I), having the differential form 

dZm (t) = ~(m + l)A e(Xm-xm + l)tzm + t (t)dQ(t), (25) 

equivalent to the system of stochastic differential equations 
(21) for xm (I) = e - "mtzm (t): 

dXm = e - xmt dZm (t) - "mxm (t)dt 

'" = ~(m + l)A xm+ I dQ - "mxm dt. 

Let us now find the conditional probability 
Pm (t Iq) = Pm (qt) for the atom to be on the mth level after 
the nondemolition observation up to t defined by the proba
bility density IXm (t) 1

2 (q) = IXm (qt)!2 with respect to the 
standard Wiener probability measure von nt: 

Pm (qt) = IXm(qtWCtoIXm(qtW)-t. (26) 

In order to do this we need the multiplication formula 13 for 
Wiener integrals (23): 

IL/( r)dQ( r) 12 

= L,Cu~=vL/(rUP)*/(rUO')dr)dQ(V)' (27) 

where the sum is taken over partitions pUO' = pUO', 
pnO' = t/J of the chains v = (VI , ... ,v" )ent into the chains 
p = (rp ... ,r.), 0' = (S]o ... h) with the total length 
j + k = n. Using this formula for the stochastic integral 
(22) one obtains 

where 

t = 2: t Ilrl, dr = II dt [1 = ± t; , 
leT lEU n= 1 

dr = JJI dtn' if r = (t l , ••• ,tt) ] 

P~ (r) = _1_ r A Ivl12e - IVIA."/2 
m! Jot 

(28) 

x 2: c(ml(O'Ur)*c(ml(pUr)dQ(v), (29) 
pUu= v 

c(ml(r) =~(m + Irl>!exp{i~lVm+"(tlt }Cm+ITI' 

v=2:~ [v= i!:!.., ifV=(Vt, ... ,V,,»). (30) 
DEY Ivl 1= 1 n 

V. A POSTERIOR QUANTUM RELAXATION 

As it follows from (28), the probability (26) for the 
electron in the continuously observed atom to be on the mth 
level, m > 0, decays exponentially to zero for t ..... 00 if 

sm= LAIT'e-'rlA.)m(r)dr<oo, (31) 

where P m ( r) = lim P~ ( r) for t ..... 00 and the integral is taken 
over the space .0 of all the chains r = (t]o ... ,tl ), 

0< t1 < ... < tl < 00 of finite length 1= 0,1,.... Equation 
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(31) obviously holds for the case of the finite-level atom for 
which the integral (31) is the finite sum, 

8m 7~ot Al L>II> '.:: Lt1>o exp (A ntt tn ) 

I 

XPm (t1 , ... ,tl ) II dt;, (32) 
;=1 

of the repeated integrals of the stochastic functions 

1 M-m-ITI f f Pm(r) =- 2: ... A nl2 

m! n = 0 00 > vn > . . . > VI > 0 

n 

Xc(m)(pUr) II dQ(Vt), 
1=1 

having the zero values Pm (r) = Oforl = Irl>M - m due to 
c m + I TI = 0, and being the finite sums of repeated stochastic 
integrals for m + Irl < M. It means that the finite-level atom 
relaxes under a continuous observation of photon emission 
to the ground state 10} without mixing. 

Let us prove this posterior relaxation also for the infi
nite-level atom provided that the initial state 1: cmlm} satis
fies the conditions 

ICml«Klm!)1I2Izlm, m=0,1,2,.... (33) 

'" where K> O. The conditions (33), fulfilled obviously in the 
finite-level case (cm = O,m>M), is also satisfied for a linear 
combination of the Poissonian (coherent) amplitUdes 

Cm zm exp{ - !lzI2}/(m!) 112, m 0,1,2, .... 

In the case (30) we obtain the following estimation for (29): 

'" p~(r)<..!..lzI2 r AlvI/2e-lvIXiil2(2Izl)lvldQ(v). (34) 
m! Ja l 

where we have taken into account that 

Ic(ml(r)I<KII2 Izl m + 1'"1, 2: Izllullzllpl = (2Izl)lvl. 
uUp= Y 

The integrand on the right-hand side of (34) is a product 
function 

DEV 

Therefore one can use the stochastic exponential formula 13 

r II/(V)dQ(v) = exp{i'f(V)dQ(V) _..!.. I/(v)2dV} , k_ 0 21 
(35) 

'" for the Wiener integral fot l(v)dQ(v) with I(v) 
= nDEyf(v). Due to that, the inequality (34) takes the form 

p~(r)< K IZl21TI exp{i' {;f2lzle A.V12 dQ(v) 
m! 0 

- 21z12(l - e ..tI)}. (36) 

Now we can estimate the integral in (28): 
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S:" = r A ITle -ITIAt P:" (T)dT 
Jo' 

<;;{ !! exp{f /-t2Izle- AV12 dQ(v) 

- 2IzI2(1- e- At )} i, (lzI2A) ITle- Wt dT 

= K exp{ (' /-t2Izle- AVI2 dQ(v) 
m! Jo 

-lz I2(1- e- At
)} , 

where we have taken into account the exponential formula 

i,llf(t)dt = ltoL.t{ ·.: .. ltl>oJJ/(tn)dtn 

= exp{ff(r)dr} , (37) 

forf(t) = Izl2A exp{ - At}. So we obtain the estimation 

Ixm (t)1 2<;;e-..tmt K exp{2/-tlz l (' r..tv12 dQ(v) 
m! Jo 

- Iz12(1 - e..tt) } (38) 

for the probability of the observed atom to be on the mth 
level, normalized on the probability density P(t) 

A 

= l:;:; = 0 1 x m (t) 12 for the observation of Q with respect to 
the standard Wiener measure. For P(t) we obtain 

P(t)<;;K exp{2/-tlzlf e-..tv/2 dQ(v) 

+ e- At
( Izl2 + 1) -lzI2} . (39) 

Hence,lxm (t) 12 = e-Amts:" for m#O, decays exponentially 
to zero as t - 00 with the rate 

sm = lim sm (t) 

<;; !! exp{2/-tlz l 100 

e-..tV12 dQ(v) -lzI2}. (40) 

2934 J. Math. Phys., Vol. 31, No. 12, December 1990 

Equation (16) which appeared in Ref. 8 first, was ob
tained in the nonlinear form (20) in Refs. 3 and 4 and in the 
general density matrix form in Ref. 14. Some particular cases 
of these posterior equations has been postulated recently in 
connection with the stochastic models of the dynamical the
ory of wave function reductionY-17 
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Intuitively, the Feynman path integral corresponds to a weighted sum over classical paths, an 
interpretation that fails for the phase space path integral. To address the question of whether 
there exists a path integral expression conforming to a sum over paths in phase space, an 
examination of the discrete coherent state path integral (CSPI) is undertaken. Via an 
alternative formulation of the CSPI, it is shown that the coherent state action for a broad class 
Hamiltonians can be transformed from the variables (q,p) to (q,q). For these Hamiltonians, 
such a transformation along with the inclusion of all terms O(E(Zj - Zj _ 1 » yields an 
expression which, for finite E, can be interpreted as a sum over classical paths with Gaussian 
weight. The numerical evaluation of this expression through importance sampling (Monte 
Carlo) is demonstrated. 

I. INTRODUCTION 

Feynman's path integral formulation of quantum me
chanics l has enjoyed enormous appeal for nearly 40 years. 
The reasons for this are myriad, but perhaps greatest among 
them is that the path integral, while an elegantly powerful 
formal tool, also admits to a relatively simple intuitive inter
pretation; that is, a weighted sum over all possible classical 
paths. This interpretation proves particularly attractive in 
providing insight into the semiclassical approximation of 
quantum mechanics, which, in the path integral formalism, 
yields the classical path as a contour of stationary phase. 
This heuristic "sum over histories" interpretation derives 
from the fact that, for virtually all cases in which the Feyn
man path integral (time-dependent Green's function) can 
be analytically evaluated, the resulting expression corre
sponds to a sum over purely classical paths.2 

Thus considerable attention has been devoted to provid
ing a rigorous definition of the propagator as a true integral 
in the space of paths (that is, in the manner of a Wiener 
integral3 

), both because this would verify the intuitive inter
pretation of the path integral and also because it would ele
vate Feynman's heuristic expression to the status of a true 
functional integral. This process essentially requires inter
changing the orders of integration and the N- 00 (E-O) 
limit in the discrete time slice approximation of the path 
integral. For the specific case of the Feynman path integral, 
this quest has proven most problematic; it has not been possi
ble to specify a well-defined measure for a Wiener integral 
with complex diffusion constant.2,4 Whether this difficulty 
can be circumvented remains, to my knowledge, an open 
question. 

Nonetheless, the larger goal of a well-defined path inte
gral expression for the quantum propagator continues to in
vite attention. In this regard, two other path integral formu
lations of quantum dynamics have been investigated, the 
phase space path integral and the coherent state path inte-

a) Current address: Department of Chemistry, University of Cincinnati, Cin
cinnati, OR 45221. 

gral (henceforth, the Feynman, phase space, and coherent 
state path integrals will be denoted by FPI, PSPI, and CSPI, 
respectively). Both of the these formulations are based upon 
summing paths in phase space and thus prove more general 
than the FPI which integrates only over configuration space. 
For the PSPI attempts at a rigorous formulation fail even 
more abysmally than with the FPI;2 for, while the FPI sums 
over paths that are continuous but nowhere differentiable 
the phase space "paths" prove neither continuous nor differ: 
entiable. In fact, the most suggestive aspect of the PSPI stud
ies is that the process of transforming the PSPI into the FPI 
[ essentially a functional Legendre transform from the vari
ables (q,p) to (q,q) ] significantly smooths the paths of inte
gration. 

For the CSPI, the results have proven more promising. 
The localized nature of the coherent states has long suggest
ed that only a small portion of the phase space contributes to 
the dynamics5 (i.e., the space of paths has compact sup
port). Moreover, because the overcompleteness of the co
herent state basis implies the CSPI is not unique (over and 
above questions of operator ordering-see below), there 
may exist alternate formulations of the CSPI for which the 
sum over paths interpretation is more transparent. Indeed, 
Klauder and Daubechies6 recently presented a form of the 
CSPI interpretable as an expression involving phase space 
paths of Wiener measure in the limit as the diffusion con
stant diverges, thus implying a regUlarity to the CSPI paths 
not present in either the FPI or the PSPI. 

From the above arguments one could logically conclude 
that if a well-defined path integral expression for the quan
tum propagator exists, it will be found in the framework of 
the CSPI. Taking this conclusion as a starting point, this 
paper re-examines the CSPI. An alternative approach is tak
en which involves (1) for Hamiltonians of the form 
p2/2m + V(x) a Legendre transform of the coherent state 
action to the variables (q,q), and (2) retention of all terms of 
the form E(Zj - Zj _ 1 ) in the coherent state action. 

The Legendre transform allows the momentum inte
grals to be performed analytically leaving an expression in 
configuration space only. In analogy with the PSPI to FPI 
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transformation, one would hope the paths of the second
order form action (that is, as functions of q and q) would be 
"smoother" than those of the first-order form (functions of q 
andp). The terms €(Zi - Zi_ I) are retained because, as was 
speculated by Schulman,2 they need not vanish faster than € 

and can (indeed, as shall be shown, do) contribute to the 
path integral. The expression resulting from inclusion of 
these terms and the Legendre transformation has Wiener 
measure (Le., Gaussian damping) for finite N, with the 
damping vanishing for only one integration variable in the 
path integral (N -+ 00 ) limit. Hence, this expression for the 
CSPI is both more in the'spirit of a true functional integral 
and, as an added bonus, can be numerically evaluated via 
importance sampling. 

The outline is as follows: Sec. II briefly reviews the for
mulation of the PSPI, FPI, and CSPI. Section III examines 
the CSPI for Hamiltonians of the form H = p2/2m + V(x). 
A formulation is demonstrated that permits the Legendre 
transformation of the coherent state action to second-order 
form. The path integral limit of the corresponding expres
sion is discussed. Section IV retraces the development of Sec. 
III but with the inclusion of the €(Zi - Zi _ I ) terms. This 
analysis yields corrections to the conventional CSPI. Section 
V discusses the significance of these corrections and com
ments on the properties of the new path integral expression 
derived. 

II. REVIEW OF PATH INTEGRAL FORMULATIONS 

The essence of the path integral formulation of quantum 
dynamics lies in expressing time-dependent quantum trans
formation amplitudes, through suitable operator factoriza
tion and repeated insertions of the identity operator, as the 
limit of an infinite number of integrations. The FPI, PSPI, 
and CSPI each accomplish this formal task in a completely 
general manner. That is, although the FPI and PSPI are 
commonly presented as means of evaluating coordinate rep
resentation transformation functions, and the CSPI as an 
expression of a coherent state transformation function, any 
ofthe three formalisms may be used, for any initial and final 
state, by introducing at most two extra insertions of unity. 
The only fundamental difference between the three ap
proaches lies in the integral representation of the identity 
operator repeatedly inserted, thus leading to an infinite num
ber of different intermediate integration variables with cor
respondingly different measure. Specifically, the PSPI and 
CSPI use resolutions of the identity in phase space 

and 

respectively. The latter representation7 expresses the com
pleteness of the coherent state basis 

alz} = Iz}z, 

where 
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z= ~ (! + i;p) 
and u is a scale factor with units of length (for the familiar 
coherent states of a harmonic oscillator u = ~ fzlm(j).) 

Feynman's original presentation utilized only the repre
sentation of the identity in configuration space 

J = f Iq) (qldq, 

and the observation, due to Schrodinger and Dirac,8 that for 
short time the quantum transformation amplitude 

(qtlqi) (I) = (qtle - iHt/lil qi ) (1) 

was proportional to eiS 
/", where S is the solution of the corre

sponding Hamilton-Jacobi equation. From this, Feynman 
heuristically bootstrapped directly to his original path inte
gral expression. However, as is well known, it is possible to 
derive the FPI in reasonably rigorous fashion, passing 
through the PSPI as an intermediate step. 

To this end, the time parameter in (l) is divided into 
equal parts of size € = t I(N + 1) and N insertions of the 
coordinate representation of the identity are made, yielding 

(qtlqi)(t) = f [dqN"'dql ] (qtle-iHE/lilqN) 

X (qNle- iHE/"lqN_I)'" (q2Ie- iHE/li lql) 

(2) 

The time dependence of a typical factor in the integrand (for 
simplicity the Hamiltonian is assumed to contain no explicit 
time-dependent piece) may be obtained by inserting a com
plete set of momentum states and using 

(qjle-iHE/lilqj._I) =J (qjle iHE/"IP)(Plqj_l)dp 

= f exp[ ~ (P(qj - qj-I) 

_ €H(qpP»] dp . 
2trli 

(3) 

The replacement of the operators p and q by their eigenval
ues p and qj assumes a reordering of H through a suitable 
Trotter product expansion or similar device. These ques
tions of operator ordering will be addressed below; all that 
matters for the moment is that such an ordering is generally 
possible but that the c number H(q,p) may differ from sim
ply replacing the operators in H(q,jJ) by their eigenvalues. 
Carrying out this process on the N + 1 matrix elements of 
(2) yields 

(qtlqi) (1) = f d~~ I LUI dP;::r,qk] 

xexp{ ~ ~~>dqk - qk-l) 

- €H(qk'Pk)} , (4) 

where, by definition, qN + 1 = qt' and qo = qi' The familiar 
path integral limit is obtained by taking the N -+ 00 limit and 
making the identifications 
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N+l N+l q(tk) -q(tk -E) L Pk (qk - qk - I ) = L P(tk) E 
k=l k=l E 

.... f p(t)q(t)dt 

and 

N+I r 
k~l H(qk'Pk )E ..... Jo H(q(t),p(t»dt 

for the exponential terms and defining 

ft dpk dqk = Pfl p Pfl q 
k=l 2ri 

to be the integration measure. Inserting all of these relations 
into (4) yields 

(qtlqj) (t) = J d~~ I J Pfl p Pfl q exp{ ~ f [p(t)q(t) 

H(q(t),P(t»Jdt} , (5) 

which is the familiar PSPI. 2 

With the formal identifications made above, the expo
nent in (5) represents the classical action in first-order form 
for a particle traveling from qi to qf' From the integration 
measure, the PSPI would seem to be a sum over all possible 
paths in phase space between the initial and final state. How
ever, as has often been noted,2 this interpretation is com
pletely false. Examining the discrete form of (4) shows the 
intermediate configurations are exceptionally discontinuous 
and cannot be equated with classical paths, a failure some
times referred to as "the problem of unruly paths." 

For Hamiltonians at most quadratic in the momenta, in 
particular those of the form p2/2m + Vex), the p integra
tions may be carried out explicitly, either in the discrete form 
( 4 ) or formally through a functional stationary phase in (5). 
Taking the former approach yields 

J dPN + I [ N dPk] {i N + I pi } -- IT -- exp - L Pk(qk -qk-I) - E-
2ri k = 1 2ri Ii k I 2m 

J [N + 1 dPk ] {iE = IT-exp-
k= I 2ri 2mli 

x :t: (Pk - mqk)2 - m2iJi} 

= -- exp - ---dt, [~]N+ I { i i'mi(t) } 
21TiEli Ii 0 2 

(6) 

where the continuum limit has been taken in the exponential of 
the last line. Inclusion of the potential terms results in Fey
man's original expression 

(qflq;)(t) J Pfl qexp{ ~ f Ldt}. (7) 

Here; L is the classical action in second-order form 

L = mi(t)/2 - V(q) (8) 

and the integration measure is given by 

Pfl q=~ m ITN ~ m dqk' 
21TiEli k = I 21TiEli 

(9) 

As stated before the "paths" in this expression are continuous 
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but nowhere differentiable. Problematic though this might be, 
such paths are far less "unruly" than those of the PSPI; the 
functional Legendre transformation has greatly smoothed the 
integrand. 

In a similar vein, a path integral expression may be formu
lated through the insertion of complete sets of coherent states.9 

Although the initial and final states are taken to be coherent 
states, it is crucial to remember that what makes this a coherent 
state path integral is the resolution of unity in terms of coherent 
states inserted an infinite number of times. As before, a trans
formation function 

(10) 

is examined by dividing the time into N + 1 intervals. Inserting 
a complete set of coherent states (of the same (T as the initial 
and final states) N times yields 

J N [d 2
zk ] .~ 

(zJiz;)(t)= kITI -;;- (ztle-iHE/lilzN) 

X (zNle- iRdlilzN_ I)'" (z2Ie- iRE/lil zi ) 

X (zlle- iRE/lilzi ) 

= 1T- N J CUI d 2zk ) ltl (zjle-iRE/lilzj_I)' 

(11 ) 

where Z N + I = Zt and Zo = Zi' The short time transformation 
elements may be approximated by 

(Zj Ie - ;HE/lilzj _ I >::::: (Zj I (1 - idI Iii) Izj _ 1 > 

= (zjIZj_ 1)(1 - iEH(zj ,zj_ I )/li) 

:::::(zjlzj_1 )exp[ ( iE/Ii)H(zj,zj_ t)] , 
(12) 

where 
A 

H(a*J3) = (aIHIP)/{aIP) 
is a c-number symbol of the Hamiltonian (commonly called 
the "ordered symbol" in the language of pseudodifferential op
erators). 10. t t From the familiar overlap of two coherent states 

(a IP) = exp(a*p - !Ia* 12 _ !IP 12
), 

the exponent in (12) may be written 

N + I { I 2 1 2 iE } 
'" zr.z. I - -1zr.1 - -Iz. II - - H(zr.,z. I) j~t J J - 2 J 2 J - Ii J J-

= Ni I { _ -2
1 

(zj (Zj _ Zj _ I ) - (zj - zj _ I )Zj) 
1=1 

- ~ H(zj,zj_ t>} . (13) 

Multiplying and dividing the first term by E and defining 
dZj Zj -Zj_1 

dt E 

yields 

(ztlz) (t) = J ft d
2

z
k 

k= t 11' 

xexp{Ni I E[ _! (zj dZj _ dzj Zj_ t) 
j= I 2 dt dt 

- ~H(zj,zj_I)]}' (14) 
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To pass to the path integral limit, one commonly replaces Zj _ I 

by Zj' which introduces errors of order E(Zj - Zj _ I ). This ap
proximation and the continuum limit result in the conventional 
expression for the CSPI 

(zAz;) (t) f fPz fPz* exp[! f {~ (z*,i -,i*z) 

- H(z*,z)}dt ] , (15) 

where 

fPz 9Jz* rrN d 2Zi _ rrN dpi dqi 
--- ---, 

;=1 1T ;=1 21rli 
(16) 

and the exponent may be interpreted as the action in first-order 
form for the corresponding classical coherent state evolution. 
The second form of (16) indicates the path integral may be 
taken over the "phase space" of position and momentum ex
pectation values of the coherent states. Again, the numerical 
value of H will generally differ from simply replacing the opera
tors q and p by their respective eigenvalues 

and 

Expression (15) appears to give a well-defined path inte
gral expression for the time-dependent coherent state overlap; 
however, because of the discontinuous nature of the phase 
space paths the neglected terms E(Zj - Zj _ 1 ) can be of order E 

and thus could contribute to the action. As Schulman has spe
culated, "My own guess is that they can contribute and that 
this contribution will be related to the operator ordering prob
lem in quantum mechanics." 2 The veracity of this prediction 
will be demonstrated shortly. 

III. LEGENDRE TRANSFORMATION OF THE COHERENT 
STATE PATH INTEGRAL 

As stated above, the CSPI represents the most viable can
didate for a true functional integral formulation of the quan
tum propagator. However, the canonical form (15) has been 
shown2

•
6 to be plagued by many of the same problems which 

bedevil the PSPI; in particular, the phase space paths prove 
highly unruly. In addition, Schulman's speculation about the 
E(Zj - Zj _ 1 ) error terms, if correct, would imply that (15) is 
not necessarily complete through order E, and thus an ill con
ceived quantity at best. Clearly, any attempt to elevate the 
CSPI to a true functional integral must resolve both of these 
issues. 

Attacking the problem of the unruly paths first, the dis
continuous nature of the phase space paths arises from the fact 
that while the exponent in ( 15) may be interpreted as a classi
cal action in first-order form, the measure (16) contains 2N 
integration variables corresponding to the N phase space points 
in the action. Since a single point in phase space suffices to 
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specify the classical path, straightforward interpretation of 
( 15) as a sum over phase space paths proves impossible. 

In the similar case of the PSPI, arguments have been given 
for a "generalized" interpretation of phase space paths2 with 
the time divided into 2N intervals. Rather than debate the mer
its of such a loosened interpretation, the most satisfactory reso
lution is attained by integrating over the momenta, yielding a 
classical action in second-order form with N integration vari
ables in the functional measure, the familiar FPI. Thus one 
might reason, in analogy with the PSPI to FPI transformation, 
that a functional Legendre transformation of the coherent state 
action from first-order to second-order form would result in 
paths, like those of the FPI, which are continuous but not dif
ferentiable. For Hamiltonians of the form H = p2/2m + Vex) 
this Legendre transformation can be carried out by simply per
forming the Gaussian momentum integrals in (15). 

The E(Zj - Zj _ 1 ) terms prove more subtle. These errors 
arise from two separate sources, the approximation to the 
"primitive action" 

(17) 

and the approximation to the ordered Hamiltonian symbol 

aH 
EH(z'!,zj_I)-;:::,EH(z'!,zj) +a;-E(Zj -Zj_l) +.... (18) 

Accepting for the moment the approximation to the primitive 
action (17) , it is generally possible to eliminate the 
E(Zj - Zj _ 1 ) error terms in (18) by developing a slightly dif
ferent version of the CSPI based on a different classical symbol 
for the Hamiltonian. 9 

Again, consider the coherent state transformation func
tion (10) with the time divided into N parts, assumed small. 
Then, 

(19) 

Rather than insert N - 1 resolutions of the identity, it proves 
extremely convenient at this point to take advantage of a partic
ular aspect of the coherent state basis; specifically, because the 
coherent states fo:t;!,D an overcomplete set it is possible to repre
sent an operator, T, by its diagonal elements alone, 

A f d
2
z T= IZ)<I>T(Z*,z)(zi--;-, (20) 

where <l>T(Z*,Z) is a scalar function, which I call the Glauber 
A 

function for the operator T (Ref. 12). Like the ordered symbol, 
H, the Glauber function may be taken as a c-number represen
tation of an operator, referred to as the antiordered symbol. II 
As the names imply, the differences between the ordered and 
antiordered symbols correspond to different choices of opera
tor ordering. For example, for the operator .xz, the ordered 
symbol is given by i + if /2 while the antiordered symbol is 
i if /2 with the differences between the two symbols arising 
from commutators of a and at. For the unfamiliar, a basic 
description of the derivation and properties of the Glauber 
function are provided in the Appendix; in particular, it is 
shown that for operators which are a function of x or p only the 
Glauber function depends only on q or P, respectively, a fact 
which will be used extensively below. 

Via use of the Glauber representation, one may write 
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e- idfl"Z f IZ)<I>H(Z* ,z)(zi d;Z 

where 

(21) 

<I> *) iEh(z*,z)I" (22) H(Z ,Z =e , 

h(z*,z) is the Glauber function for the Hamiltonian operator 

'" f d
2
z H=H(jJ,x) = Iz)h(z*,z)(zl-;-, (23) 

and (21) holds to O(E). Use of (21) N times in (19) yields 

(ZjIZi)(t) = rr- N f jJI d 2
zk 

xexp{Nf I E[ _! (zj dZj _ dzj Zj_l) 
j= I 2 dt dt 

-J...h(~,z.)]}. (24) Ii "]"] 

The path integral limit is attained by again replacing Zj I with 
Zj in the primitive action only and taking the limit N ..... 00 : 

(ZjIZi) (t) = f it)" zit)" Z* exp[ ~ f {i: (z*z - z*z) 

h(Z*,Z)}dt] , (25) 

with the integration measure the same as in (16). Once again, 
the exponent in (25) may be interpreted as a classical action in 
first-order form with the integration over the phase space ofthe 
position and momentum expectation values of the coherent 
states. 

At this point Schulman's speculation has been proven; the 
terms E(Zj - Zj_ I) do contribute to O(E) in that 
H(z*,z) =lh(z*,z) so the coherent state actions of (15) and 
(25) differ. Moreover, this difference stems from different pre
scriptions for operator ordering (ordered versus antiordered) 
meaning the two actions agree classically but have different 

• 10 quantum corrections. 
For Hamiltonians of the form Ii + V(.X) the Glauber 

function may be written in the simple form 

h(p,q) =p'2/2m -fi/2er + v(q), (26) 

where v(q) is the Glauber function for the operator V(X) and 
does not depend on p. From (23), it is apparent the use of the 
Glauber representation has both eliminated the second source 
of E(Zj - Zj _ I ) errors and explicitly separated the position and 
momentum variables in the coherent state action. The only 
dependence on the momenta will be an N-dimensional ( com
plex) Gaussian which can be performed exactly either in dis
crete form or by functional steepest descents. Taking the sec
ond approach, one finds 

f Ii: (z*z z*Z)} dt =~f (ijp-pq)dt 

= _ qjPf - qiPi + f' pq dt, 
2 Jo 

(27) 

so that the steepest descent path, with h (p,q) as in (26), for the 
P integration is given by 
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q= ah =J!.., (28) 
ap m 

which is the familiar condition for the Legendre transform of 
the action from first- to second-order form. Carrying out the 
functional integration finally yields 

(ZjIZi) (t) = f it)" q exp[ ~ f .? dt J. 
where 

.?(q,q) = mi h(q,q), 

and the measure is given by 

r;;, _ - i(qp[- qil'i)/2" lIN ~ m d 
;;:£/ q-e . qj' 

j= I 2mfli 

(29) 

(30) 

(31 ) 

Comparison of (29)-(31) with the FPI expressions (7)-(9) 
shows both striking similarities and a few significant differ
ences. FlI'St, although the integrands are superficially identical, 
the "Lagrangians" L(q,q) and!f (q,q) will differ. Here, L will 
be the classical Lagrange function T - V while'? will be the 
classical Lagrangian plus corrections of higher order in Ii. Thus 
the equations of motion derived from the actions in (7) and 
(29) will differ as well, but will coincide in the Ii --+ 0 limit, a 
reflection ofthe Ehrenfest relations13 regarding the evolution 
of a coordinate eigenstate versus a wavepacket. The measures 
(9) and (31) differ by an irrelevant constant phase 
(qfPf - qiPi )/2liwhich may be absorbed into the definition of 

the coherent states, and one factor of ~ m/2rrifli which arises 
from the differing normalizations of coherent and coordinate 
states [that is, as t ..... 0 ( 10) becomes unity while (1) is a delta 
function]. 

A far more subtle difference between (29) and the FPI lies 
in the boundary conditions on the action functional. In (29) 
both the initial position and velocity are specified, as well as the 
final position and velocity. Thus the "paths" for (29) cannot be 
interpreted as classical in the conventional sense since the "La
grangian" leads to a classical mechanics with overspecified 
boundary conditions. In general, the initial state with classical 
variables (qi ,iIi) will not evolve in time t to (qf,i/f) so there will 
be no point of stationary phase in the space of real q. Nonethe
less, the quantum amplitude for the transition cannot be zero 
(although for coherent states it generally will be exponentially 
small) so the asymptotic 1i ..... 0 approximation to (29) gener
ates an analytic continuation of classical mechanics to pro
cesses not allowed in conventional Lagrangian dynamics. In
teresting though these issues might be, they lie outside the main 
thrust of this analysis; thus, the stationary paths of (29) and 
their extension into the fixed energy domain will be examined 
separately in a forthcoming paper. 14 

Although (29) may be interpreted as a sum over contin
uous but nondifferentiable paths in the manner of the FPI, the 
goal of a true functional integral remains unattained, for both 
(29) and the FPI are beset with the same complex and infinite 
pseudomeasure for integration over real intermediate posi
tions. Moreover, and most surprisingly, (29), like (7), has an 
integrand of unit magnitude, meaning all possible paths con
tribute to the integral with equal weight. This violates the ex
pectation, noted above, that only a fraction of the available 
phase space would contribute significantly to the quantum evo-
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lution. If, for example, (29) described a coherent state evolving 
in a harmonic potential, then the Gaussian wavepacket would 
remain localized in position and momentum and any paths in 
phase space away from the classical one would be exponentially 
small. This seeming anomaly cannot be simply argued away as 
a result of integrating over the coherent state momenta since, in 
general, performing the p integral in the coherent state resolu
tion of unity is not equivalent to inserting the coordinate resolu
tion. Either the hope that the CSPI could lead to a true func
tional integral is wrong or else (29) itself is somehow 
incomplete to O( E), with the only possible source of such an 
error being the E(Zj - Zj _ 1 ) term neglected in the primitive 
action. 

IV. FINAL CORRECTIONS TO THE CSPI 

Returning to the discrete form of the CSPI (24), it is possi
ble to perform the momentum integrals analytically without 
taking Zj -;::;Zj _ I for Hamiltonians quadratic in the momenta. 
Moreover, the integrations can be carried out prior to taking 
the path integral limit, i.e., without interchanging the N -+ 00 

limit with the order of integration. Since the approximation to 
the primitive action is now the object of interest, it proves sim-

I 
I -1 0 0 :! 

-1 I -! 0 0 :! 

0 -! 1 -! 0 

0 0 . . . . . 
A=B= . .. . 

A 

piest initially to consider the nondynamical case, i.e., H = O. 
Then the overlap of two coherent states is constant in time and 
may be written 

(Ztlz;) = exp[ zjz; -i (lzjl2 + Iz; I)] 

= f IT [dPi dqj ]exp{ _ 02 pAp _ J.. qBq 
i= I 21rli e q2 

i Ittl2 + IZiI 2
} + 'i pCq + poa + qo[3 - :t 2 ' (32) 

where q and p are the N-dimensional vectors of intermediate 
integration variables, 

-Z; Zj 

0 0 

0 0 
iu 1 

(33) a=-- [3=-
.J21i 0 ,J2u 0 

0 0 

zj zj 
and the matrices A and B are identical and given by 

o -! 1 

I 
The matrix C is a "difference matrix" that generates terms 
corresponding to velocities and is given by 

o ~ 0 0 

-1 0 -i 0 0 

0 --i 0 -i 0 

0 0 . . . . . . 
C= . . . 

. . . . . . . . . 
--i 0 I 

l 

o -i 0 

For convenience, the dimensional constants u and Ii will be 
temporarily scaled to one. They can easily be recovered by a 
simple dimensional analysis at any intermediate point. 

Before proceeding, it is worth noting that via straightfor
ward definitions and retaining all terms ofO(E), (33) may be 
expressed in the path integrallimitl5 as 

(ztl z;) = f gpgqexp[i f G (pij-pq) 

+~iE(P2+qz»)dtl]. (34) 
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Here, E corresponds to the time step and is strictly zero as the 
number of integrations becomes infinite. As demonstrated by 
Klauder, E plays the part of the smile of the Cheshire cat, that 
is, the last remaining sign of the discrete time slicing prescrip
tion as N ..... 00. Nonetheless, only by keeping this "smile" can 
the correct (discontinous) boundary conditions on the CSPI 
be derived. 15 In terms of finding a true functional integral, (34) 
represents a dramatic improvement. As mentioned, Klauder 
and Daubechies6 have shown (34) may be interpreted as an 
example of "well-defined phase space path integrals involving 
Wiener measure on continuous phase-space paths in the limit 
that the diffusion constant diverges." 

Nonetheless, (34), while formally an improvement, re
mains problematic from a practical point of view. There are 
again 2N integration variables corresponding to N points in the 
phase space of paths making these "paths" again "unruly" [in
deed, according to Klauder, it was the desire to include such 
unruly paths which originally motivated (34) (Ref. 15)]. In 
fact, the paths in this expression are in some senses even more 
unruly since the action inherently depends not just upon p but p 
as well. As indicated by the previous examples, one can ame
liorate this difficulty by performing a Legendre transformation 
to the variables q and q. What proves tantalizing about (34) is 
that, although the integrand is of unit modulus in the limit as 

T. L. Marchioro, II 2940 



                                                                                                                                    

E ..... O,forfiniteN the integrand contains a clear maximum with 
the "smile" providing Gaussian damping. As shall be demon
strated below, the "smile" will ultimately survive the Legendre 
transformation, yielding a path integral expression with both 
continuous paths and Wiener measure for finite N. 

To this end, we turn our eyes to Eq. (33) and perform the 
N momentum integrals. From standard rules of multidimen
sional Gaussian integration, this yields 

e - <lzj12 + Iz;12)/2 f fii dqi 
(z/ Iz.) = ---;;:;;::=:::;::--

I ~DetNA (41T)N/2 

X exp[ - q( A + C T A 4- I c)q + q.p 
A -I A-I 

+ ia-- Cq + iqCT--a 
4 4 

A -I ] 
+a-

4
-a, (35) 

where the matrix A-I must be symmetric. Considered as a 
function of q, the properties of the integrand will be dominated 
by the terms quadratic in q and thus one must know the form of 
A - I. Tridiagonal matrices such as A and C are known as Ja
cobi matrices.2 All of the necessary properties of Jacobi matri
ces can be derived fairly straightforwardly; the results will be 
outlined below. 

For a generic N XN Jacobi matrix of the form 

J= 

abO 0 

b abO 0 
o b abO 

0 0 . . . . . . . . . 
. . . . . . . . . 

b a b 
o b a 

a recurrence relationship for the determinate can be found by 
expanding in minors 

DN = aDN_ 1 - b 2DN_ 2 (36) 

yielding a second-order finite difference equation with constant 
coefficients. Solutions to (36) can be written as 

DN = clyf + c2yf, (37) 

where YI and Y2 are the two roots of 

y2-ay+b 2 =0 (38) 

and the coefficients C1 and C2 are found by imposing 

Do = 1 and DI =a. (39) 

As can be directly verified, the inverse of the Jacobi matrix is 
given by 

(Jii1)jk = (Dj_IDN_kIDN)( _b)k-i, j<,k, (40) 

with the j > k elements given (since J - 1 is symmetric) by in
terchangingj and k. 

For the case at hand, a = 1/2 and b 2 = 1/ 16 making 
y= 1/4 a double root of (38). Thus 

DN = C1 14N + Nc2/4N, 
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and conditions (39) give C1 = C2 = 1. Hence, 

DN = (l + N)/4N, (41) 

and the elements of the inverse matrix will be given by 

Aj;1/4=j[1-kl(N+ 1)], j<,k 

= k [1 - P(N + 1)], i;;.k. (42) 

From the form of the C, one finds 

[CT(A -1/4)C]lj 

-I{A- I A-I 
-16 i+lj+l- i-lj+1 

-Ai~\j I +Ai=-\j_l}' (43) 

Taking i<jfor definiteness, relation (42) may be used directly 
in this expression for all but the third term in which, for i = j or 
i-I, the indices must be reversed. Additionally, the cases 
i 1 andj = N must be handled separately. Examination of all 
these cases yields 

1 1 0 0 ~ :4 

! ! 1 0 0 :4 

0 1 1 1 0 :4 ~ :4 

CTA -I C= 0 0 . 
'. 

. . . . . . 
4 

- [1/(N+ 1)]S, (44) 

where the matrix S has every element equal to one, 
Slj = 1, iJ = 1...N. Thus (35) may be written 

e - <lzj12 + Iz;l2)/2 f fij dqi 
(Z/IZi) = -;;;:::==:;:-

~Det N A (41T)N /2 

X exp[ - q(l - ES)q + q.p 

A 1 A 1 A-I] 
+ia--Cq +iqCT--a+a--a , 

4 4 4 
(45) 

where E = 1/ (N + 1) and I is the N X N identity matrix. Rec
ognizing the third and fourth terms are identical, and perform
ing an analysis similar to the above on the matrix product 
CA - I, one arrives at 

e - (lzjl2 + Iz;12)/2 f fij dqi 
(ZJlZi) = -~==;:::-

~DetN A (41T)N/2 

X exp[ q(I - _1_ s)q -! z7 (~) 
N+l 2 I N+l 

1 .z12 ( N) zjZi 
-2'1 N+l +N+l 

N q. ] + .Ji(zj + Zj) I -'- . 
j=IN + 1 

(46) 

Performing this integral, and understanding its behavior, re
quires knowledge of the inverse and determinate of I ES. The 
determinate may be written as 
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Det(l - ES) = Eijkl ... (l - ES): (l - ES)J(l - ES)i ... 

1 1/21 3 e{~ SII2P··· = Eijkl ... ; j k'" - "ijkl... ; j k 

+ Eijkl ... nSJIi··· + ... } 
+ higher orders in E, 

which is just a sum of detenninants. But all tenns of higher 
order in E contain at least two rows from S and hence have 
detenninate zero; moreover, all tenns of O( E) are the same so 

DetN(l- ES) = DetN 1- NEDetN S' 

= 1-NE= l/(N+ 1), (47) 

whereS'istheN X Nidentity matrix with one row (orcolumn) 
replaced by a row (or column) of S. It is straightforward to 
show the eigenvalues of 1- ES are 

{
Ii = 1 to N - 1; 

A; = l/(N+ 1) i=N, 
(48) 

and the nonnalized eigenvector corresponding to AN is easily 
found to be 

(49) 

which represents a "breathing" mode, that is, a unifonn dis
placement in all the coordinates. The inverse of 1- ES can be 
found by considering the cofactor matrix and expanding in 
minors and is given by I + S, as can be directly verified. Using 
the expression for the inverse and detenninate of A and I - ES 
and the rules of Gaussian integration, it is straightforward to 
show ( 46) indeed gives the correct expression for the overlap of 

two coherent states. Moreover, by defining qo = z/ {2 and 

q N + 1 = z7 I {2 expression (46) can be written in the simple 
fonn 

(ZjIZ;) = f .@qexp[ - q(l- ES)q - ~ (1z712 + IZ;12)] 
(50) 

where q, I, and S all now have indices running from 0 to N + 1. 
In the N - 00 limit, the exponent in (50) does not become an 
expression of classical action, but the integral has other intrigu
ing properties. Consider that (46) can alternatively be written 

(zjlz;)-f .@qexp[ -q(l-ES)q+{2E(z7+ z;)q-L], 

(51) 

with the vector L given by 

1 

L= 

The integrand of this multidimensional Gaussian integral has a 
maximum at 
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(z7 +Z;) N 
qj = E L (l + S)jkLk 

{2 k=1 

= (z7 + Z; )/{2, (52) 

for allj = LN. For integration variables restricted to the real 
axis the integrand of (51) will have a maximum at 
qj = (qj + q; )/2 and Gaussian damping away from that point. 
Hence, ( 51) is an ideal candidate for evaluation through 
Monte Carlo integration techniques. 

Expression (50), like (34), has arisen from inclusion of all 
tenns O(E). However, in (34) the order of integration and the 
N- 00 limit have been interchanged while, in (50), the mo
mentum integrations are perfonned before the path integral 
limit, yielding a representation for the overlap with distinctly 
different properties. However, the exponent in (50), unlike 
that in (34), does not appear to correspond to a classical action 
in the path integral limit. One could reasonably ask whether the 
H = 0 case might not be pathological, i.e., that including dy
namics would eliminate the damping factors in the path inte
gral integrand and/or make the exponent of (50) correspond 
to a classical action (certainly in the FPI, there exists no "ac
tion" to put in the H = 0 path integral since the overlap of two 
coordinate states reduces to an infinite product of Dirac {j func
tions). 

Nonetheless, an analysis similar to the above proves there 
is nothing unusual about a zero Hamiltonian. Using the 
Glauber representation for H = ji 12m + V(X) and fonnulat
ing the time-dependent overlap will, as noted above, add a sum 
of tenns to the exponent (32) of the fonn 
h (Pj,q) = pJ 12m + v(qj)' This simply changes the diagonal 
elements of the matrix A to (1 - iE) 12, where E = tiN. Inclu
sion of these tenns splits the degeneracy in the roots of the finite 
difference equation (36). Proceeding as before, one finds 

Dn =c+yn+ +C_yn_, 

where 

y ± =! (1 + iE ± ~ 2iE - ~ ) 
and the conditions Do = I, DI = (1 + iE)/2 yield 

c ± = ± [2/ (~ 2iE - ~) y ± ]. 

Anticipating the path integral limit, D n can be expanded to first 
order in E yielding 

Dn::::: [(n + 1)/4n
] (1 + inE) 

and the elements of A-I are given to first order in E by 

A Ji: 1 = 4AI - k I(N + 1){1 - iE(k - j + 1 )}, j<k, 
(53) 

with the j> k elements given by the symmetry of A - I. By 
separating the real and imaginary parts of A-I, the time-de
pendent overlap of two coherent states can be written in the 
fonn 

(z/Iz;)(t) =..IV f .@qp(q)exp[~ F(q)], (54) 

where..IV is a nonnalization factor, p( q) is an N-dimensional 
Gaussian probability density again given by 

p(q) = exp[ - q(I - S I(N + 1)q] (55) 

and 
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A -I 
F(q) = - iflq·13 + a --Cq 

4 
N 

+ cqCTMCq - c L v(q). 
j=1 

(56) 

Here the matrix M can be thought of as a mass matrix (since 
Cq _q) and arises from the imaginary part of A-I with ele
ments given by 

~k =j(k+ I-jXl-kl(N+ 1), j<..k, 

where, once again, thej> k elements are given by the symmetry 
of the matrix. Note that expression (54), like (50), has Wiener 
(Gaussian damped) measure for finite Nbut, from the expres
sion for the mass matrix, the exponent of (54) cannot be inter
preted in the path integral limit as a classical action. 

v. DISCUSSION 

The results of the preceding section have demonstrated the 
delicacy of the path integral limit for the CSPI. Performing the 
momentum integrals before passing to this limit yields an inte
gral expression which, while of well-defined measure, cannot 
be straightforwardly interpreted as a sum over classical paths. 
The problem of unruly paths has been eliminated, but while the 
"paths" are continuous the mass matrix couples all the discrete 
velocities to one another in a nontrivial way with no obvious 
limit as a Riemann integral. 

Nonetheless, although (54) seems to fall short of being a 
true functional integral, it represents a clear step forward in 
that the unruly discontinuous paths make an exponentially 
small contribution to the integrand. Consider the eigenvalues 
of the matrix I - cSgivenin (48). The overlap of two coherent 
states falls off exponentially with the distance of separation in 
phase space. Hence, for finite N, a path constructed in phase 
space from an initial to a final coherent state cannot make an 
arbitrary excursion without developing an exponentially small 
contribution to the amplitude; the centers of the coherent states 
in the path must remain relatively near each other. In this vein, 
A N corresponds to the possible excursion of the path (an inter
pretation verified by its "breathing mode" eigenvector) while 
the A L.N _ 1 represent the "tension in the string" connecting the 
initial and final states. As N -+ 00 the string can be arbitrarily 
long, making arbitrary excursions in phase space as signified by 
AN -+ O. However, all the other A i are constant, so the string still 
cannot be "stretched" without the integrand becoming expon
entially small, Fig. 1. Thus (54) preferentially weights contin
uous paths from IZi) to (zfl. It is possible that through a judi
cious coordinate transformation (54) can be expressed, in the 
N -+ 00 limit, as a well-defined functional integral. 

In addition, (54) proves extremely useful from a practical 
point of view. Because the integrand factors into a well-defined 
probability distribution and an oscillatory part, numerical inte
gration by Monte Carlo techniques l6 proves quite straightfor
ward in comparison to a similar efforts utilizing the FPI17

-
19 

(which, for real time, contains no probability density, just the 
oscillatory term). The presence of this Gaussian probability 
density reflects the localized nature of the coherent states as 
they evolve in time, making "paths" far from the classical one 
contribute negligibly to the integrand. Rather than extend an 
already long paper with this tangential subject, a single simple 
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t 

a 

b 

q 

FlO. I. Two possible paths leading from (ql,! I) to (q2,!2). Path (a) is smooth 
and contributes appreciably to the integrand of the CSPI, while the contribu
tion of path (b), which has a discontinuity at an intermediate time, is exponen
tially small. 

example will be presented with the general development delin
eated in a separate pUblication. 20 

Figure 2 represents results for the Monte Carlo evaluation 
oftwo periods of the time-dependent amplitude (zle- .Htllilz) 
for the ground state of the harmonic oscillator; that is, 
H = p2/2m + moi:;c' 12, where the convenient choices of 
(i) = m = Ii = 1 have been taken and z = O. For the ground 
state, the amplitude is given analytically by (010) (t) =e- it/2. 

The calculation was performed using N = 8 with 3000 points 
per integration dimension, and required, literally, but a few 

1.2 r-----------, 
0.8 

c:; 0.4 

--:::. 0.0 
III 
o 
() 

..... 
N ----c .. 

-G.4 

-G.8 

1.2 

0.8 

0.4 

0.0 

-G.4 

-G.8 

2 4 6 8 10 12 
TIme 

2 4 6 8 10 12 
TIme 

FIG. 2. Real and imaginary parts of the autocorrelation function for the 
ground state of the harmonic oscillator exactly and by Monte Carlo sampling 
of the discrete coherent state path integral with N = 8. Monte Carlo calcula
tions were performed using 24000 points, or 3000 points per integration di
mension. 
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seconds on the Ohio Supercomputer Center Cray YMP. Ex
tensions to anharmonic systems in one and two spatial dimen
sions have proven quite promising. 

Finally, lest any confusion arise, it must be noted that the 
well-established expression for the CSPI, (15), is not in any 
sense "incorrect." In repeated applications, (15) has yielded 
perfect results, in particular for the semiclassical approxima
tion and quadratic Hamiltonians, and has been shown com
pletely equivalent to other semiclassical approximations.21

•
22 

This paper presents "corrections" to the interpretation of ( 15 ) 
as a path integral formulated from the repeated insertion of the 
coherent state resolution of the identity. Consider the transition 
amplitUde 

(z/le-Ul111iIz;) = J (Z/lqN)(qNle-;Hlllilqo)(polqo) 

X (Po Iz;)dpo dqo dqN' (57) 

where three resolutions of the identity in terms of momentum 
and position eigenstates have been made. Using the PSPI repre
sentation of (q N 1% ) ( t) in (57) yields an expression identical 
to (15) except for Gaussian factors in the integrations over P N 

and qo, respectively. In the N .... 00 limit, these factors are irrele
vant (formally speaking, they are of measure zero in the func
tional integration) so (15) is recognized as a PSPI between 
coherent states. The Hamiltonian symbols that arise from ( 15 ) 
and (57) will, of course, differ, but the differences again corre
spond to choices of operator ordering; . to first order in Ii the 
symbols coincide. Stated another way, neglecting the terms of 
order €(Zj - Zj _ I ) in passing from (13) to (15) is equivalent 
to approximating the coherent state Iz) by Iq) ® IF). Thus, 
once again, Schulman's speculation has been shown correct; 
terms of order €(Zj - Zj _ I ) do contribute to the CSPI, and the 
contributions are related to questions of operator ordering. 
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APPENDIX:-THE GLAUBER FUNCTION 

In an overcomplete basis, specifying all the matrix ele
ments of an operator is redundant as not all of the elements are 
independent, i.e., in theory some subset of the matrix elements 
suffices to specify the operator entirely. In fact, for a wide range 
of operators-specifically, for the bounded operators common
ly encountered in quantum dynamics-it can be shown that the 
diagonal elements alo~e define the operator uniquely. That is, 
an arbitrary operator A can be represented as 
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(Al) 

where cI>(z) is a scalar function of z, called the Glauber func
tion, which weights the contribution of the diagonal elements. 

"'-
Hence, knowledge ofcl> and relation (AI) specify A complete-
ly. 

The Glauber function for a given operator may be found as 
follows: Ass~e (AI) is correct and calculate the diagonal 
elements of A. Then 

A(z') == (z'IA Iz') = J I (z'lz) FcI>(z) d;Z. (A2) 

From 

I (z'lz) F = exp{ -Iz - z'F}, 

the right-hand side of (A2) is seen to be a convolution, a quan
tity best handled by Fourier transform. I use the Fourier trans
form conventions: 

A (z) = J e - ;(kp - .,q)/ffA (k,w) d::"w, (A3) 

A(k,w) = J e+;(kp-wq)/~(p,q) d::"q, (A4) 

cI>(z) = J e - ;(kp - wq)/Ii~(k,w) d::"w , (A5) 

~(k,w) =J e + ;(kp - .,q)/licl> (p,q) dp dq . (A6) 
21Tfz 

Inserting (A5) into the right-hand side of (A2) and using 

Z= ~ (! +: p) 
then yields 

A (z') = J dk dw dp dq 
21Tfz 21Tfz 

X ~ 
i(kp - wq) (q - q')2 

ex - -
Ii 2cl 

_ cl(p - P')2)~(k,W). (A7) 
21f 

The Gaussian integrations over p and q can now be performed 
and, after inserting (A3) into the left-hand side of (A2) one 
finds 

J e - ;(kp' - .,q')/14 (k,w) d::"w 

= J e- ;(kp' - wq')/11- .,2c1/2ff - k2/2c1~(k,w) dk dw , 
21Tfz 

(AS) 

and equating the Fourier integrands yields 

_ _ [k2 w2cl] cI>(k,w) =A(k,w)exp - + -- , 
2cl 21f 

(A9) 

which defines cI> in terms of the diagonal elements of A and the 
Fourier transform. 

The parameter u in (A9) labels the width of the coherent 
states used in the Glauber representation, and cI> will, in gen
eral, depend on u. However, because u is an arbitrary param
eter, it cannot enter into any physical results, i.~ if the Glauber 
representation is used to calculate elements of A the result will 
be independent of u. 
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Glauber functions generally depend on both z and z* in 
different linear combinations; however, in certain cases the de
pendence ~es a particularly convenient form. Specifically, if 
an operator A is afunction only ofx (or p) then the correspond
ing Glauber function will be a function only of q (or p). 

This proposition can be easily proven through the proper
ties of the Fourier transform or by noting that the Glauber 
function may be formally expressed as 

<l>A (p,q) =exp[ - !(a; + a;)] (z~ Iz) (AlO) 
A 

(where the dimensional factors have been suppressed) A If A can 
be written asa sum of polynomials inp (or x), then (ziA Iz) will 
be a sum of polynomials in P (or q) and the only surviving 
terms from the differential operator will be functions of p (or 
q). This fact, seemingly obvious but nowhere noted in the liter
ature, hints that the Glauber representation can prove extreme
ly useful even for operators which are highly asymmetric in p 
and q. For example, the operator e - iEV(x)lli, commonly ob
tained from a Trotter product expansion of the evolution oper
ator, can be represented by a Glauber function of one variable, 
<l>v(q)· 

Because of the above postulate it proves possible to calcu
late the Glauber function for operators of the form A (x) [or 
B(P)] more directly. Assuming (AI) takes the form 

A(x) = J Iz)<I>(q) (Zld;Z , (All) 

we take the diagonal element of both sides in the coordinate 
basis yielding 

A(x')t5(O)= J I (x'lz)f<l>(q) d;Z 

=J {e-(X'-Q)2
/ dl 

<I>(q)}dqJ dp , 
~1Tif 21Tfz 

(AI2) 

where the second line follows from the form of the coherent 
state wavefunction and use of the (p,q) integration measure. 
Note that in general A (x') =1= (z'IA (x) Iz'). Identifying 

21Tfzt5(O) = J dp 

and Fourier transforming the convolution as in (A2) to (A9) 
yields 

(AI3) 

whereA is the Fourier transform of A (x'). This expression and 
(A9) will yield identical <I>'s, but (A13) is simpler since it 
bypasses the calculation of (z'IA(x) Iz'). 

For the case A(x) =x" (A13) can be evaluated analyti
cally to give <1>" (q) . One finds 

A(w) = J e-iwx'I"x'" ~~~ 

_ J ('.k. a)n -iwx'11i dx' - In- e --
aw ~21Tfz 

= ~24ifl. :wr t5(w). (AI4) 

Use of relation (A13) then yields 
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<1>" (q) = J eMNj/l1+bN14Ii'- (iii :wr t5(w)dw 

= (iii"!"")" {~/1i+0)2dlI4li'-} aw 0)=0, 

after n integrations by parts. By rescaling to 

A. = ifJXT 121i, 

one finds 

<I>,,(q) =(;r(~r [~A(QI<T)-A2L=0. 

(AIS) 

(AI6) 

The term in braces is quickly recognized as the generating func
tion of the Hermite polynomials; hence, 

<1>" (q) = (uI2Y'H" (qlu). (AI7) 

A similar expression may be found for <1>" (p) in an analogous 
manner 

(AI8) 

From expressions (A 17) and (AIS) and the well-known prop
erties of Hermite polynomials, it is apparent that <1>" will have a 
leading term like q" (or prJ) plus other terms proportional to if 
[or (fl.lu)2] to some integer power. But if-liso the Glauber 
function for an operator like X" or prJ is given by the correspond
ing c number plus corrections of higher order in Ii. 
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A modification of the Froman and Froman [JWKB Approximation: Contributions to the 
Theory (North-Holland, Amsterdam, 1965)] technique is developed in order to study the 
supersymmetric JWKB formula of Comtet et al. [Phys. Lett. B 150, 159 (1985)]. With this 
modification, in a direct and nonperturbative manner, it can be proven that this quantization 
condition is exact for a class of solvable models. 

I. INTRODUCTION 

Comtet et al. 1 have invented a supersymmetry-inspired 
JWKB quantization formula (hereafter referred to as 
SJWKB) that, in contrast with the ordinary JWKB quanti
zation condition, is exact for a class of solvable models. For 
nonsolvable Schroedinger equations the SJWKB condition 
yields better eigenvalue estimates than the ordinary JWKB 
condition and has found application in a variety of problems. 

In Ref. 1, it was discovered that by writing the Hamilto
nian in the so-called "ground state representation;" 2 

(1) 

and formally treating the cp' term as O(Il) one finds, by a 
straightforward functional technique, the following quanti
zation condition: 

(2) 

Many authors have investigated why Eq. (2) is exact for 
all solvable models. 3

-
5 In Ref. 3, it was shown that the high

er-order corrections (i.e., higher order in Il) to Eq. (2) van
ish for these solvable models. 

This work aims at providing a direct and nonperterba
tive proof of the exactness of the SJWKB condition for these 
solvable models. We modify the traditional technique that 
Froman and Froman6 (hereafter referred to as FF) devel
oped for the ordinary JWKB and show conditions for the 
exactness of the SJWKB quantization condition.7 This is 
then used to prove the exactness of the SJWKB formula for 
several example Hamiltonians. The technique developed 
here is a novel approach to understanding the SJWKB quan
tization formula and has certain advantages over other 
methods, but it seems to go no further in elucidating the 
connection between exactness, solvability and supersym
metry.l.8 

In the second section of this paper, we present a brief 
review of the FF technique for the ordinary JWKB condi
tion. Section III details a modification of the FF technique 
for supersymmetric Hamiltonians and includes a derivation 
oftheSJWKBquantizationcondition [Eq. (2)] from anew 
point of view. In Sec. IV the technique is used to prove the 
exactness of the SJWKB condition for the harmonic oscilla
tor and the Rosen-Morse potential. Section IV also contains 
some general remarks about the exactness of the condition 
for generic potentials at E = O. 

II. REVIEW OF THE THEORY OF FROMAN AND 
FROMAN 

The JWKB quantization condition is exact for the har
monic oscillator and, although many researchers have tried 
to understand this "coincidence" from various points of 
view, a proof that was capable of generalization was first 
formulated in 1964 by Froman and Froman.6 In this section, 
we will provide a short introduction to the work of FF and 
demonstrate the exactness of the ordinary JWKB quantiza
tion condition for the case of the harmonic oscillator. The 
reader wishing to consult a more detailed version of this 
section is entreated to read Refs. 6 and 9 from which most of 
this has been taken. 

The FF technique is a general method for solving equa
tions of the type 

d 2'1' 2 - + Q (z)'I' = 0, (3) 
d~ 

where Q2(Z) is a meromorphic function on the complex 
plane. It is important to note that in our particular applica
tion Q2(Z) will be a real-valued function [i.e., 
Q2(Z) = - (2m/h 2)(E - V(x»] on the real axis. This is 
crucial because the quantization condition is really a result 
of the hermiticity of the Hamiltonian. 

Consider now making the change of variables 

'I' = rp(w(z» , with w(z) = f q(x)dx, (4) 
.Jq Zn 

where x and z lie in a connected region of the complex plane 
and where q is similar to Q except at certain singularities. 
Since 'I' satisfies Eq. (3), rp solves the following equation: 

d
2

rp + (1 + €)rp = 0, (5) 
dw2 

with 

(6) 

so, if € = 0 then rp = e ± iw would be exact solutions of Eq. 
(5). It is easy to see that if € is small for q2 = Q 2 the JWKB 
wave functions will be good approximations. In order to ac
tually find a q that makes € = 0 one must solve an Airy-like 
equation. Since it is, in general, not possible to solve Eq. (5) 
in closed form, consider breaking it into two first-order dif
ferential equations by assuming that rp has the following 
form: 
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cp = at (w)eiw + az (w)e- iw = foa, 

where f = (eiW,e - iw). (7) 

It is useful to require that the components of a satisfy 

da t · daz . __ e'W + __ e - 'w = O. 
dw dw 

(8) 

It is difficult to motivate this last step other than by 
noting that it leads to an immense simplification of the prob
lem. The author suspects however that there may in fact be a 
geometric way of viewing this constraint. Equation (7) be
comes 

drn . . 
_T_ = ia t e'W _ ia2e-'w. 
dw 

(9) 

Combining this with Eq. (5) we find that at and a2 satisfy 
the following coupled differential equations: 

(

da
t

) 
dw = iE [ 1 Ziw e- 2iW

] (at). 
da2 2 - e - 1 a2 

dw 

( 10) 

Written vectorially we have daldw = M(w)oa. Note that the 
matrix M(w) has the special properties Tr(M) = 0, 
Det(M) = o and since Tr(M) =O,M(w) is an element ofa 
two-dimensional representation of the lie algebra su (2). De
fine now a matrix F with the property 

a(w) = F(w,wo )oa(wo )' (11) 

Then, F solves 

dF =M.F. 
dw 

(12) 

Since F(wo,wo ) = 1 and Tr(M) = 0, then Det(F) = 1 is a 
constant of the flow [Fis simply a SU(2) group element]. 
The solution ofEq. (12) can be written formally in terms of a 
path-ordered exponential 

F= pexp(i: M dW)' (13) 

It is also obvious that 

(14) 

Since the w, a, F all depend on q it will be necessary to 
restrict the domain of these functions to regions in which 

R is defined. We will therefore take branch cuts on the 
complex plane where q2 has either a pole or a zero. For exam
ple, for a generic potential (i.e., one in which there is only 
one well) there will be branch cuts ending on the "classical 
turning points" labeled in Fig. 1 as a, b. We define q above 
the cuts by choosing a consistent phase convention. This is 
done by noting that the phase of q in a region will be related 

ka 
1 2 3 0 zero 

X=i X=1 X=-i 
_______ branchcut 

" 0 !!I .. a IICII 4-
a b 

FIG. L Choice of canonical phases of q = Xlql on real axis for regions 1, 2, 
and 3. 
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to the angles to the region from the various branch points. 
For simplicity, consider the case in Fig. 1. Since we may 
define q up to an overall phase, ()o, we have 

q(x) = Iqleilloei(lIa+ lIb)/2, (15) 

where the factor of 1/2 in the exponent is due to the fact that 
for generic potentials the turning points are simple zeroes of 

q2, and we are interested in the phase of R. From Fig. 1, we 
have 

region 1: ()o + ()b = 21T, 

region 2: ()o + ()b = 1T, 

region 3: ()o + ()b = O. 

Finally, choosing ()o = - 1T/2 will give us what FF call the 
canonical phase choice for q (in Fig. 1 the X corresponds 
only to the phase of q on the real axis). 

Since q is real on a segment of the real axis (between the 
two turning points) then by the Schwarz reflection principle 
we know 

q(z*) = q*(z). (16) 

Thus the zero and pole structure of q above the real axis is the 
mirror reflection of that below the real axis. This symmetry 
implies that the canonical phases of FF are indeed "canoni
cal;" the net contribution to the phase of q along the real axis 
from the poles and zeros above the real axis exactly cancels 
that due to the poles and zeros below the real axis. This 
symmetry is very useful, for it will allow us, in certain cases, 
to show that only a few poles make a net contribution to 
certain line integrals. To illustrate this point further consider 
the q-region associated with the potential 
q2 = E - Uo sech2 (z). A choice of branch cuts is shown in 
Fig. 2. The poles of q2 are at z = i1T(n + !) and the zeros are 
z = a,b + i1Tn. Note that for the path r in the figure the 
integral of a function depending on q can receive a net contri
bution only from the singularity at hr/2. 

Now let us comment on Eq. (12). Thinking of M(w) as 
a two-dimensional vector potential (with components de
pending on wand iii in general), we may then understand F 
as the Wilson line of M(w). Since M(w) is analytic on the 
region in which q is defined, the non-Abelian Stokes theorem 
assures us that the value of the Wilson line, F, is a functional 

! 
r -....... -- .. ----~- .... -"~_r--'" -- - - - ... --

.. . 
o zero 

" pole 
---' path r 

FIG_ 2. The q region of potential q' = E - lJ,., sech2(z)_ 

M_ Crescimanno 2947 



                                                                                                                                    

of M(w) which depends only on the homotopy class of the 
path of integration. 

In general, it is both the hermiticity of the Hamiltonian 
and the L 1 norm properties of the solutions that are respon
sible for the existence of quantization conditions. We now 
discuss the consequences of hermiticity of the Hamiltonian 
in this formulation. For the following, we restrict our atten
tion to the real axis. A simple consequence of hermiticity is 
that for every solution \II, the complex conjugate, \{I * , is also 
a solution. Since the wave function is 

a (w)eiw + a (w)e 'w 
\{I = ! 1 = f'a, 

fq 
(17) 

where we for convenience define, 

f = flfq, (18) 

then \11* = f*·a*. f is so simple that, with a slight abuse of 
notation, we may define a matrix, B, that applied to f yields 
f*, 

f* = f-B, f** = f so B * B 1, 

Det(B) ± 1. (19) 

Note that * denotes complex conjugation and not the Hermi
tian conjugate. Furthermore, since we are studying \II on the 
real axis, we may require that, 

df*(x) = df(x) 'B(x). 
dx dx 

(20) 

For example, we may write B in such a way that it depends 
only on which region x is in but not on its actual value. We 
may do this because the w integral will receive contributions 
of fixed phase in each ofthe regions 1,2,3. Explicitly, these 
matrices are 

[ 
0 el1m(W)] 

B(x) = q(x) 
Iq(x)I e-l1m(w) 0 ' 

(21a) 

for regions in which q2(X) > 0 and 

B(x) =-q--
(x) [e-liRe(W) 0] 

Iq(x) I 0 e2iRe
(w)' 

(21b) 

for regions in which q2(X) <0. The a vector in our wave 
function, \II f 'a, was chosen so that, 

d\{l df 
-=-'a. 
dx dx 

(22) 

Since \11* = f,B-a and dB Idx = 0, then, 

d\{I* = d f -B-a* 
dx dx 

(23) 

so B-a* behaves like an "a" vector for \11*. It then follows, 
using Eq. (11), that 

B(x! )-a*(xl ) F(XI ,x2 )-B(x2 )-a*(x1 ). (24) 

Now, using the fact that B * = B- 1 and again making use of 
relation Eq. (11), we have the identity, 

F(x I ,xz ) = B(x, )-F*(x1 ,Xl )·B *(xl ). (25) 

This conjugation symmetry relationship leads to connec
tions between the entries of the F matrix in different regions. 
One formula of particular interest is that in which both x, 
and Xz lie in regions in which q2(X) <0. Suppose further-
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more that the Xl and X2 lie in different regions, Le., strad
dling the classical allowed region. Then, writing out Eq. 
(25) for the component F22 , we find 

F ( ) 
q(xI )1/q(xI ) / - liRe(w(x,) - W(x2» 

22 XI,Xl = e 
q(X1 }//q(X2 ) / 

XFr2(X 1 ,X2). (26) 

This is the quantization condition. Since for a single well
generic potential we have chosen the XI and Xl to lie in the 
separate classically forbidden regions, our phase convention 
yields 

q(x, )/lq(xI ) I -1. (27) 
q(x2 )1/q(x1 ) / 

Furthermore, since the w receives only imaginary contribu
tions from the integration in the regions 1 and 3, 

Re(w(x l ) w(x2» = ib 

Iqldx. (28) 

Finally, using this in Eq. (26) yields, 

F22 (Xl ,X2) = exp [ - 2i i b 

Iqldx + it,. ]Fr2 (XI ,x2), 

(29) 

and so, 

F22 (XI ,Xl )exp[i ib 

Iqldx - i;] (30) 

is real. This implies that, 

i b 

Iq1dx=(n+ ~)1T-arg(F22(XI,x2»' (31) 

so we readily see that the ordinary JWKB quantization con
dition will be exact if F22 is real. 

In Eq. (31), Xl and X 2 are arbitrary and so we may 
conveniently let x, and Xl approach - 00 and + 00, respec
tively. In regions 1 and 3, the eiw component is monotonical
ly increasing (since we are considering only generic poten
tials) and in order to have a normalizable JWKB wave 
function a 1 must vanish sufficiently quickly as x approaches 
± 00. Since a2 (00 ) #0 (else \II would vanish identically), 

we can use a2 ( + (0) to give a l (z) and a2 (z) by using Eq. 
( 11 ). It then follows that 

a 1 (z) Fl2 (z, + (0) 

a2 (z) F22 (z, + (0) 
(32) 

Similarly, we can start with a2 ( (0) and find a 1 (z) and 
a2 (z), thus 

F'l (z, - 00) F12 (z, + (0) 
~---= (33) 
F22 (z, - (0) F22 (z, + (0) 

From the multiplication law of the F matrices [the group 
law Eq. (14)], it is obvious that FI2 ( - 00, + 00 ) O. 
Combining this and the above formulas yields an asymptotic 
statement on Fn: 

F22 ( - 00, + (0) 
F22 (zo, + 00 ) 

F22 (zo, + 00 ) 
(34) 

FF have developed expansions for the individual com
ponents of the F matrices. For our purposes here, we will not 
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need to make use of these expansions but refer the interested 
reader to Ref. 6 and also to Ref. 9 for several nontrivial ex
amples. Instead, we would like to conclude this section with 
a demonstration of this technique for the harmonic oscilla
tor. 

For the harmonic oscillator let Q 2 = q2 = E - A~. 
Then, the complex q plane looks like Fig. 1 and has only two 

branch cuts on the entire plane originating at ± ~A IE. 
Since M(z) is analytic in the entire upper half-plane, we may 
deform a contour running along the real axis from - 00 to 
+ 00 into a semicircle, S, of some large radius, R. Note now 
that since along S, €;:::: const.! R 4 then in the limit oflarge R 
the contribution to the path-ordered integration along S van
ishes. Then, by Eq. (34) with initial condition F(zo ,zo) = 1, 
we have F22 ( - 00, + 00) = 1 and so the JWKB quantiza
tion condition is exact for the harmonic oscillator. 

III. SUPERSYMMETRIC JWKB FORMULA 

This section contains the main result of this paper; a 
modification of the FF technique particular to supersymme
tric Hamiltonians. 7 We will try to follow the notation of Sec. 
II as closely as possible. To begin with, consider the conven
tion for the Hamiltonian in Eq. (1). Once again, we make 
the ansatz 

(35) 

where now the q2 = E - <1>2. As in Sec. II, we write q; as a 
quadratic form of the vectors f and a, 

q; = f.(ra, (36) 

where the matrix Gis 

G = [e; e ~ iU] with U = 1.: <I>~:z . (37) 

From Eq. (1) and Eq. (35), we find that q; solves 

(38) 

with 

€ = _1 (5(d
q2

)2 _ 4q2 d 2q2) . 
16q6 dx dx2 

Suppose we now require the vector G'a to have properties 
similar to the a vector of Sec. II. Then, 

dq; =!!..! .Goa and f. (dG 'a + G. da) = 0, 
dw dw dw dw 

(39) 

and so, 

d 2q; = d 2f .G.a + !!..! .(dG 'a + Go~) . (40) 
dw dw2 dw dw dw 

Since d 2fl dw2 = - f, we can rewrite Eq. (38) as 

!!..!. (dG .a + Go~) + (€ +~) f·Goa = O. (41) 
dw dw dw q2 

Finally, using the fact that d fl dw·dG I dw·a 
= - (<I> I q2) f·G·a we can find, as was done in the section on 

the FF technique for the ordinary JWKB, the matrix that 
defines the evolution of the a vector. We have 
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da 
-=M'a dw s' 

with 

M = i€ [ 1 
s 2 _ ke2i(w+u) 

ke - 2i(w+ U)] 

-1 

(42) 

(43) 

The matrix M, is more complicated than M of Sec. II. 
Note once again that Tr(Ms) = 0 and so Ms is again an 
element of su (2). One striking difference between M and Ms 
is that Det(Ms) ¥O almost everywhere. We can once again 
define an F matrix that defines the evolution of the a vector 
as a linear map, 

a(w) = F(w,wo )'a(wo )' 

Then, of course, 

dF 
dw =M,·F. 

(44) 

(45) 

Again, since the Tr(Ms) = 0 and Fis solved with the initial 
condition F(wo,wo ) = 1, we have Det(F) = 1. 

We now explore the consequences of the hermiticity of 
the Hamiltonian. Let us start as we did in Sec. II by again 
focusing our attention on the real axis. We can define a ma
trix B that is the linear operator of complex conjugation of 
the f vector, exactly as before, 

f* = f·B. (46) 

The matrix B is of course the same as in Sec. II. Since our 
complete supersymmetric wave function is 'I' = f·G·a, we 
have that '1'* = f·B·G *·a* and so, 

d'I'* df --= - ·B·G *·a*. 
dx dx 

(47) 

The factor B·G *·a* behaves like the "Goa" vector of '1'*. Let 
us denote this "Goa" vector of '1'* by Gob. We then have 

Gob = B·G *·a* 

and so, 

b=CG -"B'G *·a*. (48) 

Using the above results in b(x, ) = F(x, 'X2 )'b(x2 ) yields 

F(x, ,x2 ) = G - '·B·G *(x,) 'F*(x, ,x2 ) 

(49) 

We can now derive the quantization condition by once 
again requiring x, and X 2 to be in seperate classically forbid
den regions, i.e., those in which q2(X) <0. Being careful 
about taking complex conjugates of the elements in the ma
trix G (it is important to note that its phases vary in the 
different regions) and concentrating on just the F22 element 
of the F matrix, we find 

q(x t )/lq(xt ) I * 
F22 (x, ,x2 ) = RF 22 (X t ,x2 ), (50) 

q(x2 )/lq(x2 ) I 
with 

R = exp(i[ (ut + u, *) - (u2 + U 2 *) 

+ 2 Re(w(xt ) - w(x2 »]), 
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where CTI and CT2 are CT(X I ) and CT(X2 ), respectively. With 
our chosen x I and X 2 the prefactor is, 

q(X I )/lq(xI ) I = _ 1. 

q(x2 )/lq(x2 ) I 
(51) 

Although it looks as though the factor involving CT might 
depend on the points x I and X 2 , we note that CT + CT* is purely 
real and so beyond the classical turning points, it receives no 
contribution. This means that the exponent involving the IT's 
is 

(CTI + CT I *) - (CT2 + CT2 *) = f (:') dx = 1T, (52) 

and, hence, F22 (XI 'X2 )exp [is! Iqldx] is real, which implies 
that, . 

i b 

Iqldx = n1T-arg(F22 (X p X2»· (53) 

This is a generalization of the quantization condition [Eq. 
(2)] of Ref. 1. Equation (53) shows that the SJWKB condi
tion [Eq. (1)] will be exact if F22 (XI ,x2 ) is real. Again, we 
may use the arguments of the previous section regarding the 
normalizability of the wave functions to recast this result 
into the form 

i b 

Iqldx = n1T - arg(F22 ( - 00, + 00 », (54) 

where F22 ( - 00, + (0) is given by 

F22 ( - 00, + (0) = F22 (zo, + 00 )/F22 (zo, + (0). 
(55) 

As mentioned earlier, FF have developed a series of 
bounds for the elements of the F matrix. In those formulas, 
heavy use was made of the specific form of the M matrix in 
Eq. (10). For our more complicated matrix M, [see Eq. 
( 43) ], the same method of constructing bounds seems over
ly complicated and will not be necessary for this paper. In
stead, simple analytical methods will be used to determine 
the phase of F22 ( - 00, + (0) of Eq. (54) in the applica
tions in the next section. 

IV. SEVERAL EXAMPLES 

In this section, we will demonstrate the exactness of the 
SJWKB quantization condition for several solvable systems 
by proving that F22 ( - 00, + (0) is real. The examples par
ticularly amenable to exposition are the harmonic oscillator 
and the Rosen-Morse potentials. Included in this section are 
also some remarks about the consistency of this method for 
the E = 0 case. 

A. The supersymmetric harmonic oscillator 

Consider the case <I> = UJX. The potential is then that of a 
harmonic oscillator. For this <1>, the q plane is shown in Fig. 
3. Note that, as in the case of the analysis of the ordinary 
JWKB for the harmonic oscillator, q has no other branch 
cuts on the complex plane other than those associated with 
the classical turning points. Again, consider integrating Eq. 
( 45) along the contour S; a semicircle of radius R lying en
tirely in the upper half-plane. Now, using Eq. (38) for E and 
studying the asymptotics as R ...... 00 of E and Ek, we again see 
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FIG. 3. The q plane for supersymmetric harmonic oscillator. 

that (subject to the initial conditions F(zo,zo) = 1) that 
F22 ( - 00, + (0) is 1, thereby demonstrating that the 
SJWKB quantization condition is exact for the Harmonic 
oscillator. 

B. The supersymmetric Rosen-Morse potential 

The Rosen-Morse Hamiltonian is 

H = - d; - Uo sech2 (az). (56) 

In this case, <I> = (A /2)tanh(az) with 

A = ~a2 + 4Uo - a. Therefore, <1>' = (aA /2)sech2 (az) 
and so Eq. (38) for E reads 

E= [a2s/A2(r+s)3J[s2+ (6r+ 1)s-4r], (57) 

where s = sech2(az) and r = 4E / A 2. Note that as z ...... ± 00 

along the real axis s ...... o and E ...... O exponentially, so the pa
rameter integrals of Eq and Ekq will not diverge at ± 00. The 
region of analyticity of q is shown in Fig. 4. Again, by the 
Schwarz reflection principle, we are assured that we may 
choose the phases of q along the real axis to be the canonical 
ones discussed earlier. Also note that along the dotted con
tour r' in Fig. 4, only the pole at i1T /2a makes a net contribu
tion to the choice of phase of q along r'. Since the pole at 
i1T/2a is a double pole of q2, the phase of q along the right
hand part of r' is 

(58) 

and that along the left-hand part is 

(59) 

1 ! I 
.ill. . 
24 r 

~r----------\ 
, . 

-1' .. I 8 oz "'y 

a b 

1 
FIG. 4. The q plane for supersymmetric Rosen-Morse potential. 
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Now, using the canonical phase convention for (}o, the phase 
of q along r' is 

q = ilql on region 1, 

q = - ilql on region 2. (60) 

This implies that w and u are pure imaginary functions along 
r'. Then, ei

( W + u) is a real function of x, the coordinate along 
the path r'. It is also rather easy to check that both € and €k 
are real bounded functions of w along r'. Thus the path
ordered integral of the matrix Ms from - 00 to + 00 can be 
carried out along r' except for little "jogs" to the real axis at 
± 00. Now, since both € and €k vanish at ± 00 and since w 

and u are also well-behaved asymptotically, the "jogs" at 
± 00 make no contribution to F( - 00, + (0). Then, using 

the fact that qMs is real, we have that 

d(F~F*) =qM,(x)'(F-F*), (61) 

and since, choosing some basepoint Xo along r' and the ini
tial condition F(xo,xo ) = 1 implies (F-F*)(xo,xo ) =0, 
the imaginary part of the F matrix remains zero along r' 
(the singularity in q2 at i1r/2a is benign in qMs, as may be 
checked by the reader). Therefore, by Eq. (55), 
F22 ( - 00, + (0) is real and so the SJWKB quantization 
condition is exact. 

In these two cases, the exactness of the SJWKB has been 
so easy to understand with this technique that the proof was 
carried out with virtually no calculation. Note that for the 
nonsolvable potential az2 + AZ4 the branch cuts that are off 
the real axis in the q plane obviate the use of arguments 
similar to those made for the harmonic oscillator. Although 
we have not rigorously shown that F22 ( - 00, + 00 ) is not 
real in this case, it is no surprise that the SJWKB is not exact 
for this potential (a fact that the interested reader may verify 
in perturbation theory in A). In general, we would expect the 
Fn ( - 00, + (0) to depend on E. It might be possible to 
find asymtotic forms for F22 ( - 00, + 00 ) as a function of 
E, but we leave that possibility to future development of this 
technique. 

We now wish to make a few simple comments about the 
SJWKB condition for a generic potential for E = O. For Eq. 

1 3 

x= i x= - i 

+ .... -... -_-C> --0 ) 

FIG. 5. The q plane for generic potential at E = O. 

2951 J. Math. Phys., Vol. 31, No. 12, December 1990 

(2) with n = 0, E = 0 is a consistent solution because for a 
generic potential as E-O the distance between the classical 
turning points vanishes. In this case, the q plane looks like 
that of Fig. 5. Note that now q2 = 0 implies that <I> = 0 so the 
zero is at least a double zero. If the zero is a double zero, the 
phases in regions 1 and 3 are again i and - i, respectively. 
This means that the matrix qMs is real, and ifthe integrals of 
€ and €k are defined, then F22 ( - 00, + (0) is, by arguments 
similar to those used above, well defined and real. Thus the 
SJWKB is again exact at for any generic potential at E = O. 
Let us emphasize that this "exactness at E = 0" for generic 
potentials is not deep but is simply a check of the consistency 
of this technique. 

v. CONCLUSION 

We have generalized the techniques ofFF to the case of 
supersymmetric Hamiltonians. This method yields a deriva
tion of a generalization, Eq. (54), ofthe SJWKB quantiza
tion condition of Comtet et al. 1 It furthermore makes the 
exactness of a class of solvable models easy to understand. It 
is a fully nonpeturbative technique. The deeper connections 
between solvability, exactness and supersymmetry remain to 
be explored. 
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Trace formulas provide the only general relations known connecting quantum mechanics with 
classical mechanics in the case that the classical motion is chaotic. In particular, they connect 
quantal objects such as the density of states with classical periodic orbits. In this paper, several 
trace formulas, including those of Gutzwiller, Balian and Bloch, Tabor, and Berry, are 
examined from a geometrical standpoint. New forms of the amplitude determinant in 
asymptotic theory are developed as tools for this examination. The meaning of caustics in these 
formulas is revealed in terms of intersections of Lagrangian manifolds in phase space. The 
periodic orbits themselves appear as caustics of an unstable kind, lying on the intersection of 
two Lagrangian manifolds in the appropriate phase space. New insight is obtained into the 
Weyl correspondence and the Wigner function, especially their caustic structures. 

I. INTRODUCTION 

This paper concerns the trace formulas of Gutzwiller l 

and Balian and Bloch,2 which expresses the density of states 
of a bound quantal system as a sum over the periodic orbits 
of the corresponding classical system, and closely related 
trace formulas, such as that of Tabor3 for the density of 
quasistates in a time-periodic system, and that of Berry4 for 
the scars ofWigner functions in phase space. The purpose of 
this paper is to explore the semiclassical structures of such 
formulas, i.e., the geometrical objects in the classical phase 
space associated with them and the interplay between these 
objects and the corresponding wave fields. The basic frame
work for such a study is the theory of Maslov, 5 which asso
ciates the asymptotic properties of wave fields with Lagran
gian manifolds in phase space. The application of this theory 
to trace formulas is unusual and interesting, and involves 
several novel elements. 

The trace formulas considered here are significant be
cause they are among the very few theoretical results of any 
generality that connect quantum mechanics with classical 
mechanics in the case that the classical motion is chaotic. 
These formulas work equally well for classically integrable 
systems, and in that case they have been shown by Berry and 
Tabor6 to be equivalent to the usual Bohr-Sommerfeld 
methods (appropriately called "torus quantization" by Ber
ry). 7 However, the usual methods fail for chaotic systems, 
mainly because of the lack of well behaved, invariant La
grangian manifolds in phase space. For this reason, it is easy 
to get the impression that standard wave asymptotics or 
WKB theory does not apply at all to chaotic systems. We 
will show, however, that there is a rich geometrical structure 
associated with trace formulas, even in chaotic systems. For 
example, it turns out that Gutzwiller's periodic orbits define 
a certain, unstable kind of caustic, represented by the inter
section of two Lagrangian manifolds in the appropriate 
phase space. We will also show that the density of states can 

", Permanent address: Department of Physics, University of California, 
Berkeley, CA 94720. 

itself be regarded as a wave function, in which the periodic 
orbit terms correspond to the branches of a WKB formula as 
in standard asymptotic theory. 

We will be especially interested in Gutzwiller's 1 method 
of deriving his trace formula, since it connects most immedi
ately with the geometry of phase space. The methods ofTa
bor3 and Berry4 for deriving their trace formulas are essen
tially identical to Gutzwiller's, and may be described as a 
determined application of the stationary phase approxima
tion. Reviews of the trace formula, such as those of Berry7 

and Ozorio de Almeida, 8 have basically followed these 
methods. Balian and Bloch2 also used similar methods, but 
built them around an elegant formalism based on Laplace 
transforms in the quantity 1//i. From the standpoint of 
phase space geometry, however, the work of Balian and 
Bloch does not seem as useful a place to start as that of Gutz
willer. In addition, Balian and Bloch make some assump
tions about classical mechanics which are certainly not cor
rect, such as the idea that one can avoid caustics and 
multivalued solutions to the Hamilton-Jacobi equation sim
ply by invoking complex energies. We will not be concerned 

at all in this paper with the Selberg trace formula,9 although 
it continues to attract a great deal of interest, because it is an 
exact result obtained by special methods for a special system, 
and we are interested here in asymptotic results of general 
applicability. 

One of the original goals of this work was to simplify 
Gutzwiller's derivation of his trace formula, especially the 
difficult manipulations of amplitude determinants. This led 
to a general examination of amplitude determinants and 
WKB wave functions, which are discussed in Sec. II. We are 
careful to distinguish a particular solution of the Hamilton
Jacobi equation from a complete solution, the former being 
represented geometrically by a single, isolated Lagrangian 
manifold in phase space, and the latter by a foliation of phase 
space into Lagrangian manifolds. In the case of a particular 
solution, the amplitude determinant represents a density on 
the isolated Lagrangian manifold, according to the standard 
picture ofMaslov;5 but in the case of a complete solution, the 
provocative work of Miller \0 reveals connections between 
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the solution of the Hamilton-Jacobi equation and that of the 
amplitude transport equation, based on concepts of unitar
ity. This is the idea we pursue in Sec. II, in order to develop a 
representation of amplitude determinants in terms of com
plete sets of classically commuting observables. An out
growth of this study is what appears to be a new expression 
for amplitude determinants, in terms of Poisson brackets 
connecting two complete sets of commuting observables. 
This expression is given below in Eq. (2.16), and part of its 
value to us is that it casts amplitude determinants into a form 
whose invariant meaning in phase space is manifest. 

Section III consists of a study of the role of propagators 
and Green's functions in Gutzwiller's derivation of his trace 
formula, based on standard asymptotic theory and on some 
of the notions developed in Sec. II. For example, we identify 
some of the manifolds, densities, and complete sets of com
muting observables used in Gutzwiller's manipulations of 
propagators and Green's functions. We also show that there 
is a close relationship between the energy-dependent Green's 
function and an object best described as a propagator for 
evolution in the energy shell. 

The main theme of Sec. IV is the use of the Hilbert
Schmidt scalar product of operators to interpret traces in 
terms of the asymptotic theory normally used for wave func
tions. This approach leads naturally to a doubled phase 
space with a doubled version of the Poisson bracket. The 
doubled phase space is a well-known device, explained, for 
example, by Abraham and Marsden, II for representing 
canonical transformations, and in this role it has an interest
ing interplay with the asymptotics of matrix elements of op
erators, especially unitary operators. The accumulation of 
evidence presented in Sec. IV is, I believe, convincing that 
the doubled phase space is the necessary and correct medium 
for understanding the geometrical aspects of trace formulas, 
as well as many features of the Wigner function and Weyl 
correspondence. 

Finally, in Sec. V, some conclusions are drawn and sug
gestions made for future work. 

The work reported on in this paper began as an attempt 
to simplify Gutzwiller's derivation of his trace formula, and 
to reveal whatever deeper structures might underlie it. In the 
process of carrying out this program, however, there 
emerged much of the geometrical structure belonging to the 
mathematical theory of Fourier integral operators. For ex
ample, the idea of using the doubled phase space with the 
doubled symplecticform ofEq. (4.10) is one of thefounding 
ideas of this theory, and is due to H6rmander. 12 Later, an 
apparently independent derivation of Gutzwiller's trace for
mula was made by Duistermaat and Guillemin, 13 who inter
preted the periodic orbits in terms of the intersections of a 
given Lagrangian manifold with the diagonal, representing 
the identity. Also, the role of intersecting Lagrangian mani
folds in geometric quantization is discussed by Blattner and 
Kostant.14 These and other issues are developed and dis
cussed at greater length by Weinstein l5 and Guillemin and 
Sternberg. 16 

Unfortunately, these mathematical developments have 
taken place in almost complete isolation from the more ap
plied community, which is interested in trace formulas as a 
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tool for understanding wave chaos. Therefore, this paper 
should not be taken as the development of new mathematics 
(although it is hoped that experts in the relevant fields will 
find some useful ideas). but rather as an application of exist
ing mathematics to some problems in wave chaos. 

II. STRUCTURE OF SEMICLASSICAL WAVE 
FUNCTIONS AND MATRIX ELEMENTS 

In this section we investigate the phase space structure 
associated with semiclassical wave functions and matrix ele
ments. We are especially interested in the general solution of 
the Hamilton-Jacobi equation, expressed in terms of com
plete sets of commuting observables, and in the restrictions 
which a given solution of the Hamilton-Jacobi equation im
poses on the solutions of the amplitude transport equation. 
This line of inquiry leads naturally to Miller's formula for 
semiclassical wave functions, Eq. (2.8) below. Although 
many wave functions of interest in semiclassical mechanics 
fall under Miller's formula, not all of them do, and we pro
vide the appropriate generalization, given in Eq. (2.12). 

Next we turn to a reformulation of Miller's formula, in 
which the amplitude determinant is expressed purely in 
terms of Poisson brackets, thereby revealing its invariance 
under canonical transformations in a manifest manner. The 
new formulation of Miller's formula is displayed below in 
Eq. (2.16). The Poisson bracket version of the amplitude 
provides interesting perspectives on caustics, which we dis
cuss. The Miller formula must be modified in the presence of 
caustics, with most of the changes occurring in the ampli
tude determinant. There are as many modifications as there 
are caustic types; these include the standard catastrophes, 17 
but also include caustics that are not catastrophes because 
they are not stable with respect to small perturbations. The 
latter class of caustics is especially of interest to us, because 
the periodic orbits in the Gutzwiller trace formula are pre
cisely caustics of this kind. We work out the appropriate 
modifications to the Miller formula in the presence of such 
caustics, again expressing the amplitude in terms of Poisson 
brackets, and display the result in Eq. (2.27). 

A. Semiclassical wave functions 

Let us take the ordinary, time-independent Schr6dinger 
equation Ht/! = Et/! as a specific exa~ple to work with, al
though later we may want to replace Hby some other opera
tor. We apply standard, multidimensional WKB theory to 
this equation, and write t/!(x) = !l(x)eiS(x)/fi, giving us the 
Hamilton-Jacobi equation for the action S(x), 

(2.1) 

and the amplitude transport equation for the amplitude 
!l(x), 

~[!l(X)2 aH(x,p(x»] = 0, 
ax ap 

(2.2) 

wherep(x) = as(x)lax. In these equations we write simply 
x for the configuration space coordinates (XI' ... ,xI)' where 
fis the number of degrees offreedom, making no attempt to 
distinguish notationally between the one-dimensional and 
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multidimensional cases. The required contractions and sca
lar products will usually be obvious; where they are not, we 
will explicitly insert indices. We will use a similar notation 
for the momentum p and velocity v and other variables that 
are naturally interpreted asj-vectors. We will also sum over 
repeated indices, except as noted. 

A particular solution Sex) of the Hamilton-Jacobi 
equation is always the generating function of an invariant 
Lagrangian manifold in phase space. Lagrangian manifolds 
aref-dimensional surfaces in the 2j-dimensional phase space 
on which the symplectic form vanishes; their theory is dis
cussed by Arnold,18 and their use in WKB theory is ex
plained by Maslov and Fedoriuk,5 Percival,19 and Delos. 20 
Here, we will simply note a few basic facts about them and 
about their generating functions. First, a Lagrangian mani
fold is invariant, i.e., mapped into itself by the flow, if and 
only if it is a subset of some energy shell H(x,p) = E. A 
convenient way of constructing an invariant Lagrangian 
manifold is to choose an arbitrary, if-I )-dimensional La
grangian manifold Lo in a surface of section, regarded as a 
phase space of if-I) degrees of freedom in its own right, 
and to let Lo move with the flow into the energy shell, sweep
ing out an j-dimensional manifold in the energy shell. It 
turns out that this manifold is Lagrangian in the full 2j
dimensional phase space. The generating function S(x) of a 
Lagrangian manifold is the function such that if (x,p) is on 
the Lagrangian manifold, thenp = as(x)lax; it is generally 
multi valued, and its branches will be denoted by the index r, 
asinSr(x). 

A so-called "complete solution" of the Hamilton-Ja
cobi equation21 is an j-parameter family of solutions, 
S = S(x,a), with a = (aI' ... ,af ). We will regard S(x,a) as 
the generating function of a canonical transformation, in 
which the new momenta (they could equally well be new 
coordinates) areAl (x,p), ... .Af(x,p). Here we use the capi
tal letter A for the new momenta, regarded as functions of 
(x,p) , and the lower case letter a for the values of these func
tions. We will denote the generalized coordinates conjugate 
toA by a = (aI' ... ,af)' so that a; = as(x,a)/a;. Then for 
each value of a, the Lagrangian manifold 
p = p(x,a) = as(x,a)/ax is the simultaneous contour sur
face, A; (x,p) = a; ,i = 1, ... ,f, of the new momenta; and the 
j-parameter family of Lagrangian manifolds arising by vary
ing the a's is a foliation of phase space into Lagrangian mani
folds. The a's serve as coordinates on the Lagrangian mani
folds. Since the energy E is constant on each of these 
Lagrangian manifolds, it is a function of a, i.e., E = E(a). 
Sometimes it is convenient to choose one of the new mo
menta to be equal to the Hamiltonian itself, so that E is equal 
to one of the a's; this is not necessary, however. 

We also note that any particular function S(x) obtained 
from S(x,a) by fixing a, i.e., the generating function of a 
particular Lagrangian manifold, is a simultaneous solution 
of the/ Hamilton-Jacobi equations, 

A;(X, :~) = a;, i= 1, ... ,J (2.3) 

This is almost obvious; if (x,p) is a point on the Lagrangian 
manifold labeled by a, then A (x,p) = a. Thus, when we 
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think we are solving the single Hamilton-Jacobi equation 
(2.1), we are actually solving/simultaneous Hamilton-Ja
cobi equations, one for each of a set of/ classically commut
ing observables A I , ... .A f' We will refer to such a set of clas
sical observables as a complete set. Conversely, if we ask for 
the general solution of the simultaneous Hamilton-Jacobi 
equations (2.3), we find that it is S(x,a), unique to within an 
additive constant. The constant can be regarded as a conven
tion for the choice of initial point for the contour integral of 
p dx giving S(x,a). 

Even when we have only an isolated, particular solution 
Sex) of the Hamilton-Jacobi equation (2.1), it can always 
be imbedded in anj-parameter family of solutions. We will 
actually do this below when we consider the Gutzwiller trace 
formula for the density of states. Therefore, we can say that 
every solution of the Hamilton-Jacobi equation is represent
ed by some complete set of commuting classical observables; 
and, by extension, the same applies to every wave function of 
semiclassical interest. In particular, it applies to the semi
classical propagator and Green's function; it also applies, as 
we shall show, to Gutzwiller's formula for the density of 
states and to Berry's formula for scars ofWigner functions in 
phase space. The identification of the complete set of com
muting classical observables associated with a semiclassical 
wave function is an important component of its semiclassical 
interpretation; it is, however, a component which has hither
to been missing in trace formulas. 

Let us now suppose that some definite, complete solu
tion S(x,a) of the Hamilton-Jacobi equation has been 
found, and let us ask for the most general solution of the 
amplitUde transport equation consistent with this S(x,a). 
The amplitude transport equation is a continuity equation 
involving the density p(x) = O(X)2, regarded as a density in 
configuration space; one can equally well work with a den
sity u(a) on the Lagrangian manifold, given by 

u(a) = p(x) 'det ~= ,. (2.4) 

The general solution of the amplitUde transport equation is 
conveniently represented in terms of an initial density on 
some (/ - 1 )-dimensional initial value surface, from which 
the density is transported along orbits. The initial value sur
face can be regarded as being in configuration space or in the 
Lagrangian manifold, depending on whether one wishes to 
work withp(x) or u(a). By choosing an initial density and 
transporting it along orbits for each Lagrangian manifold, 
we obtain anj-parameter family of solutions O(x,a) of the 
amplitUde transport equation. 

Therefore, the general solution 0 (x,a) of the amplitude 
transport equation would seem to involve the selection of an 
arbitrary initial density, one for each Lagrangian manifold. 
Indeed, if the Lagrangian manifolds are topologically trivial, 
i.e., homeomorphic to IV; as in a scattering problem, then 
this conclusion is correct. But more generally, Lagrangian 
manifolds often have the topology of R'" X (S I )1i, with 
f.. + h = /, i.e., f.. lines crossed with h circles. II In the 
extreme case/=h, the Lagrangian manifold is an/ torus. 
Therefore, it may happen that an orbit leaving the (/ - 1)
dimensional initial surface on a Lagrangian manifold will 
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return again to this initial surface, usually at a different point 
from where it left. Continuity then demands that the trans
ported value of the density be equal to the initial density at a 
point on the initial surface where an orbit returns. In this 
way, restrictions may be placed on the choice of initial den
sity when the Lagrangian manifolds are topologically non
trivial. In the extreme case that the Lagrangian manifold is 
anf-torus supporting ergodic orbits, the initial density (and 
therefore the density everywhere else) is determined to with
in a multiplicative constant; it is simply (T( a) = const. 

In this paper we will mostly be interested in the opposite 
extreme offt = /, i.e., topologically trivial Lagrangian man
ifolds, so our amplitude transport equation will have many 
possible solutions, even for a given S(x,a). For the same 
reason, however, we will not need to worry about quantiza
tion, since our topologically trivial Lagrangian manifolds 
will automatically support wave functions that are single 
valued on the manifold. In other words, for the applications 
we will consider, the quantities a will be allowed to take on 
continuous values. 

Even when many solutions of the amplitude transport 
equation exist, there is one that especially stands out, name
ly, 

fl(x,a) = Idet a
2
S(x,a) 1112 = Idet aa 1112. (2.5) 
axaa ax 

Expressed in terms of the density on the Lagrangian mani
fold, this is the solution (T( a) = 1. A unique feature of this 
solution, not shared by other solutions ofEq. (2.2), is that it 
is actually a simultaneous solution of/amplitude transport 
equations, 

a [ 2 aAi(X,p(x,a»] . 
- fl(x,a) = 0, I 
ax ap 

1, ... ,f, (2.6) 

where p(x,a) = as(x,a)/ax, i.e., one for each of the com
muting observables Ai; fl(x,a) satisfies these equations be
cause each of the A 's, regarded as a Hamiltonian, generates a 
flow which is a simple displacement in the corresponding a, 
and a density (T(a) which is constant is obviously invariant 
under these flows. Conversely, if we were to seek a simulta
neous solution of Eq. (2.6), the solution is given by Eq. 
(2.5), and is unique to within a multiplicative constant. 

In many applications the complete set of commuting 
classical constants of motion Al (x,p), ... ,A/(x,p) which 
emerge from a complete solution of the Hamilton-Jacobi 
equation are the classical counJ.erpa~ of a set of commuting 
quantal constants ofmotioIJ.t AI' ... ,A/. Since these quantal 
observables commute with H and with each other, they pos
sess simultaneous eigenstates that are also eigenstates of the 
Hamiltonian. We shall denote one of these eigenstates by 
la), with a = (ai' ... ,a/) now interpreted as a vector of 
eigenvalues. As a result, tf;(x) = (xla) is an eigenfunction of 
the Hamiltonian. 

Therefore, we might consider an indirect approach to 
finding the eigenfunctions of the Hamiltonian, in which we 

"'-
first seek the simultaneous eigenfunctions of the A's. If we do 
this by semiclassical means, we are led to the/simultaneous 
Hamilton-Jacobi equations (2.3) and the / simultaneous 
amplitude transport equations (2.6) As we have seen, the 
solutions of these equations give a wave function tf;(x) which 
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is unique to within an overall multiplicative constant; this 
constant, whose magnitude comes from the multiplicative 
constant for fl(x,a) and whose phase comes from the addi
tive constant for S(x,a), can be different for different La
grangian manifolds, i.e., it is a function of a. Its magnitude 
can be determined by demanding orthonormality, which we 
apply in the continuum sense, i.e., 

(ala') = f dx(alx) (xla') = c5(a - a'). (2.7) 

This is equivalent to demanding that (xla) be the compo
nent of a unitary transformation matrix, taking us from the x 
representation to the a representation. The remaining arbi
trary phase factor can be regarded as a phase convention for 
the states la). 

By evaluating the integral ofEq. (2.7) by the stationary 
phase approximation, we obtain thx final expression for the 
simultaneous eigenfunction of the A's: 

1 I a2s 1112 (xla) = L det--
(21Tifl)/12 r ax aa 

xexp [ ~ S(x,a) - ip, ;] . (2.8) 

Here we have introduced the usual Maslov index p, to specify 
the proper phase shifts between branches r; both Sand p, 
depend on r. We have also introduced for convenience an 
overall phase factor of e if1r/4; there remains an additional 
arbitrary phase which is a function of a. Apart from this, the 
answer is unique. Of course, this same result will be obtained 
whenever we seek a simultaneous eigenfunction of a set of/ 

"'- ~ 

commuting A's, whether or not they also commute with H. 
In this paper we will not be much concerned with Mas

lov indices, so we will simply write p, for them wherever they 
occur, with no implication that the different p,'s are equal. 
The Maslov index in the Gutzwiller trace formula is consid
ered as a separate issue in papers by Robbins22 and by 
Creagh, Robbins, and Littlejohn. 23 

The realization that the requirement of unitarity leads 
to an essentially unique determination of the amplitude was 
evidently first made by Miller,1O so we will refer to Eq. (2.8) 
as Miller's form of the semiclassical matrix element (xla). 
Actually, Miller's results were more general than Eq. (2.8), 
for he gave formulas for the unitary matrix elements (b la), 
connecting any two representations. Although the modifica
tions required for Miller's general result are easy [one sim
ply replaces x wherever it occurs in Eq. (2.8) by b], never
theless the implications are far reaching, for Miller's results 
demonstrate a kind of covariance of semiclassical theory un
der canonical transformations, exactly mirrored by the co
variance of quantum mechanics under unitary transforma
tions. In spirit, Miller's results are fundamentally 
geometrical. In this paper, there will be special emphasis 
placed on the property of unitarity in examining the struc
ture of trace formulas, and it will be seen to playa role in 
unusual contexts. 

We will later see examples of complete sets of classically 
commuting observables, AI (x,p), ... ,A/(x,p) , which are ei
ther muItivalued or discontinuous in phase space. These are 
the functions one obtains in classical mechanics by attempt-
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ing to create constants of motion by demanding that the 
functions be constant along orbits; except in special circum
stances, the contour surfaces of these constants do not have 
simple imbeddings in phase space, but rather have compli
cated self-intersections. Such classical observables do not 
have any clear quantal counterparts, so it is really not mean
ingful to talk about simultaneous eigenfunctions (xla). Nev
ertheless, it is possible to construct formal semiclassical ex
pressions of the form of Eq. (2.8), based on the Lagrangian 
manifolds associated with such classical observables, and we 
will find it convenient to refer to these expressions with the 
same kind ofbra-ket notation as the (xla) occurring in Eq. 
(2.8). This notation is especially convenient for discussing 
Green's functions, as we shall do in Sec. III. 

Although the wave function ¢(x) = (xla) ~fEq. (2.8) 
can sometimes reRresent an eigenfunction of H, not every 
eigenfunction of H has the form of Eq. (2.8), even in the 
formal sense of the preceding paragraph. This is in spite of 
the fact that solving the original Hamilton-Jacobi equation 
(2.1) always leads to some complete set of A's. The reason is 
that the trivial solution of the original amplitude transport 
equation (2.2), given by Eq. (2.5), is not generally the only 
solution. To find the general solution of Eq. (2.2), let us 
writep(x) = Idet(aalax) I for the square of the trivial am
plitudeshown in Eq. (2.5). Thisp(x) satisfies the amplitude 
transport equation in the form 

~[p(x)v(x)] = 0, 
ax 

where the velocity field vex) is given by 

vex) = aH(x,p(x» , 
ap 

(2.9) 

(2.10) 

with p(x) = as(x)/ax. (Here we work with a single La
grangian manifold, and suppress the dependence on a). We 
now letp'(x) be any other solution ofEq. (2.9), and write 
p'(x) = g(x)p(x). It follows that 

vex) aga~) = 0, (2.11) 

i.e., that g is constant along orbits in configuration space. 
Choosing some such function g(x), we can convert it into a 
function G(x,p), defined for (x,p) points on the Lagrangian 
manifold in question by setting G(x,p(x» = g(x); the re
sulting G(x,p) is then constant along orbits on the Lagran
gian manifold in phase space. Finally, by carrying out this 
procedure for the whole family of Lagrangian manifolds, we 
obtain a function G(x,p) which is defined over a whole finite 
region of phase space, and which is a constant of motion. We 
conclude that the most general semiclassical eigenfunction 
of H has the form 

(2.12) 

where Tr is the rth term in Eq. (2.8), where F(x,p) is a 
constant of motion (the square root of G), and where 
Pr = aSr(x,a)lax. 

Notice that the constant of motion in Fin Eq. (2.12) 
need not commute with the A's. Indeed, if it does commute 
with the A's, then its value F(x,p) on the Lagrangian mani-
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fold A = a is simply a function of the a's, and F can be ab
sorbed into the normalization constant for (xla). This 
would return us to the Miller form of the matrix element, Eq. 
(2.8). Therefore, Fin Eq. (2.12) provides a nontrivial modi
fication to the Miller matrix element only when it does not 
commute with theA's. One consequence of this is that in one 
degree of freedom, the semiclassical energy eigenfunctions 
are uniquely determined by the family of Lagrangian mani
folds alone (without specifying the form of the Hamilto
nian), because all constants of motion commute with H. But 
in higher degrees of freedom, there may be more than one 
way to associate wave functions with families of Lagrangian 
manifolds. This can happen even in bound state problems, 
for which the Lagrangian manifolds are tori, if the motion is 
not ergodic on the tori in a finite volume of phase space. Such 
non ergodic motion occurs in so-called degenerate classical 
systems, such as the two-dimensional isotropic harmonic os
cillator or the hydrogen atom, in which phase space can be 
foliated into invariant tori in more than one way. 

B. Poisson bracket form for the amplitude 

Let us return to Eq. (2.8), and seek ~n exwessiol}...for the 
unitary matrix element (alb), where B = (B I , ••• ,Bf ) is a 
collection of/new operators that commute with one another 

"'-
(but not necessarily with the A's), with eigenvalues 
b = (b l , ••• ,bf) and classical counterparts 
BI (x,p), ... ,BI(x,p). We do this by writing down the semi
classical formula for (xlb), analogous to Eq. (2.8), and by 
applying the stationary phase approximation to the integral 
f(alx) (xlb ). It is now necessary to distinguish the two gen
erating functions, call them SA (x,a) and SB (x,b), produc
ing (with definite values of a and b) two distinct Lagrangian 
manifoldsp = PA (x,a) andp = PB (x,b) in phase space. We 
will call these the A manifold and the B manifold. We will 
also denote the generalized coordinates conjugate to the B 's 
by f3= (f3I' ... ,f3/ ), which we use as coordinates on the B 
manifold. 

The computation of the integral is straightforward, ex
cept for the amplitude determinant, the reciprocal of which 
we write as 

(
a

2
SA)-1 (a2SB)-1 (a

2
SA a

2
SB) det -- det -- det -- - -- . 

ax aa ax ab ax ax ax ax 
(2.13 ) 

This, however, can be cast into the form 

[( aPi ) (aak ) (abl
) (aPi ) (aak ) (abl

) ] 
det

k, 
aXj b apj x api x - aXj a api x apj x ' 

(2.14 ) 

where the quantities being held fixed in the derivatives are 
explicitly indicated. This in turn can be reduced to 

[( aak ) (ab l
) (aak ) (ab l

) ] 
det

k, 
aXj p apj x - apj x aXj p 

= detk,{Ak,BJ, (2.15 ) 

where the curly brackets are the usual Poisson bracket. We 
will simply write this final determinant as det{A,B}. Alto
gether, we have 
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(alb) = 1 '" exp{U/Ii) [So (x,b) -SA (x,a)] -ij.t(l1/2)}. 

(21Tili)f/2~ Idet{A,B} I 112 
(2.16) 

The novel element in this formula is the expression of the 
amplitude determinant in terms of Poisson brackets. 

The branches of the sum in Eq. (2.16) are the intersec
tions of the A manifold with the B manifold, which for now 
we assume to take place at isolated points; this is the generic 
situation, since two f-dimensional manifolds in 2f-dimen
sional space usually intersect in zero-dimensional points. 
Therefore, each intersection has an (x,p) value, giving us the 
x coordinate at which to evaluate the actions SA (x,a) and 
So (x,b), and the (x,p) coordinates at which to evaluate the 
Poisson brackets. This situation is illustrated in Fig. 1. 

Since the left side ofEq. (2.16) obviously does not de
pend on any special features of the quantal x representation, 
it is satisfying that the amplitude determinant on the right 
appears in a form that is manifestly a phase space invariant, 
i.e., independent of any special properties of the classical 
(x,p) coordinates. In this respect, this version of the ampli
tude determinant is an improvement over that shown in Eq. 
( 2.8). It also has the practical consequence of allowing us to 
compute the amplitude in any canonical coordinates, which 
sometimes simplifies calculations. 

As for the phase on the right side of Eq. (2.16), we 
cannot expect it to be a phase space invariant, because it 
depends on the phase conventions for the states la> and I b ) . 
If our Lagrangian manifolds intersect in more than one 
point, however, as illustrated in Fig. 2, then the relative 
phase (S02 - SA 2) - (So 1 - SA 1) can be expected to be a 
phase space invariant, because it is not affected by any over
all phase factor. Indeed, it is easy to see that the relative 
phase is simply the symplectic area enclosed between the two 
intersections. We may note that in many degrees offreedom, 

p 

Evaluate 

A(x,p) = a 

B(x,p) = b 

--~------------~------------;. x 
x 

FIG. 1. The semiclassical matrix element (alb) is expressed in terms of the 
intersections of the Lagrangian manifolds A (x,p) a and B(x,p) = b. The 
Poisson brackets of the amplitude determinant are evaluated at the intersec
tion points, and the actions in the exponent are evaluated at the x coordi
nates of the intersection points. 
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I 
where the Lagrangian manifolds are more than one dimen
sional, the symplectic area is independent of the path chosen 
to form the loop. 

The Maslov index in Eq. (2.16) can also be given an 
invariant interpretation in terms of the geometry of the La
grangian manifolds; this is a little more subtle, and we will 
not go into it here. 

Equation (2.16) shows that caustics occur when 
det{A,B} = 0 at a point ofintersection oftheA manifold and 
B manifold. The geometrical meaning of this is that the two 
manifolds are tangent at the point of contact, as illustrated in 
Fig. 3. Inf degrees offreedom, the caustic can be of any order 
from 1 to f, the order being determined by the corank of the 
matrix {A k,B I}' i.e., the number oflinearly independent null 
eigenvectors it possesses. These null eigenvectors are related 
in a simple way to the directions in phase space that are 
simultaneously tangent to the A manifold and the B mani
fold at their point of intersection. To see this, let CI be a null 
eigenvector of the matrix of Poisson brackets, so that 

{Ak,B/}c I = O. (2.17) 

Now associate this eigenvector with a phase space vector X'", 
defined by 

aB c r,"v __ 1 

I as v ' 
(2.18 ) 

where Greek indices run from 1 to 2f and Latin indices run 
from 1 to f, where S = (x,p) is the 2f vector of phase space 
coordinates, and where r is the usual cosymplectic form. 
For given I, the phase space vector P"'( aBI / as V) is the flow 
vector in phase space arising from treating BI as a Hamilto
nian; it represents simply a displacement in the PI coordinate 
on the B manifold, and so is tangent to the B manifold. 
Therefore, X'", which is a linear combination of these vec-

p 

A(x.p) = a 

B(x,p) = b 

~--~--------------~--------~ x 

FIG. 2. The relative phase between branches (S"(x,,b) 
- SA (x, ,a» - (SIl(X, ,b) - SA (x, ,a», isa phase space invariant; it is the 

symplectic area enclosed by the two intersections of the two Lagrangian 
manifolds. 
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p 

A(x,p) = a 

B(x,p) = b 

x 

FIG. 3. Caustics of the matrix element (alb) occur when the A manifold 
and B manifold are tangent at their point of intersection. 

tors, is also tangent to the B manifold. However, XI1- is also 
tangent to the A manifold, since by Eq. (2.17) we have 

XI1- aAk = c/{Ak,B/} = O. (2.19) as 11-

Thus X 11- represents a direction in phase space in which the A 
manifold and B manifold are tangent to one another. 

If det {A,B} should vanish at an intersection point, the 
most typical case would be that the intersection point would 
be isolated and {A k ,BJ would have a single null eigenvector 
there. Then the right side ofEq. (2.16) for the matrix ele
ment (alb) would be replaced by an expression involving an 
Airy function. It would be straightforward to analyze this 
case, and to build the required expression out of elements 
whose invariant meaning in phase space is manifest. 

For the applications we shall consider, however, the A 
and B manifolds intersect, not at an isolated point, but over a 
whole region of dimensionality Iz > 0, with I = It + Iz. We 
will call this Iz -dimensional intersection I, as illustrated in 
Fig. 4, so that {Ak,BJ has rank It everywhere on I. For 
example, we will show in Sec. IV that in the Gutzwiller trace 
formula for nonintegrable systems, I is identified with a peri
odic orbit, in which case Iz = 1. 

Figure 4 is misleading in one respect, namely, that it 
suggests that the intersection I changes continuously under 
small changes in the A and B manifolds. Actually, such an 
intersection with dimensionality 12 > 0 is unstable, and 
breaks up into isolated points under most perturbations of 
the manifolds. Indeed, the very existence of such nontrivial 
intersections seems to be related to symmetry; for example, 
in the standard Gutzwiller trace formula, it is related to con
servation of energy. 

In the cases of interest to us, the A and B manifolds 
intersect in anlz -dimensional intersection Ibecauselz of the 
A 's are identical with/2 of the B's (or because coordinate 
transformations of the A 's among themselves and of the B 's 
among themselves can bring this situation about). This is 
fortunate, because in this case the computation of the semi
classical matrix element (alb) is easier than in the general 
case. 
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A(x,p) = a B(x,p) = b 

FIG. 4. A case of interest is where the A manifold and B manifold intersect 
in a region Iof dimensionality h > O. In the Gutzwiller trace formula. I is 
the periodic orbit. This diagram is misleading. in the sense that it suggests 
that I is stable under small perturbations of the manifolds. 

To carry out this computation, we write A = (AI ,A2 ), 

B = (BI ,B2 ), where the first and second members contain 
It andlz functions, respectively, and where B2 = A 2 • With 
no loss of generality we also set a 2 = /32' In this way, a 2 or 
/32 can be taken as coordinates on I, whereas both a I and /31 
are constant on 1. 

This coordinate system simplifies the calculation of the 
matrix element (alb ), which we carry out in the a represen
tation, performing the stationary phase approximation on 
theintegralfda(ala) (alb ). The actions in thea representa
tion are the integrals of a da along the respective manifolds; 
for the A manifold we have SA (a,a) = aa, so 
det(a 2SAlaa aa) = 1. Therefore, the integral we must 
evaluate is 

f I 
a2s(ab)11I2 {' } 

da det a: a~ exp ~ [SB (a,b) - aa] . 

(2.20) 

Let us write simply S(a) for the total action 
SB (a,b) - SA (a,a) in the exponent; it is constant on I, be
cause as we move along I, the increment in S B cancels that in 
SA' Therefore, in expanding S(a) to second order about a 
point on I we have only the a l derivatives to take. For con
venience we let I be specified by a I = 0, so the expansion of 
S(a) is 

1 a2s 
S(a) =S(1) +-al ai' 

2 aa l aa l 
(2.21 ) 

where the linear terms cancel because I is the stationary 
phase set. 

As for the amplitude prefactor, we note first that 

a
2
s B (a,b) = (a/3l) = 0, 

aa2 ab l aa2 b 

(2.22) 

because to vary a 2 while holding b fixed is to move along I, 
where /31 is constant. We also have 

a2SB (a,b) 
(

a/32 ) = -- = 1, 
aa2 b 

(2.23) 
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since we have a 2 = {J2 on I. Therefore, 

det = det . (a2SB (a,b») (a 2SB (a,b») 
aaab aa l ab l 

(2.24) 

Now carrying out the integral over ai' we obtain an 
amplitude determinant whose reciprocal can be written, 

det - det--(ab l ) (aa l
) 

aa l al aa l hi 

= det [ - (!!2.) ] aa l al 

= det{A I ,BI}I' (2.25) 

where in all the derivatives shown, a2 = {J2 and a2 = b2 are 
held fixed, and where the 1 subscript on the Poisson bracket 
indicates that the bracket is computed with respect to the,/; 
canonical pairs (a I ,a I ) only. The right side is a determinant 
of an!1 X,/; matrix of Poisson brackets. The 1 sUbscript on 
the Poisson bracket can be dropped, however, because the 
terms coming from the (a2 ,a2 ) canonical pairs vanish, due 
to the vanishing of the derivatives aA 1/ aa2 and aA 1/ aa2 • 

Therefore, the Poisson brackets {A I k ,B 11 } are standard 
Poisson brackets on the full phase space, and can be comput
ed in any canonical coordinates. 

These Poisson brackets are also independent of a 2 , and 
can therefore be taken out of the a 2 integral. We show this by 
taking the a 2 derivative, which can be written as a Poisson 
bracket and transformed by using the Jacobi identity: 

a 
--{Alk,BI /} aa2i 

= ({A lk ,Bll },A2i} 

= ~ ({Bll,A2J,Ald - ({A 2i ,Alk},Bll } = O. (2.26) 

The final equality follows because {A 2i ,Alk} = 0, since all 
the A's commute with one another, and because {Bll ,A2i} 
= {B ll ,B2i } = 0, since all the B 's commute. 

The final result is 

(alb) = 1 
(21Tifz) (/ + 12 )/2 

"" exp{ (i/fz) [ S B (I) - SA (I)] - iJ.l ( 1T /2) } 

X £.J {}1 1I2 
r Idet AI,BI 

(2.27) 

The integral shown is just the a 2 volume of I. In Sec. IV we 
will show that the Gutzwiller formula for the density of 
states of a classically nonintegrable system is a matrix ele
ment of this kind. 

III. SEMICLASSICAL STRUCTURE OF THE 
PROPAGATOR AND GREEN'S FUNCTION 

In this section we analyze the role of the propagator and 
the Green's function in Gutzwiller's derivation of his for
mula for the density of states. We do this from the standpoint 
of Maslov's version of WKB theory, and from that of the 
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general properties of semiclassical wave functions and ma
trix elements as discussed in Sec. II. 

By the propagator we mean the function 
K(x,t;x',t ') = (xlU(t,t') Ix)0(t - t '), where U(t,t') is the 
unitary time evolution operator of a quantal system, taking 
the system from initial time t ' to final time t, and where 0 is 
the unit step function. If the Hamiltonian is time indepen
dent, we will set t' = 0 and write simply K(x,x',t) for the 
propagator. The propagator is sometimes also called the 
"time-dependent Green's function," but we will not use that 
term; instead, we will reserve the term "Green's function" 
for the energy-dependent Green's function G(x,x',E), de
fined in Eq. (3.12) below as the one-sided Fourier transform 
in time ofthe propagator. 

The original motivation for the work presented in this 
section was to simplify Gutzwiller's derivation of the trace 
formula, or at least to see what general principles were oper
ative in it. As a result, we do not in this section take an 
approach to the derivation of the trace formula which is sub
stantially different from Gutzwiller'S, nor do we carry the 
derivation through to completion. The reader who is inter
ested in a new perspective on this derivation may skip to Sec. 
IV, with little loss in continuity. 

Nevertheless, several points of interest did emerge from 
the analysis of Gutzwiller's derivation, and it seemed worth
while to put them down here. For example, we will show in 
this section that both the propagator and the Green's func
tion are represented in the extended phase space by the same 
Lagrangian manifold, showing that both suffer in exactly the 
same way from the development of "whorls and tendrils" 
(in the terminology of Berry et al. ),24 i.e., complicated con
volutions. We will also show how several of Gutzwiller's 
amplitude determinants, which he transformed into one an
other by difficult calculations, can be understood as special 
cases of Miller's formula, Eq. (2.8), or its generalizations. 
We will also point out that the semiclassical formula for the 
Green's function bears a close relation to a semiclassical ver
sion of a "propagator" for the surface of section evolution. 
This fact is almost immediately obvious, once it is realized 
that one of Gutzwiller's formulas is actually more general 
than his original analysis indicated, but nevertheless it is an 
interesting and potentially important fact. 

A. The propagator 

The semiclassical theory of the propagator is an old sub
ject, going back at least to Van Vleck.25 Its main result is the 
Van Vleck formula: 

, , 1 I a2
R 1112 K(x,t;x ,t ) = L det--

(21Tifz)112 r ax ax' 

xexp[~ R(x,t;x',t') -iJ.l ~], (3.1) 

where R is Hamilton's principal function, i.e., the integral of 
p dx - H dt along an orbit connecting configuration space 
points x' and x at initial and final times t ' and t, respectively; 
where r is the index of the sum over the branches of R, i.e., 
the distinct orbits satisfying the given end-point conditions; 
and where J.l is the Maslov index. Perhaps the most physical
ly appealing way of deriving this formula is by applying the 
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stationary phase approximation to the Feynman path inte
gra1.26 However, it can also be derived within time-depen
dent WKB theory, as a special case ofthe initial value prob
lem. This is the approach taken by Van Vleck himself, and it 
has the advantage that it applies to Hamiltonians or other 
evolution operators of quite general functional form, i.e., op
erators for which the formulation ofthe Feynman path inte
gral is difficult. 

Much has been written about the Van Vleck formula 
and its derivation, either from the Feynman path integral or 
via time-dependent WKB theory. For example, a good deal 
of the work by Maslov5 concerns time-dependent WKB the
ory, of which the most important application is the Van 
Vleck formula. A review and summary of earlier literature 
on the Van Vleck formula may be found in Berry and 
Mount,27 and the subject has been covered again more re
cently by Ozorio de Almeida. 8 Therefore, here we will sim
ply summarize some of the principal features of the deriva
tion of the Van Vleck formula from time-dependent WKB 
theory, and then take up a slightly different approach, one 
based on time-independent WKB theory. 

In applying time-dependent WKB theory to the propa
gator, one begins with the observation that K(x,t;x',t '), re
garded as a wave function in the (x,t) variables, satisfies the 
inhomogeneous, time-dependent Schrodinger equation, 

(iI-iii :JK(X,t;x',t') = ili8(x-x')o(t t'). 

(3.2) 

It follows from this that if one takes an initial wave function 
¢(X,t') = o(x x') andsolvesfor¢(x,t) fort> t', then the 
exact solution is ¢(x,t) = K(x,t;x',t '); and it turns out that 
the WKB approximation to this solution is the Van Vleck 
formula. One slight difficulty in applying WKB theory is the 
singularity of the initial conditions, due to the severe caustic 
(of order f) which ¢(x,t) develops as t-+t'. A number of 
authors have dealt with this problem by making a special 
analysis of the Schrodinger equation for small times; this 
leads to the conclusion that the behavior of the short-time 
propagator is dominated by the kinetic energy term in the 
Hamiltonian, so that the free particle results can be used. 
This approach has the drawback that it applies only to a 
restricted class of Hamiltonians. A better approach is to fol
low Ozorio de Almeida,8 who applies Maslov's methodS of 
switching to the momentum representation near caustics. 
That is, one computes the function K(p,t;x',t') 

(PI U(t,t ')Ix') for t near t', in the WKB approximation. 
(The propagator has been transformed to the momentum 
representation in the final variable, with the initial variable 
being treated as a parameter.) Not only is this function well 
behaved, but one can also get explicit formulas for the short
time amplitude and action, in terms of an arbitrary Hamilto
nian. In this way the initial conditions can be satisfied, and 
the Van Vleck formula derived; one result is that the form 
shown in Eq. (3.1) is valid for general Hamiltonians. 

In Sec. II above we considered only time-independent 
WKB theory, but nevertheless many of the results obtained 
there apply to the Van Vleck formula. For example, the Van 
Vleck formula is a special case of Miller's matrix element, 
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Eq. (2.8), as was noted by Miller himself. 10 To show this, we 
let x be the usual position operator in quantum mechanics, 
and we let x' = U(t,t')xU(t,t ')t. We then denote the eigen
states of x and x' with eigenvalues x and x' by Ix(x» and 
Ix'(x/», respectively, so that 

Ix'(x'» = U(t,t')lx(x'». (3.3) 

It follows that 

K(x,t;x',t') = (x(x)lx'(x'», (3.4 ) 

which we might simply write as (xix'), ifit were understood 
that the operators whose eigenvalues are given in the bra and 
ket are the distinct operators x and x'. 

Therefore, on co~paring the Van Vleck formula with 
Eq. (2.8), we see that A = x' and a x'. The classical coun
terpartofA isA (x,p,t,t') = X' (x,p,f,f '), whereX' is the ini
tial position along an orbit, considered as a function of the 
final (x,p) and the two times. The components of X' com
mute with one another, because the classical transformation 
from initial conditions (X',p') to final conditions (x,p) is a 
canonical transformation. The Lagrangian manifold in the 
(x,p) phase space corresponding to the Van Vleck formula 
for fixed values of (x',f ',f), regarded as parameters, is the set 
of points in phase space with the given value of initial posi
tion x'. Equation (2.8) does not by itself give the overall 
phase of the Van Vleck formula; this is important, and can be 
determined by other means. Finally, we note that the ampli
tude determinant in the Van Vleck formula can be written in 
terms of Poisson brackets as in Eq. ( 2.16). The bracket 
expression is simply det{x,x'}; computing this with respect 
to the (x,p) or (x',p') canonical coordinates, we obtain 
det(ax'/ap) x or det( - ax/ap')x" both of which are identi
cal to det ( a 2 R / ax ax') - 1. 

We turn now to an application of time-independent 
WKB theory to the propagator. Actually, it will be better to 
talk about "autonomous WKB theory," since the indepen
dent variable will no longer be time. This kind of approach to 
the propagator has been at least mentioned by Arnold; 18 

here we will expound on it in somewhat more detail, since it 
provides some interesting perspectives on both the propaga
tor and Green's function, and since it helps clarify some of 
Gutzwiller's calculations. 

We begin by enlarging the classical phase space with 
coordinates (x,p) by one degree of freedom, producing an 
"extended" phase space with coordinates (x,p,t,w). Here, 
the time t has been demoted from the status of the indepen
dent variable to that of a dependent variable, producing an 
extended configuration space with coordinates (x,f), and 
the momentum w conjugate to time has been introduced. 
The extended Hamiltonian is 

K(x,p,t,w) = H(x,p,t) + w, (3.5) 

where H(x,p,t) is the original Hamiltonian. It produces the 
autonomous (7' independent) equations of motion, 

dx aH dp aH 
dr = ap' d7' = - ax ' 

~=1 dw aH 
d7' ' d7' - at ' 

(3.6) 

where 7' is the parameter of the orbits. The extended Hamil-
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tonian K is conserved along the orbits in the extended phase 
space, and the (2/ + 1) -dimensional surface K = Iff can be 
regarded as an extended energy shell. The intersection of this 
energy shell with the surface t = const, say. t = t I, can be 
regarded as an extended surface of section; it is crossed by all 
orbits, since dt I dr = 1. The extended surface of section is 
naturally identified with the original phase space (x,p) at the 
given, constant time. The extended energy shell and surface 
of section are sketched in Fig. 5. 

By replacing the classical H(x,p,t) by its quantal coun
terpart ii, and by replacing w by the operator - iii a I at, we 
can also write down an extended Schr6dinger equation, 

'" ('" a) K",(x,t) = H - ifz at ",(x,t) = Iff",(x,t), (3.7) 

in which we seek the extended eigenfunction ",(x,f) of ~ 
with eigenvalue Iff, defined on the extended configuration 
space. Notice that every solution ",(x,t) of the ordinary, 
time-dependent SchrOdinger equation is an eigenfunction of 
"'-

K of eigenvalue Iff = 0, and conversely. Only the value 
Iff = 0 has physical significance, although it turns out that 
we must find eigenfunctions for arbitrary values of Iff in or
der to use Miller's form of the amplitude determinant. This 
equation allows us to regard the solution of the ordinary, 
time-dependent Schr6dinger equation as an eigenvalue-ei
genfunction problem in the extended space, and apply au
tonomous (in this case, r independent) WKB theory. The 
eigenfunctions we will find are somewhat like scattering so
lutions of the usual Schr6dinger equation, since they are un
bounded in t; thus, the spectrum of ~ is continuous. 

To solve the extended Hamilton-Jacobi equation com
ing from Eq. (3.7), we require invariant Lagrangian mani
folds in the extended phase space, which are conveniently 
constructed by the surface of section method. Correspond
ing to the initial conditions inherent in the propagator, we 
choose a Lagrangian manifold in the (x,p) phase space at 
time t t ' which is given by x = x' (a vertical line in Fig. 5). 

" 
I 
\, 

q 

x 

p 

x=x' 

~o---

t 

~oo (x,t) 

FIG. 5. The extended energy shell JY = if in the extended phase space, on 
which the coordinates are (x, p,t). The Lagrangian manifold L is swept out 
by orbits emanating from the surface x = x' at t t " which is an initial 
Lagrangian manifold in the (x,p) phase space. The Lagrangian manifold L 
supports the semiclassical wave functions for both the propagator and the 
Green's function, when they are viewed in the extended space. 
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This initial Lagrangian manifold is allowed to flow into the 
extended energy shell, sweeping out the if + 1 )-dimension
al Lagrangian manifold L in the figure. This Lagrangian 
manifold can be promoted into an if + 1 )-parameterfamily, 
thereby foliating the extended phase space, by varying x' and 
Iff; in this way we obtain an extended generating function 
Y(x,t;x',Iff). On comparing this with the function S(x,a) 
discussed in Sec. II, we must identify (x,1) with x and (x',Iff) 
with a. As in Sec. II, it helps to distinguish functions from 
values, and to write (X',K) for the commuting classical 
observables whose values are (x',Iff) on a given Lagrangian 
manifold. Here, X' = X' (x,p,t,t ') has the same meaning as 
earlier, Le., the initial position on an orbit; notice that it is a 
r-independent function on the extended phase space (since t 
is now just another phase space coordinate). Thus the ob
servablesA(x,p) of Sec. II are identified with (X',K), both 
considered to be functions of (x,p,t,w). Notice also that the 
initial time t ' is simply a parameter in this picture; unlike t, it 
is not a coordinate on the extended phase space. 

The extended generating function is easily computed. It 
is 

Y(x,t;x',Iff) = f pdx+wdt= f pdx+ (Iff -H)dt, 

(3.8) 

where the fact that K = Iff on the extended energy shell has 
been used to write w = Iff H. The contour of integration is 
taken from some fixed, initial point on the Lagrangian mani
fold to a final point S, which is the point (or one of the 
points) on L directly above the observation point (x,t) in the 
extended configuration space at which we wish to evaluate 
",(x,t). It is convenient to take the initial point to be soo in 
the figure, with coordinates x = x', p = 0, t = t '. The con
tour ofintegration could be any contour on L joining Soo and 
S, but it is convenient to let it run up the initial Lagrangian 
manifold in the surface of section to the point So' which is the 
initial condition for the orbit starting in the surface of section 
at time l' and terminating on S at time t. The contour then 
continues to the final point S by following along the orbit. 
The integral along the first segment of the contour, from Soo 
to So, vanishes, since dx = dt = 0 on this segment; therefore, 
the only contribution is that along the orbit, and Y is easily 
connected with Hamilton's principal function R. The result 
is 

Y(x,t;x',Iff) =R(x,t;x',t') + Iff(t t'). (3.9) 

Consider now for a moment a certain exact solution 
",(x,t) of the extended Schr6dinger equation (3.7), which is 
easy to express in terms of the exact propagator K. We 
choose this wave function to be a simultaneous eigenfunc-

"'-
tion of K and the operators X' used in Eq. (3.3), so that it 
can be regarded as the unitary matrix element (x,t Ix',Iff). 
Then we have 

(x,tlx',Iff) =K(x,t;x',t')exp [ilff(t-t')lfi], (3.10) 

in which for simplicity we have dropped overall multiplica
tive constants. 

On the other hand, the WKB expression for (x,t Ix',Iff) 
is easy to write down, by using the extended action Y of Eq. 
(3.9) and Miller's form of the matrix element. As for the 
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amplitude determinant, we have 

( ~2~, !2~)_d {a~~' 
det a 2y a 2y - e a 2R 

-- -- --
at ax' atacc at ax' 

a2R 
=det---, 

ax ax' 
(3.11 ) 

from which the Van Vleck formula immediately follows. 
The point of this calculation is to identify the Lagran

gian manifold in the extended phase space associated with 
the propagator, and to find the corresponding generating 
function. It turns out that the same Lagrangian manifold 
supports the Green's function, regarded as a wave function 
in the extended phase space. We now tum to this connection. 

B. The Green's function 

In the following discussion of the Green's function, we 
assume that His time independent, so we set t' = 0 and write 
simply K(x,x',t) for the propagator. Our convention for the 
Green's function is 

G(x x' E) = - dt eiEllfiK(x x' t) 1 lao 
" ifz 0 ' , , 

(3.12) 

where the convergence of the integral is guaranteed by giving 
E a positive imaginary part. The Green's function satisfies 
the inhomogeneous, time-independent Schrodinger equa
tion, 

(E - H)G(x,x',E) = 8(x - x'), (3.13) 

where H acts on the unprimed variables. 
The evaluation of the integral ofEq. (3.12) by the sta

tionary phase approximation has been carried out by Gutz
willer,1 who ignores the contributions coming from the end 
point t = O. These contributions are important, as they ulti
mately yield the Fermi-Thomas or averaged density of 
states. In spite of this, we will also ignore these terms, since 
we are mainly interested in the phase space structure asso
ciated with orbits of nonzero length. We point out, however, 
that these terms have much in common with the expressions 
that arise in Keller's geometrical theory of diffraction,28 
which are due to discontinuities in the boundary conditions 
for a wave field. 

Gutzwiller finds the following semiclassical expression 
for the Green's function: 

G(x,x',E) = ~ 1 
ifz (2trifz) (/- 1)/2 

xIID 11/2exp[~S(X'X',E) - ift.!!....] , 
r fz 2 

(3.14) 

where the sum is taken over all orbits of energy E connecting 
x' at t = 0 and x at a later time; where S(x,x',E) is the re
duced action, i.e., the integral of p dx along the orbit; and 
where D is an amplitude determinant, for which Gutzwiller 
gives two forms. Since the computation of these determi
nants is a difficult aspect of Gutzwiller's derivation, it is 
worthwhile to examine their structure from a general stand
point. 
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Gutzwiller's first form for D is an (f + 1) X (f + 1) 
form, 

(3.15 ) 

and it seems obvious that this must represent some kind of 
density on an extended space. Indeed it does; we simply 
transform the extended wave function t/J(x,t) = (x,t Ix',CC) 
in Eq. (3.10) from the (x,t) representation to the (x,w) 
representation, i.e., we compute 

¢(x,w) = (x,wlx',CC) = J e-iWllfi(x,tlx',CC)dt, 

( 3.16) 

again ignoring multiplicative constants. Evaluating this in
tegral by the stationary phase approximation and retaining 
only the positive time stationary phase points, we obtain the 
contributions of interest to the semiclassical expression for 
G(x,x',E), evaluated at E = CC - w. On the other hand, we 
can get the same result from the Lagrangian manifold asso
ciated with the wave function ¢(x,w) of Eq. (3.16); since 
only the representation has changed from Eq. (3.10), but 
not the commuting operators or the eigenvalues, the mani
fold is the same as in Fig. 5. In other words, the propagator 
and the Green's function are represented by the same mani
fold in the extended phase space. 

It is easy to compute the generating function 
Y(x,w;x',CC), where the tilde distinguishes the (x,w) repre
sentation from the (x,t) representation that was shown in 
Eq. (3.9). The result is 

Y(x,w;x',CC) = Y(x,t;x',CC) - tw = S(x,x',CC - w), 
(3.17 ) 

from which the Miller form of the determinant is easily com
puted. We find 

{

a2Y 
d ax ax' 

e a 2y 

awax' 

{ 

a2s 

ax ax' 
= de a2s 

aEax' 

(3.18 ) 

where we set E = CC - w. In this way, Gutzwiller's 
( f + 1) X ( f + 1) determinant is seen to be a special case of 
Miller's determinant in Eq. (2.8), and the Green's function, 
insofar as its semiclassical structure is concerned, is seen to 
be a unitary matrix element on the extended space. That is, 
we are tempted to write 

(x,wlx',CC) = G(x,x',CC - w); (3.19) 

however, this is only a schematic expression, since the time 
integral in Eq. (3.12) is only taken from 0 to 00, and since we 
have dropped overall multiplicative constants. This expres
sion does, however, capture all the semiclassical features of 
the positive time stationary phase points, when Eq. (2.8) is 
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applied to the left side and Eq. (3.14) to the right. 
The Lagrangian manifold L of Fig. 5, which supports 

both the propagator and the Green's function, will in general 
develop complicated convolutions in the course of time. The 
formation of convolutions in Lagrangian manifolds has been 
studied in a detailed analysis by Berry et al. 24 These authors 
find two different morphologies for the convolutions, desig
nated "whorls" and "tendrils," depending on whether the 
Lagrangian manifold passes through an integrable or chao
tic region of phase space, respectively. Their studies con
cerned area-preserving maps, i.e., systems of one and one 
half degrees of freedom, but their results are certainly appli
cable as well to the present discussion of Lagrangian mani
folds in the extended phase space. Their analysis reveals a 
critical time, beyond which the Lagrangian manifolds can no 
longer predict the details of the exact quantal wave func
tions, due to the formation of convolutions whose area is 
smaller than O( Ii). 

One must suppose, therefore, that in a formal sum over 
an infinite number of branches of the solutions of the Hamil
ton-Jacobi equation, such as Gutzwiller's formula for the 
Green's function, Eq. (3.14), only some of the terms can be 
valid. The valid terms are presumably those corresponding 
to pieces of the Lagrangian manifold that locally have con
volutions on a scale larger than some power of Ii, say, liv. 
Here, we will not worry about the precise value of v, but in all 
analyses of this sort, including those based on wave packets, 
v is of order unity. The valid terms can be thought of as 
coming from orbits for which the stretching factor (appro
priately defined) is less than Ii - v; for chaotic systems, this 
implies a restriction to orbits whose elapsed time t is less than 
T = (viA) lIn iii, where A is the Liapunov exponent. 

In the case of the Green's function, the valid terms can 
be selected out and the others rejected if the imaginary part E 

given to the energy is set to lilT, since this is equivalent to 
multiplying the integrand of Eq. (3.12) (for real E) by 
e - I IT. This is also equivalent to replacing the ~ functions in 
the density of states by Lorentzians of width E, giving a 
smoothed density of states. Since the average separation 
between energy levels scales as Ii - f for f degrees of freedom, 
we expect the smoothed density of states to be able to resolve 
energy scales containing a minimum number of individual 
eigenstates which scales with Ii as lIn 1i1/-/1- I. 

On the basis of these considerations, we do not expect to 
be able to resolve individual eigenstates in chaotic systems by 
semiclassical means. This restriction is not really due to the 
details of the formalism based on Green's functions, but 
rather to the limitations of any structure based purely upon 
classical mechanics. For example, the same general kind of 
limitation occurs in Heller's analysis29 of wave packets in 
chaotic systems. These limitations are ultimately based on a 
combination of the exponential divergence of nearby orbits 
and the time-energy uncertainty relations, and seem difficult 
to avoid. 

On the other hand, it may be true that some classical 
structure is still relevant beyond the critical time of order 
lnllil. For example, Berry et al.24 found that smoothed wave 
functions did seem to agree with smoothed, nominal semi
classical predictions, even beyond the critical time; and re-
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cent results by SaracenoJU seem to show the maintenance of 
certain classical structures in the same regions of time, in the 
case of the quantized Baker's map. 

Voros3l has also made some comments recently that are 
relevant in this regard. Voros points out that the knowledge 
of certain details of the asymptotic (long-time) distribution 
of the actions of periodic orbits is necessary in order to per
form an analytic continuation of Euler product representa
tion of the quantum functional determinant down to the real 
energy axis, where it would presumably yield the energy 
eigenvalues. That this process has actually be carried out by 
Gutzwiller32 for the anisotropic Kepler problem-not ex
actly, but with impressive accuracy-suggests that very long 
orbits retain a meaning, even beyond the length of time for 
which WKB theory is able to guarantee them a meaning. On 
the other hand, Voros also points out that quantal correc
tions, which might in our case be identified with the errors of 
the semiclassical expansion which grow up and dominate at 
the critical time of order lnllil, might invalidate the process 
of analytical continuation. Thus Guzwiller's results for the 
anisotropic Kepler problem might be special and not gener
alizable. 

Some of these issues and others as well are discussed in 
the review article by Berry,1 which includes a number of 
observations not found elsewhere. The problem of the long
time behavior of quantum states and its relation to classical 
structures, if any, is an important one. It is, however, some
what outside the main thrust of this paper, and so we will 
now turn to other matters. 

C. Second form of the amplitude determinant 

Gutzwiller's second form for the amplitUde determi
nant D of the Green's function is an (f - 1) X (f - 1) 
form, 

D=--det --1 ( a2s ) 
Z'z" ay" ay' , 

(3.20) 

where here and in the following discussion we use double 
primes for a final value such as zIt when it is necessary to 
distinguish it from a variable value such as z. We continue to 
use si~gle primes for an initial value such as Z'. In Gutz
willer's original derivation, Eq. (3.20) was intended to be 
applied in the immediate neighborhood of a given periodic 
orbit, in which z was the distance along the periodic orbit in 
configuration space, y was a set off - 1 coordinates orthogo
nal to the periodic orbit, and where the initial and final 
points x' and x" of the Green's function are set equal to one 
another in preparation for taking the trace. 

Actually, none of these restrictions is necessary, as we 
may show by retracing the derivation ofEq. (3.20) from Eq. 
(3.15). To begin, let us consider a point transformation tak
ing us from x to a new set of configuration space coordinates 
(y,z), in whichy is an (f - 1) vector of coordinates andzisa 
single coordinate. We do not necessarily tie these to a period
ic orbit, but we do select z to be a convenient independent 
variable for the evolution in the energy shell H = E. (This is 
the ordinary energy shell in the ordinary phase space, not the 
extended objects considered previously.) We conceive of 
this evolution as taking the system from an initial surface of 
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section z = z' to a final one z z". For example, z could be 
one of the original x's, as is common in applications. The 
energy shell and the z evolution within it are illustrated sche
matically in Fig. 6. 

The Hamiltonian for the z evolution is F = - P z' where 
Fis expressed as a function of (Y,Py,z) by solving H E for 
Pz' and is parameterized by E. Thez evolution is governed by 
Hamilton's equations, which are generally nonautonomous 
(i.e., z dependent), 

dy aF dpy aF dF aF 
dz apy' dz - ay' dz =a; (3.21) 

Hamilton's principal function for the z evolution, i.e., the 
integral of Py dy - F dz along an orbit, is just the usual re
duced action, 

R(y",z";y',z') = S(x",x',E). (3.22) 

The transformation X-+ (y,z) need not be orthogonal, 
nor even linear, as we can see if we examine the transforma
tion properties of the two sides ofEq. (3.14). For the action 
S transforms as a scalar under point transformations, and 
the amplitude determinant D as a pseudoscalar, i.e., like a 
density, in both the variables x' and x". Therefore, if we 
agree to transform G as a half-density in both x' and x", i.e., 
as an object which transforms as the square root of a density, 
then both sides ofEq. (3.14) are seen to be covariant under 
arbitrary point transformations. But this is exactly how 
G(x" ,x' ,E) should transform, given that it is the matrix ele
ment (x" I (E - H) -llx'). Therefore, we can rewrite Eqs. 
(3.14) and (3.15) in terms of arbitrary configuration space 
coordinates, simply by replacing x' and x" everywhere by the 
new coordinates. 

With these understandings about the general nature of 
the coordinates (y,z), we may now proceed to derive Eq. 
(3.20). The proof is only a slight modification of Gutz
willer's original derivation, so we will be sketchy. That is, we 
write p'= -as(x",x',E)/ax' and pIt +as(x",x',E)1 
ax" , we make the replacements x' -+ (y',z') and x" -+ (y" ,zIt ), 
and we differentiate H(XI,p') = E with respect to y",zll,E, 
andH(x",pll) = Ewith respect toy',z',E, thereby obtaining 

Py 
H(x,p) = E 

z 

y 

FIG. 6. The Green's function G(x" ,x',E) is closely related to a "propaga
tor" K(y' ,z";y' ,z' ;E) in the energy shell, in which z is the variable of evolu
tion and x = (y,z). The semiclassical expression for the Green's function is 
based on orbits taking one from configuration point y = y' in the initial sur
face of section z = z' to point y = y' in the final surface of section z = z" . 
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six equations. These can be used to reduce the 
(/ + 1) X (/ + 1) determinant of Eq. (3.15), producing 
that ofEq. (3.20). 

It is instructive now to gather the pieces together, and to 
write the semiclassical formula for the Green's function in 
the form, 

ifzG(y" ,z" ;y',z';E) 

= "\:"-- det--1 1 1 a2s 11/2 
(21Tifz)<f- 1

)/2 + ~lz'z"1 ay" ay' 

X exp [ ~ R (y" ,z" ;y' ,z' ) iP;]. (3.23 ) 

The most striking feature of this formula is the fact that the 

right side, apart from the factor l!~lz"z'l, is exactly what 
one would expect for the "propagator" for the z evolution in 
the energy shell, taking one from the initial surface of section 
z = z' to the final one z = zIt . Of course, in classical mechan
ics, the surface of section is a phase space in its own right of 
( / - 1) degrees offreedom, and we might therefore think to 
associate it with a Hilbert space of wave functions 1/J(y). 
These wave functions could be thought of as evolving in the 
variable z according to a Schr6dinger equation involving the 
Hamiltonian F. Then the semiclassical formula for the pro
pagator for the z evolution would be the Van Vleck formula, 
Eq. (3.1), with/replaced by / - 1, x by y, and t by z. The 
result would be precisely Eq. (3.23), apart from the factor 

l/~lz'z" I. 
This picture cannot be taken too literally, however, 

since in general the surface of section has no quan tal analog. 
That is, only certain phase spaces can be quantized, depend
ing on topological and geometrical features. Such consider
ations are especially important for compact phase spaces, 
and surface of sections are often compact. Nevertheless, if a 
surface of section could be quantized, then the semiclassical 
formula for the propagator would be the Van Vleck formula, 
as we have described. 

The factor l/~lz'z" I spoils the propagator interpreta
tion, but one might say that this factor is present because the 
real z evolution is governed by H, not F = pz. That is, if 
Wx take the wave equation for G(x,x',E) to be 
(H - E)G = 0, valid for x=/=x', and we interpret it as an 
evolution equation in z, then the equation is not first order in 
the z derivatives; whereas the propagator K (y,z;y',z') for the 
z A evolution, as we have described it, would satisfy 
(F - ifz a /az)K = 0 (again for x=/=x'), which is first order 
in}he z derivatives. The interpretation of an equation such as 
(H - E)G = 0 as an evolution equation in z has much in 
common with the paraxial approximation in optics,33 which 
follows essentially the same logic. 

Let us now interpret G(x,x' ,E) within the framework of 
the general structure of semiclassical matrix elements devel
oped in Sec. II. We continue to work with the ordinary phase 
space and energy shell. If we avoid the point x = x', then 
G(x,x',E), regarded as a wave function in x, satisfies the 
time-independent SchrOdinger equation as shown in Eq. 
(3.13). Therefore, the semiclassical expression for G, Eq. 
(3.14), must have the formal structure of an energy eigen-
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function of energy E, and we expect it to be a special case of 
Eq. (2.8) or Eq. (2.12). 

In this regard, it is interesting that the Green's function 
is defined for energies E which are not eigenvalues, so that 
the semiclassical representations of G are supported by La
grangian manifolds that are not quantized, even when the 
system possesses bound states. That this is consistent is due 
to two facts. The first is that the inhomogeneous term in the 
wave equation for G effectively cuts off negative time orbits 
by introducing a discontinuity in the Lagrangian manifold; 
and the second is that, with a positive imaginary part to the 
energy, the infinite sum over branches of the semiclassical 
wave function, representing positive time orbits, gives a con
vergent series. For example, in one degree of freedom, the 
infinite sums in the semiclassical Green's function have the 
form 

~ ein4>= __ I_ 
n""'O l_e i4>' 

(3.24) 

where ¢ = Sift -1l1TI2. Here, S is the action of the bound 
orbit H = E and f.l is the usual Maslov index of the orbit; S 
has a small positive imaginary part if E does, so the series 
converges. It is not necessary for ¢ to be a multiple of 217" (the 
usual Bohr-Sommerfeld quantization condition), and, in
deed, if ¢ approaches such a value, the series diverges, giving 
the required pole ofthe Green's function at the energy eigen
value. An interesting analysis of such series in one degree of 
freedom has been given by Miller,34 who includes tunnelling 
orbits; this analysis has been extended and applied further by 
Robbins, Creagh, and Littlejohn.35 

In any case, the semiclassical Green's function of Eq. 
(3.14) must be supported by an invariant Lagrangian mani
fold, i.e., a Lagrangian manifold imbedded in the energy 
shell H = E. Figure 6 correctly suggests that the Lagrangian 
manifold in question must be the one created by allowing the 
initial Lagrangian manifold y = y' in the surface of section 
z = z' to sweep out with the flow into the energy shell. The 
resulting Lagrangian manifold is illustrated in Fig. 7, which 

y 

Py 

y=y' 

, , 

,'--------.;L---t-----~ Z 

x = (y,z) 

FIG. 7. The Lagrangian manifold in the energy shell H = E supporting the 
Green's function G(x,x',E) is obtained by mapping the vertical line y y' 
forward from the surface of section z = z'. Its generating function is the 
reduced action S(x,x',E). 
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is almost the same as Fig. 5, apart from changes in symbols 
and interpretation. One difference, however, is that for sys
tems with bound states, especially when the classical motion 
is chaotic, the Lagrangian manifold of Fig. 7 will develop 
complicated self-intersections. These do not occur in Fig. 5, 
because time always flows forward. The generating function 
of the Lagrangian manifold in Fig. 7 is simply the reduced 
action S(x,x',E) , as is easily seen by integrating along con
tours, much as was done in Fig. 5. The Lagrangian manifold 
of Fig. 7 develops a caustic of order/ - 1 as x -x'; this is not 
as severe as the caustic of the propagator at t = t '. In one 
degree offreedom, the Green's function has no caustic at all 
at short distances. Asymptotic forms for the short distance 
Green's function are best obtained by going to a momentum 
representation, in accordance with Maslov's philosophy; it is 
not necessary to use Hankel functions, as many authors have 
done. 

An obvious set of/commuting constants of motion (the 
A's, of Sec. II) to associate with the Lagrangian manifold of 
Fig. 7 is the set (Y',H), where Y' represents the/ - 1 func
tions of (x,p) obtained by following the orbit passing 
through (x,p) backwards until it crosses the surface of sec
tion z = z', and noting the value of y = y' there. The func
tions Y' are constants of motion because they are constant 
along orbits, but they are either multivalued or discontin
uous constants of motion, of the type discussed below Eq. 
(2.8). We will denote the values of (Y',H) by (y',E) , which 
we identify with the a's of Sec. II. In this interpretation, the 
quantity z', like the initial time t' in Eq. (3.10), is merely a 
parameter. 

Ifwe now apply Miller's formula, Eq. (2.8), to the ma
trix element (y,zly' ,E), we find that it does not quite repro
duce Eq. (3.14) for the Green's function, due to the ampli
tude prefactor. That is, Eq. (2.8) produces the determinant, 

( 

a2s a2S) 
d 

ayay' ayaE 1 d a 2s 
et =- et--

a 2s _ a 2s z ayay" 
azay' azaE 

(3.25 ) 

as we show in the manner of the derivation ofEq. (3.20). 
Thus the amplitude for (y,zly',E) differs from that in the 

Green's function by the factor liP. But this factor is a 
constant along orbits, i.e., it can be interpreted as a constant 
of motion and identified withF(x,p) in Eq. (2.13). Thus we 
see that the semiclassical expression for G(x,x' ,E) cannot be 
represented, even formally, as a unitary matrix element of 
the form (xla). Instead, it is necessary to use the more gen
eral form for semiclassical eigenfunctions given in Eq. 
(2.13). 

A final comment about Gutzwiller's formula, Eq. 
(3.14), concerns the generality of the coordinates used in it. 
Above it was shown that this formula is covariant under 
arbitrary point transformations, but in fact it must be covar
iant under arbitrary canonical transformations. The justifi
cation for this assertion is the general covariance of semiclas
sical mechanics under canonical transformations, as shown 
originally by Miller. 10 For example, Eq. (3.14) for the semi
classical Green's function can easily be rewritten in coordi
nates tied to the stable and unstable manifolds of an unstable 
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periodic orbit. Such coordinates simplify the amplitude de
terminant and therefore some of the steps one must follow in 
taking the trace to get the density of states. However, these 
coordinates, also have certain drawbacks, such as the fact 
that they are discontinuous in phase space, so we will not 
pursue this idea further here. 

IV. SEMICLASSICAL STRUCTURE OF TRACE 
FORMULAS 

The algebraic manipulations involved in the stationary 
phase approximation follow a few well-defined patterns, 
which are essentially the same from one application to the 
next. The geometrical structures associated with these oper
ations, however, may be quite different. This is immediately 
apparent when we contemplate Gutzwiller's stationary 
phase calculation of the trace of the Green's function, and 
try to understand it in terms of the theory discussed in Sec. 
II, in which stationary phase points are associated with in
tersections of Lagrangian manifolds. The immediate prob
lem is that it is not evident how two Lagrangian manifolds 
are associated with a single Green's function, or how period
ic orbits are to be identified with the intersection of anything 
with anything else. 

To clarify the role of the stationary phase approxima
tion in the process of taking traces, we will work with the 
vector space of operators, in much the same manner as we 
have previously worked with the vector space ofSchr6dinger 
wave functions. We may regard this "operator space" as a 
kind of doubled Hilbert space; more precisely, for a suitable 
class of operators it is the tensor product of the Hilbert space 
ofSchrodinger wave functions with its dual. For example, if 
a basis In) ofSchrOdinger wave functions is chosen, then we 
have an associated basis In) (m I of operators. 

For a given operator A, we will talk about the associated 
"doubled wave function" or "wave function of the operator 
A," defined by 

tPA (x,x') (xiA Ix'). (4.1) 

This wave function will be regarded as living on a dou
bled configuration space, with coordinates (x,x'). By 
change of basis, it can also be regarded as living on other 
doubled spaces, such as (x,p'), (p,x'), or (p,p'). In terms of 
these doubled wave functions, the Hilbert-Schmidt scalar 
product of operators can be written 

Tr(AtB) = f dxdx'tPA(X,X')*tPB(X,X'). (4.2) 

In this manner, traces of operators appear as scalar products 
of wave functions, and can be incorporated into the formal
ism of Sec. II. 

We will also be interested in the semiclassical expres
sions for the doubled wave functions of various operators. 
When these expressions exist, they are of the form 

tP(x,x') = L n(x,x')exp[~s(X'X') - iP,!!:.-] , (4.3) 
r fz 2 

for some amplitude n(x,x') andactionS(x,x'). Such a semi
classical expression is interpreted geometrically in terms of a 
Lagrangian manifold in a doubled phase space of 4/ dimen
sions, whose coordinates are (x,p,x',p'). For example, the 
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stationary phase points of the integral in Eq. (4.2) can be 
viewed as intersections of two Lagrangian manifolds in the 
doubled phase space. As we will show below, Gutzwiller's 
periodic orbits are intersections of this kind. 

We begin this section by examining the doubled wave 
functions of unitary operators and their semiclassical repre
sentation in the doubled phase space. Unitary operators not 
only possess the simplest doubled wave functions, but also 
provide us with everything we need to study a variety of trace 
formulas. It turns out that Lagrangian manifolds in the dou
bled phase space playa dual role; not only do they support 
doubled wave functions, but they are also graphs of canoni
cal transformations. The interplay between these roles runs 
throughout the asymptotics of doubled wave functions, and 
provides a richness that has no analog in the case of ordinary 
(single) wave functions and phase spaces. We finally use the 
geometrical structures in the doubled phase space to reduce 
a variety of results, including a trace formula due to Tabor,3 

an intermediate result of Berry's4 on the scars of Wigner 
functions in phase space, and the Gutzwiller-Balian-Bloch 
trace formula, to special cases of the asymptotic scalar prod
ucts presented in Eqs. (2.16) and (2.27). 

A. Unitary operators and the doubled phase space 

We will primarily be concerned with unitary operators 
and their doubled wave functions. When these wave func
tions have a semiclassical limit, it is given by standard WKB 
theory, most conveniently expressed in terms of Miller's for
mula for the scalar product (alb). A matrix element 
(xIV Ix') of a unitary operator can always be written as a 
scalar product of the form (a I b ) by interpreting the operator 
U in a passive sense (i.e., as representing a change of basis) 
rather than an active sense (i.e., as representing a unitary 
mapping from one basis to another). This is precisely what 
we did for the propagator in deriving Eq. (3.4). Therefore, 
unitary operators provide us with examples of doubled wave 
functions, in which we can read off the amplitUde n (x,x') 
and action S(x,x'). We will now consider three specific ex
amples. 

The first is the propagator K(x,t;x',t'), in which the 
times t,t ' are considered parameters and are required to satis
fy t> t '. The propagator is the doubled wave function of the 
unitary time evolution operator U(t,t'), so we may write 
tPu(x,x') for it. Furthermore, we have a ready-made semi
classical expression for this wave function, namely, the Van 
Vleck formula, Eq. (3.1). From this we can easily read off 
the amplitude n (x,x') and action S(x,x'). Notice that in our 
previous discussion of the Van Vleck formula we regarded x 
as the variable upon which the wave function depended, and 
treated x' as a parameter, whereas now we are treating x and 
x' on an equal footing. This seems like a small change, but it 
has interesting consequences, as we shall see. 

A second example is simply the identity I, which has the 
doubled wave function 

, eixp'H. 
,1./ (x,p ) = (4.4) 
'I' (2trli)f/2 
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By writing this in the (x,p') representation, we see that the 
semiclassical expression is exact, and we can again read off 
the amplitude and action. Had we used the (x,x') represen
tation, we would have had a caustic, i.e., the wave function 
would be a delta function concentrated on the line x = x' in 
the doubled configuration space. 

A final unitary operator of interest is W(x,p), where 
(x,p) are parameters. It is defined by 

tPw(x,p') = (xl W(x,p) Ip') 

= 1 exp{~[2P(X _ x) 
(21rii)f 12 fz 

+ p'(a - X)]} . (4.5) 

The doubled wave function ~hown is essentially the kernel of 
the Weyl transform, for if A is an operator and A (x,p) the 
corresponding Weyl symbol,36 then 

A (x,p) =2f Tr[W(x,p)tA]. (4.6) 

Again, in order to avoid caustics, we choose the (x,p') repre
sentation in writing Eq. (4.5), and again, the semiclassical 
approximation is exact. 

All three of these unitary operators, U(t,t'), I, and 
W(x,p) , correspond in a simple way to classical canonical 
transformations. As shown by Miller, \0 this correspondence 
is realized through the actions S(x,x') or S(x,p'), treated 
either as a FI - or F2 -type generating function,37 respective
ly, for a canonical transformation connecting (x,p) with 
(x',p'). One slight subtlety is that (x',p'), which appear as 
initial variables in the propagator, must be treated as "new" 
variables, whereas the final (x,p) are "old" variables. 

For example, the action of the Van Vleck formula is 
Hamilton's principal function, the FI -type generating func
tion taking us from final (x,p) to initial (x',p'); and the ac
tion of the doubled wave function for the identity operator, 
Eq. (4.4), is F2 (x,p') = xp', the generator of the classical 
identity canonical transformation. As for the unitary opera
tor W(x,p) , the generating function is 

S(x,p') =F2(x,p') =2p(x-x) +p'(a-x), (4.7) 

which generates the "averaging" canonical transformation, 
given implicitly by 

x = (x + x')/2, P = (p + p')/2. (4.8) 

Let us now consider the doubled phase space as a medi
um for interpreting the semiclassical expressions for our 
doubled wave functions. There is a certain subtlety concern
ing this space that requires some elaboration. 

To begin, let us take a semiclassical representation for a 
doubled wave function, as in Eq. (4.3), and let us plot the 
wave fronts or contours of S(x,x') in the doubled configura
tion space. This is illustrated schematically in Fig. 8. The 
gradient of S(x,x') in the doubled configuration space is a 
vector perpendicular to the wave fronts; let us provisionally 
write p = as lax, p' = as I ax' for its components. These are 
functions of (x,x'), and give us a momentum field on the 
configuration space. Then in accordance with concepts from 
the WKB theory that encompass all kinds of wave equations, 
not just those of quantum mechanics, we construct a phase 
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x' 

Momentum 

S(x,x') = const. 

x 

FIG. 8. The momentum can be defined as the gradient of the action, in this 
case in the doubled configuration space. If, however, p and p' are defined, 
respectively, as the old and new momenta under the canonical transforma
tion (x,p) ~ (x',p'), then the components of this momentum vector are 
(p,-p'). 

space with coordinates (x,p,x' ,p'), within which our specific 
momentum field for our specific wave function is represent
ed by a Lagrangian manifold. In this phase space, the vari
ables conjugate to (x,x') are (p,p'), respectively, as defined 
above; it is in terms of these variables that Hamilton's equa
tions for the rays take on their standard form and that Pois
son brackets are computed in the standard way. 

On the other hand, we are also identifying the action 
S(x,x') with the FI -type generating function of a canonical 
transformation, for which the generating function relations 
are p = as lax, p' = - as I ax'. The point of this is that the 
equation for p' has a minus sign relative to the definition of p' 
in the preceding paragraph. The reason for this discrepancy 
is that there are now two conflicting interpretations for the 
symbol p': it is either the momentum conjugate to x' in the 
doubled phase space, or else it is the new momentum in the 
canonical transformation. We can choose only one of these 
interpretations, so by convention we will take the latter: our 
p' will be the new momentum in the canonical transforma
tion. (We abandon the definition of p' in the preceding para
graph.) 

This means that in the doubled phase space, the momen
tum conjugate to x'is - p', and that the vector perpendicu
lar to the wave fronts in the doubled configuration space has 
components (p, - p'). Therefore, the action differential on 
the doubled phase space is 

dS=pdx-p'dx', (4.9) 

and the symplectic form is 

f.J)D = dp 1\ dx - dp' I\dx'. (4.10) 

A Lagrangian manifold in the 4f-dimensional doubled phase 
space is a 2f-dimensional manifold on which this form van
ishes. Finally, if f(x,p,x',p') and g(x,p,x',p') are any two 
functions on the doubled phase space, then their Poisson 
bracket is given by 

{J,g}D = (af ag _ af ag ) _ (af ag _ af ag ) 
ax ap ap ax ax' ap' ap' ax' 

= {J,g} - {J,g}', (4.11) 
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where the D subscript indicates the doubled Poisson bracket, 
where the primed Poisson bracket is taken only with respect 
to the variables (X',p'), and where the unprimed Poisson 
bracket is taken only with respect to (x,p). 

We now effectively have three phase spaces, an un
primed, a primed, and a doubled, which we may denote by 
4>,4>', and 4>D' respectively. We may also denote the cre
ation of 4> D out of the other two, in accordance with Eq. 
(4.11), by 4> D = 4> ® 4>'*. The reason for this notation is 
analogy: if we denote the Hilbert space ofSchrodinger wave 
functions by X, then the Hilbert space of operators is X ® X *. 
We may also note that the minus sign in the nonstandard 
Poisson bracket of Eq. (4.11) comes originally from a com
plex conjugation of a phase. 

The doubled phase space with the symplectic structure 
of Eq. (4.10) is a well-known device for representing the 
geometrical structure of canonical transformations and their 
generating functions. It is discussed, for example, by Abra
ham and Marsden. II It is possible to give a geometrical rep
resentation of a canonical transformation without going to 
the doubled phase space; for example, a foliation of the 2f
dimensional single phase space into anf-parameter family of 
Lagrangian manifolds does this. But such a representation 
does not treat the old and new variables on an equal footing, 
nor does it readily reveal the relationship among the various 
kinds of generating functions for a given canonical transfor
mation. To satisfy these goals, the doubled phase space is 
necessary. 

The doubled phase space is used to represent canonical 
transformations in the following manner. Suppose we are 
given a canonical transformation, say, 

x = X(x',p'), p = P(x',p'). ( 4.12) 

Then the set of points (x,p,x' ,p') in the doubled phase space 
that satisfy these equations, i.e., the graph of the canonical 
transformation, is a 2f-dimensional surface in this space. The 
same surface can be equally well specified by the various 
generating function relations; for example, if the canonical 
transformation possesses an FI -type generating function, 
then the equations 

aFI (x,x') 
p= ax 

p'= 
aFI (x,x') 

ax' 
(4.13 ) 

are equivalent to Eqs. (4.12), being simply an algebraic rear
rangement of them. 

It turns out that this 2f-dimensional surface is a Lagran
gian manifold in the doubled phase space with respect to the 
symplectic form ofEq. (4.10). This is most easily seen with 
the aid of a diagram such as Fig. 9. We let L be the graph of 
the given canonical transformation, and we choose a con
tractible closed curve in L, bounding a two-dimensional re
gion rD' This region is projected onto the (x,p) and (x',p') 
phase spaces, producing, respectively, regions rand r'. 
Since L is the graph of the canonical transformation, the 
region r' is the image of the region r under the canonical 
transformation. But since this transformation is canonical, 
the respective symplectic areas A, A ' of r, r', measured in 
the unprimed and primed phase spaces, must be equal. This, 
in turn, implies 
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p' 

x'-------' 

FIG. 9. The graph ofa canonical transformation (x,p) - (X',p') in the dou
bled phase space is a Lagrangian manifold L with respect to the symplectic 
form of Eq. (4.10). Conversely, every Lagrangian manifold in this space 
with a nonsingular projection onto the (x,p) and (x',p') planes is the graph 
of a canonical transformation. 

r {J)D = A - A I = O. 
JrD 

(4.14 ) 

Since this is true for arbitrary contractible r D on L, we 
must have (J) D = 0 on L, and therefore L is Lagrangian with 
respect to (J) D • 

Conversely, suppose we are given a Lagrangian mani
fold L in the doubled phase space. A region of L that has a 
nonsingular projection onto the (x,p) and (X',p') phase 
spaces provides a mapping between these phase spaces; and 
this mapping preserves the symplectic area of two-dimen
sional area elements. Therefore, the mapping is canonical, at 
least within the given regions. [One can show that a region of 
a Lagrangian manifold in the doubled space has a nonsingu
lar projection onto (x,p) if and only if its projection onto 
(x' ,p') is also nonsingular. ] 

A given Lagrangian manifold in the doubled phase 
space may well possess points where the projections onto the 
(x,p) and (X',p') planes are singular. In the typical case, 
these singularities occur on a subset of L oflower dimension
ality than 2f, and represent the places where the branches of 
a multi valued canonical transformation coalesce. We may 
note, however, that the three canonical transformations dis
cussed above, the time evolution, the identity, and the aver
aging transformation, are all single valued, so the corre
sponding Lagrangian manifolds have nonsingular 
projections onto (x,p) and (X',p'). It is also possible to con
struct exceptional Lagrangian manifolds in the doubled 
phase space which have projections onto (x,p) and (X',p') 
which are singular everywhere, and which therefore do not 
represent canonical transformations. 

The representation of canonical transformations by La
grangian manifolds in the doubled phase space is useful for 
insight it offers into the various types of generating func
tions. For example, if the Lagrangian manifold correspond
ing to a given canonical transformation has a nonsingular 
projection onto the (X,X') plane, then it has an FI -type gen
erating function. In this case, the generating function of the 
canonical transformation coincides with the generating 
function of an isolated Lagrangian manifold, as was dis-
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cussed below Eq. (2.2), if the latter concept is transplanted 
to the doubled phase space. Notice that the projection onto 
(x,x') may be multivalued and have singularities, even if the 
projection onto (x,p) and (x',p') does not. This circum
stance occurs, for example, in the canonical transformation 
for the time evolution. 

More generally, we can obtain a generating function of 
any type by projecting L onto some 2f-dimensional plane, 
spanned by some subset of old and new x's and p's. The only 
requirement is that the projection must be nonsingular, and 
that the plane onto which we project must itself be Lagran
gian with respect to the doubled symplectic form. For exam
ple, (x,p') is allowed, but (x,p) is not. 

One of the most important applications of Lagrangian 
manifolds in physical problems is in the representation of 
multidimensional wave fields in the short wavelength limit. 
The preceding discussion of the doubled phase space has 
concerned another application, namely, an elegant and sym
metrical means of treating canonical transformations and all 
of their generating functions. It is remarkable, therefore, 
that these two applications come together in the asymptotics 
of the matrix elements of operators, i.e., in our doubled wave 
functions. We see now that every matrix element with a 
semiclassical limit corresponds to a Lagrangian manifold in 
the doubled phase space, which in tum, if it has nonsingular 
projections onto the (x,p) and (x',p') subspaces, corre
sponds to a canonical transformation. 

Although in this paper we are primarily interested in 
doubled wave functions of unitary operators, other opera
tors may also be considered, and they are also represented 
semiclassically by Lagrangian manifolds in the doubled 
phase space. It is interesting that some of these give rise to 
semiclassical wave functions that do not correspond to a ca
nonical transformation, because their Lagrangian manifolds 
have projections onto (x,p) or (x',p') spacewhicharesingu
lar everywhere. For example, let t/!(x) (xlt/!) be an ordi
nary (single) wave function with a semiclassical representa
tion in the usual form, and consider the projection operator 
It/!) (t/!I· The doubled wave function for this projection oper
ator gives rise to the Lagrangian manifold, 

p =/(x), p' =/(x') (4.15 ) 

in the doubled phase space, where/ex) JS(x)/Jx, Sex) 
being the (single) action of t/!( x). This Lagrangian manifold 
has a singular projection onto (x,p) space, because only cer
tain (x,p) values are consistent with Eq. (4.15), and because 
once such an (x,p) value is given, the values of (x',p') are 
undetermined. The Lagrangian manifold of Eq. (4.15) does 
have an FI -type generating function; however, it is 
F j (x,x') = Sex) - sex'), and it is an example ofa generat
ing function that does not generate a canonical transforma
tion. Obviously such generating functions must be taken into 
account in a general theory of semiclassical matrix elements. 

B. The Hilbert-8chmidt scalar product of unitary 
operators 

We will now apply the results of Sec. II, especially Eq. 
(2.16) for the matrix element (alb), to the computation of 
Tr( Vt U), in which U and Vare unitary operators. In order 
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to have a specific example in mind, we may identify V with 
the identity operator I, and U with U( t,t '), the unitary time
evolution operator for a time-dependent system, so as to 
compute Tr U(t,t '). We will assume that the system has no 
constants of motion, either the Hamiltonian or anything 
else. The reason for this assumption is that it leads to the 
simplest trace formula providing a connection with classical 
periodic orbits, and therefore is a good place to start. In 
addition, we have seen in Sec. III that the Green's function is 
very nearly a propagator in the surface of section, so taking 
traces of propagators is good practice for taking traces of 
Green's functions. 

Actually, in computing Tr( vt U), it is sufficient to as
sume V = I, since we can always rewrite the operator prod
uct vt U, itself unitary, simply as U. This step simplifies the 
calculation somewhat, and, when we are done, we are always 
free to factorize U once again into the product of two unitary 
operators. Let us therefore proceed with this simplification. 

In the semiclassical computation ofTr(lt U), we know 
that the asymptotic forms for the matrix elements of I and U 
are associated with two Lagrangian manifolds in the dou
bled phase space, which we denote by L/ and Lu; and that 
these in tum are associated with two canonical transforma
tions, the I transformation, which is the identity, and the U 
transformation, which we denote by x = X(x',p'), 
p = P(x',p'). We will denote the FI-type generating func
tion of the U transformation by S(x,x'), which is also the 
action for the semiclassical expression for 
t/!u(x,x') (xlU Ix'). The amplitUde ofthis expression is 
given by Miller's formula, Eq. (2.8), as 

n(x,x') = Idet J
2
S(x,x') 1112. 
JxJx' 

( 4.16) 

An immediate fact that emerges from a consideration of 
Eq. (2.16) is that the stationary phase points in the compu
tation ofTr(lt U) will be the intersections of L[ and Lu in 
the doubled phase space, i.e., the points (x,p,x' ,p') such that 

x=x'=X(x',p'), p p'=P(x',p'). (4.17) 

These points on the doubled space represent periodic orbits 
on the single space, in the sense that (x,p) = (x',p') is a fixed 
point of the U-canonical transformation. Another immedi
ate fact is that the action at one of these stationary phase 
points is simply S(x,x') , because the (x,x') action of the 
identity transformation is zero. [Properly, one should work 
in a representation in which neither operator has a caustic; it 
does not matter which, just as in Eq. (2.16) the right-hand 
side is obviously independent of the choice of the x represen
tation. However, the results are as quoted here. 1 

To proceed further with the application of Eq. (2.16), 
however, we must somehow represent the doubled wave 
function t/!u (x,x') as the simultaneous eigenfunction of 
some set of commuting operators, say, f!lj, with eigenvalues b 
and classical counterparts B; and similarly the doubled wave 
function for the identity, using operators sff, eigenvalues a, 
and classical counterparts A. Because we are now working in 
the doubled space, each one of these sets contains 2/ 
members, and the operators sff, f!lj are not ordinary opera
tors, but rather "doubled operators," i.e., linear mappings of 
ordinary operators into other ordinary operators. Similarly, 
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the sets of classical functions A, B are functions of 
(x,p,x',p'), and must Poisson commute within each set ac
cording to the doubled Poisson bracket. 

We must do this because on the doubled phase space, the 
doubled wave functions are represented by two particular 
Lagrangian manifolds in isolation, which are not members 
offoliations. Therefore, in order to apply Eq. (2.16), or rath
er its transcription to the doubled phase space, it is necessary 
to imbed these individual Lagrangian manifolds in folia
tions. The analog of this process in the case of the single 
phase space would be to go from a particular solution of the 
Hamilton-Jacobi equation, say S(x), to a complete solution, 
say S(x,a), for which S(x) = S(x,a) for some fixed value of 
a (a = 0 is convenient). On the doubled phase space, we 
may regard the particular Lagrangian manifolds L [ and Lv 
as the "physical" Lagrangian manifolds, and the others as 
being used simply for the sake of applying Eq. (2.16). Since 
(virtually) all Lagrangian manifolds in the doubled space 
correspond to canonical transformations, each of the two 
foliations will produce two families of canonical transforma
tions, parametrized by a or b. 

The proposed imbedding is not unique and seems artifi
cial, since a straightforward application of the stationary 
phase approximation, along the lines of Gutzwiller's original 
derivation, does not require it, but rather works (effectively) 
with the two physical Lagrangian manifolds and the densi
ties on them. We will proceed anyway with the suggested 
approach for the following reasons. First, the manifest phase 
space invariance ofEq. (2.16) is compelling, and reason to 
pursue this formula to see how general it is. Second, when we 
imbed a particular Lagrangian manifold in a foliation and 
use the foliation in the manner suggested, it turns out that 
only the members of the foliation in an infinitesimal neigh
borhood of the original Lagrangian manifold have an effect 
on the result (as one would expect). That is, these neighbor
ing Lagrangian manifolds and the manner in which they are 
specified are equivalent to positing a density on the original 
Lagrangian manifold; therefore, working with such a folia
tion in the neighborhood of the original Lagrangian mani
fold is an alternative to dealing with densities and amplitude 
determinants. Finding a means of clarifying manipulations 
on amplitude determinants is a major goal of this paper. 
Third, the foliation we will suggest below leads to an inter
esting and novel means of calculating Gutzwiller's periodic 
orbit amplitudes. Fourth, the Wigner-Weyl formalism pro
vides us for free with a foliation of the desired kind, and the 
results of pursuing this line of investigation yield new in
sights into the Wigner-Weyl formalism (and into Berry's4 
trace formula for the scars of Wigner functions in phase 
space). And finally, the kind of thing we propose here is not 
unheard of in physics; for example, Dirac brackets are usual
ly computed using coordinates defined on a space larger than 
the physical one. 

Let us work with the manifold Lv, and find the desired 
imbedding; that for L[ will then follow easily. We require 2/ 
functions Bl (x,p,x',p'), ... ,B2f (X,P,x',p') that take on con
stant values on Lv, and which commute with one another 
under the doubled bracket. In addition, they should give the 
correct amplitude determinant O(x,x'), shown in Eq. 
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( 4.16), in accordance with the doubled version of Miller's 
formula, Eq. (2.8). We satisfy the first two goals by applying 
some guesswork, and find 

B;(x,p,x',p') = X; - X; (x',p'), 

B;+f(x,P,x',p') =p; -P;(x',p'), (4.18) 

for i = 1, ... ,f These B's take on constant values on Lv, 
namely b = 0; and their doubled Poisson brackets among 
themselves vanish, as verified by direct substitution into Eq. 
( 4.10. 

Consider now members of the foliation for which 
b = (bx,bp ) #0. The Lagrangian manifold given by B = b 
represents a canonical transformation, given in terms of the 
one for b = 0 by 

x=X(x',p') +bx, p=P(x',p') +bp , (4.19) 

which can be regarded as the composition of the U-canonical 
transformation with a rigid displacement in phase space. 
This canonical transformation has the Fl -type generating 
function, 

(4.20) 

as follows from the fact that the F J -type generating function 
of the composition of two canonical transformations is just 
the sum ofthe F J -type generating functions of the constitu
ents. The tilde distinguishes the generating function parame
trized by b from the the original one (we have S = S when 
b = 0). Therefore, if we apply the doubled version of 
Miller's formula, Eq. (2.8), to the computation of the simul
taneous eigenfunction of the 2f doubled operators f!g corre
sponding to the classical B 's of Eq. (4.18), we find 

«x,x'lb» = const I n(x,x';b) 
r 

(4.21 ) 

where we use double angle brackets for a double scalar prod
uct, and where 

:) 
a2s 

=det--. (4.22) 
ax ax' 

Here, the tilde on n has the same meaning as omS; and when 
b = 0, we see that n agrees with the amplitude 0 of Eq. 
( 4.16). Therefore, we now have 

I/Jv(x,x') = (xlUlx') = const«x,x'ib = 0»; (4.23) 

apart from normalization, which we deal with momentarily, 
we have completed the classical and semiclassical aspects of 
imbedding our wave function, Lagrangian manifold, and ca
nonical transformation in the required families. 
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Let us now consider the doubled operators !Jj corre
sponding to the classical B's of Eq. (4.18). First we intro
duce certain doubled operators associated with ordinary op
erators. For example, if F is an ordinary operator, we can 
associate it with a doubled operator .5t' F by left multiplica
tion, i.e., 

(4.24) 

where G is any ordinary operator. Similarly, we can associ
ate Fwith another doubled operator &I F by right multiplica
tion, i.e., 

(4.25) 

Then we can represent our desired !Jj's in terms of left and 
right multiplication by 

!Jj i =.5t' x - &lut. u' 
I Xi 

!Jj i + f = .5t' p; - &I utpp' (4.26) 

for i = 1, ... ,/ These !Jj's commute with one another, as is 
easily verified, and their simultaneous eigenoperator U( b) is 
given by 

(xlU(b) Ix') =eixb/li(x_bxIUlx'), (4.27) 

where U = U(O). That is, we have 

!Jj U(b) = bU(b). (4.28) 

We note that U(b) is unitary for all values of b. Equation 
( 4.27) immediately allows us to write down the semiclassi
cal expression for (xlU(b) Ix') in terms of that for (xlU Ix'), 
and it is precisely Eq. (4.21). Therefore, we have now im
bedded our original operator U in a family U(b), whose 
semiclassical and classical representatives are those given 
above, and identified the members of the family as simulta
neous eigenoperators of a complete set of commuting dou
bled operators. 

There remains only the normalization. It is convenient 
not to use the precise transcription ofEq. (2.7) to the dou
bled space, but rather to demand that 

«b Ib'» = (21rli)i8(b - b'). (4.29) 

This has the advantage that the normalized, doubled wave 
function «x,x' I b » is exactly the unitary matrix element 
(xl U(b) Ix'), so that 

Tr[U(b)tU(b')] = (21rli)f8(b-b'). (4.30) 

Thus the constants in Eqs. (4.21) and (4.23) are unity. 
Repeating the calculation leading from Eq. (4.18) to 

(4.28) with U replaced by I, B by A, etc., we derive parallel 
results for the identity canonical transformation. The most 
important of these is 

Ai (x,p,x',p') =xi -x;, 

Ai+f(X,P,x',p') = Pi - p;, 

for i = 1, ... ,f 

(4.31 ) 

There now arises an interesting point. As discussed ear
lier, the use of a complete set of commuting observables such 
as theA 'sofEq. (4.31) ortheB 'sofEq. (4.18), is an altema
tive to working with a density on a Lagrangian manifold. 
Nevertheless, it is of interest to actually compute the density 
on a Lagrangian manifold in the doubled phase space corre-
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sponding to a unitary operator. Any number of coordinate 
systems are available for expressing the density, such as 
(x,x'), (x,p'), etc., and it is easy to see that the density func
tion with respect to one of these coordinate systems is just 

the corresponding amplitude or Van Vleck determinant. 
These density functions can be thought of as arising from 
projecting a density intrinsic to the Lagrangian manifold 
down onto some Lagrangian plane in the doubled phase 
space. There is, however, no reason why the density must be 
projected onto a Lagrangian plane; for example, it could be 
projected onto the (x,p) plane. In the single phase space, 
there would be no point in projecting onto a plane that was 
not Lagrangian, because no corresponding representation 
would exist for the wave functions. But in the doubled phase 
space, it is interesting to do so, because the (x,p) plane has its 
own intrinsic, invariant measure, namely, the Liouville mea
sure dp dx. Not surprisingly, we find that the density on a 
unitary Lagrangian manifold in the doubled phase space, 
when projected onto the (x,p) plane, is constant, i.e., it 
agrees with the Liouville measure there. Thus one can regard 
the doubled wave functions of unitary operators as having 
the simplest semiclassical structure of any doubled wave 
functions, in the sense that everything is specified by the 
Lagrangian manifold alone, since the density is the natural 
measure provided by the geometry. 

It is now easy to compute the semiclassical expression 
for Tr(lt U). Only the amplitude determinant requires any 
calculation; using Eqs. (4.18) and (4.31), we find 

det{A,B} D = det(I ~ ~ - I a: ~:') 
ap' ax' 

= det(M -I), (4.32) 

where M is the symplectic matrix a(X,p)la(x',p'), and 
where we have taken the transpose after the first equality. 
This determinant is to be evaluated at the stationary phase 
points, i.e., the periodic orbits, for which M becomes the 
monodromy matrix. Altogether, the result is 

Tr U = " exp[ (i11l)S(x,x) - i}lC77/2)] . 
£... Idet(M - I) 1112 

(4.33 ) 

The sum is taken over fixed points (x,p) of the U-canonical 
transformation. 

A trace formula of this type was first derived by Tabor, 3 

who quantized the standard map by imbedding it in a contin
uous time system, and then used the stationary phase ap
proximation to take the trace of U(O,n, where Tis the peri
od of the mapping. Our result is slightly more general than 
Tabor's, in that we work in any number of degrees of free
dom, and we make fewer assumptions about the unitary op
erator U. For example, even if U is a time-evolution opera
tor, the system need not be time periodic, or, if it is, the 
elapsed time t - t' need not be a period. These constitute 
minor modifications to Tabor's results, the main point of our 
presentation being the geometrical structure we reveal. 

Equation (4.33) cannot be immediately generalized to 
the case of time-independent systems, because, for such sys
tems, the monodromy matrix M has an eigenvector of eigen-
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value + 1, namely, the flow vector along the periodic orbit, 
(x,P). Therefore, the denominator ofEq. (4.33) vanishes in 
this case, indicating a caustic. The caustic is of the type in 
which the two Lagrangian manifolds intersect over a region 
of dimensionality 1, as discussed in Sec. II B and illustrated 
in Fig. 4. This is the case originally considered by Gutz
willer, and it will be discussed more fully below. For now we 
simply note that the intersection I of the two Lagrangian 
manifolds is just the periodic orbit, and that the appropriate 
scalar product formula is not Eq. (2.16), but rather Eq. 
(2.27). 

Similarly, we must exclude the possibility of constants 
of motion in Eq. (4.33), because the symmetry groups asso
ciated with such constants map orbits into other orbits. In 
particular, they map periodic orbits into other periodic or
bits, thereby creating a continuous family of nonisolated sta
tionary phase points. Evidently, the Hamiltonian, when con
served, has the same effect on the structure of our trace 
formula as any other constant of motion. 

Of course, we may have caustics of Eq. (4.33) even 
when aH I at :;6 0 and no constants of motion exist, such as in 
the case of a periodic orbit of parabolic stability (two eigen
values of M equal to + 1). Typically such stationary phase 
points are still isolated, and the caustic is of the Airy function 
(fold catastrophe) type. The formalism based on the La
grangian manifolds in the doubled phase space makes it clear 
that this caustic is no different from any other Airy function
type caustic in any other system; facts like this have not been 
evident in earlier approaches to trace formulas. (See, how
ever, the analysis by Ozorio de Almeida and Hannay,38 
which reveals a surprisingly complex caustic structure in 
stable periodic orbits whose higher-order iterations are reso
nant.) 

Finally, it is useful to replace U by vt U, as suggested 
earlier, and write out the result. It is 

Tr( vtU) 

= ~ exp{Ulli) [Su(x,x') - Sv(x,x')] - i,u(1T/2)} . 

£.. Idet(M u - Mv) 11/2 

(4.34) 
I 

The sum is over points (x',p') which, when mapped by the 
U-canonical transformation to (x,p), and then again by the 
inverse of the V-canonical transformation, return to (x',p'). 

c. The Weyl correspondence 

Let us now consider the Weyl transform of a unitary 
operator U, which we denote by W u CX,p). This problem has 
been considered by Berry4 in the case that U is the time
evolution operator, as a first step in the derivation of his 
formula for the scars of Wigner functions in phase space. 
Our strategy will be to write the desired Weyl transform as 
the trace of the product of two unitary operators, as in Eq. 
(4.6), to which we can immediately apply Eq. (4.34), identi
fying Vwith the operator W(x,p) ofEq. (4.5). 

In doing this an interesting point arises, namely, that the 
parameters (x,p) of the kernel of the Weyl transform, i.e., 
the location in the (single) phase space at which the function 
W u is to be evaluated, can be interpreted as a complete set of 
2fcommuting functions of (x,p,x',p'), specifying a foliation 
of the doubled phase space into Lagrangian manifolds. This 
follows by using Eq. (4.8) to define (x,p) as functions on the 

doubled phase space, and then by computing the doubled 
Poisson bracket. Therefore, it is not necessary to imbed the 
unitary operator W(x,p) in a family or its corresponding 
Lagrangian manifold in a foliation, since that is already done 
for us. On the other hand, the foliation supplied to us for free 
by the Weyl formalism is really no different from the one we 
guessed in Eq. (4.18), for if we use the averaging canonical 
transformation to define functions A according to 

Ai (x,p,x',p') = Xi + X; = 2Xi' 

Ai+f(X,P,x',p') = Pi + p; = 2Pi' (4.35) 

for i = 1, ... ,f, we see that we have precisely the form we 
guessed in Eq. (4.18). 

The desired Weyl transform is now immediate. The re
sult is 

W (--) -2fI exp{Ulli) [S(x,x') -p(x-x')] -i,u(1T12)} 
u X,p - , 

Idet(M + I) 11/2 
(4.36) 

where S(x,x') is the action of the U-canonical transforma
tion, and where M = Mu. This is the formula originally de
rived by Berry.4 The sum is taken over points (x',p') which, 
when mapped by the U-canonical transformation, yield 
points (x,p) satisfying Eq. (4.8), Berry's "midpoint rule." 
The plus sign in the determinant in the denominator, in con
tnl.st to the minus sign in Eq. (4.22), is a simple consequence 
of replacing the identity canonical transformation by the 
averaging transformation in the computation of det{A,B} D' 

giving Mv = - I. 
In Berry's calculation, the derivation of Eq. (4.36) is 

only the first (and easier) step. The second step consists of 
taking the Fourier transform in time ofEq. (4.36), to obtain 
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I 
the Weyl transform of the Green's function. Although the 
second step only involves a one-dimensional integral, it is 
rather intricate in its execution, leading ultimately to Airy 
function caustics in the neighborhood of periodic orbits. 

In order to limit the scope of this paper, we will not 
pursue this line of investigation here, but rather promise it in 
future work. We will, however, offer the following general 
comments on the relation of the Wigner-Weyl formalism to 
the doubled phase space and its doubled Poisson bracket, 
and then make some final comments on Berry's calculation. 

The considerations raised here reveal several features of 
the Wigner function and Weyl correspondence which other
wise are obscure. For example, consider the obvious fact that 
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the Wigner function can be regarded as a kind of "wave 
function" on phase space. A peculiar feature of this interpre
tation, however, is that (x,p) behave like configuration 
space coordinates, not only because they are the variables 
upon which a wave function depends, but also because they 
play the role of commuting q's when the asymptotics of the 
Wigner function are considered. The present analysis shows 
that (x,p) actually are commuting variables, i.e., under the 
doubled Poisson bracket, and can indeed be taken as a com
plete set of commuting variables on the doubled phase space. 
That is, they constitute one-half of a canonical coordinate 
system on the doubled phase space; the simplest choice for 
the other half is 

x = x - x', P = p - p'. 

These give the commutation relations 

{X;,Xj}D = {P;,Pj}D = 0, 

{Xi>P)D = {Xi>P)D = {)ij' 

(4.37) 

(4.38) 

showing that (x,p;x,p) are canonical variables on the dou
bled phase space. 

For another example, much is known about the caustic 
structure ofWigner functions, especially as a consequence of 
the work of Berry; 39 what the present analysis shows is that 
these caustics are singularities of the projection of one La
grangian manifold in the doubled phase space onto another. 
In other words, the asymptotic structure of the Wigner func
tion can be handled as a special case of Maslov's theory, a 
fact not completely evident when the stationary phase ap
proximation is applied to the formulas of the Wigner-Weyl 
formalism. Indeed, Berry39 regarded the similarities 
between his calculations and Maslov's theory as more super
ficial than real. 

To elaborate on this point, we may contrast the perspec
tive of this paper on caustics, as properties of the intersec
tions of two Lagrangian manifolds in phase space, with the 
usual perspective, in terms of the singularities of the projec
tion of one Lagrangian manifold onto another. The two 
views are equivalent, of course; for example, in a simple case 
we consider tft(x) = (xltft), an ordinary (single) wave func
tion, and regard the caustics as being the singularities of the 
projection of the Lagrangian manifold Lop onto configura
tion space. The projection takes place along lines of constant 
x, themselves Lagrangian manifolds whose intersections 
with Lop gives the picture expressed in Fig. 1 and Eq. (2.16). 
Configuration space can be identified with the subset of 
phase space p = 0, also a Lagrangian plane; but more gener
ally, any surface transverse to the projection would work as 
well. That is, configuration space may be thought of as the 
quotient space under the equivalence engendered by the pro
jection. 

Similarly, in the doubled phase space, the caustics of the 
Weyl transform of an operator can be interpreted in terms of 
the intersections of some Lagrangian manifold [Lu in Eq. 
( 4. 36) ] with the Lagrangian manifolds corresponding to the 
averaging transformation; or in terms of the projection of the 
given Lagrangian manifold onto the plane x = P = O. The 
projection takes place at constant (x,p), which also serve as 
coordinates on the plane x = P = O. In the usual interpreta
tion of the Weyl transform, this latter plane is identified with 
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the (single) phase space, although it could be equally well 
identified with the Lagrangian plane specifying the identity 
canonical transformation, since x = P = 0 implies x = x', 
p = p'. One final comment is that the so-called covariant 
Weyl symbol,36 obtained by using a Heisenberg operator 
T(x,jJ) in Eq. (4.6) instead of the operator W(x,p), corre
sponds to projecting the given Lagrangian manifold onto the 
complementary plane x = p = 0, which is also sometimes 
identified with the single phase space (or a second copy of 
it) . 

These considerations make it evident that the Airy func
tions and interference fringes found by Berry4 for the scars 
ofWigner functions in phase space are a direct consequence 
of projecting a certain Lagrangian manifold in the doubled 
phase space onto the Lagrangian plane representing the 
identity transformation. The proper way to do this is to work 
in the extended, doubled phase space, with coordinates (x, 
p,t,w;x',p',t ',w'), in which the Lagrangian manifold being 
projected is that representing the time evolution. This is so 
because in the extended, doubled space Berry's difficult time 
integral is subsumed under the same geometrical picture as 
all the other integrals. We hope to develop this picture in 
more detail in the future. 

D. The Gutzwiller trace formula 

We obtain the trace formula of Gutzwiller by reconsi
dering the trace of the unitary time-evolution operator, this 
time in the case that the Hamiltonian is conserved, but no 
other conserved quantities exist. It often happens in systems 
with these properties that all the periodic orbits are isolated, 
and we will assume that this is the case. We will set t' = 0 and 
write Tr U(t) = Tr[It U(t)] for the desired trace. 

The manifolds L u and L I intersect in periodic orbits of 
period t, i.e., each point (x,p,x',p') on the intersection satis
fies (x,p) = (x',p'), where (x,p) is on a periodic orbit of 
period t in the single phase space. Since the periodic orbits 
are isolated, the intersections are one dimensional. This situ
ation is illustrated in Fig. 10, although, as mentioned in Sec. 
II, the picture is misleading in that it suggests that the inter
section is stable under small perturbations (it is not). In-

Periodic Orbit 

FIG. 10. In the Gutzwiller trace formula, the Lagrangian manifold in the 
doubled phase space representing the time evolution and that representing 
the identity canonical transformation intersect in the periodic orbits. These 
are the caustics of the system. The one-dimensional character of the inter
section is not stable with respect to small perturbations in phase space. 
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deed, it seems clear that the very existence of this unstable 
configuration is due to a symmetry of the system, in this case, 
symmetry under time displacements. Other symmetries 
would have similar effects. 

The complete set of commuting observables A and B of 
Eqs. (4.18) and (4.31) specify the manifolds L I and L u as 
before, but are not directly suitable for computing the ampli
tude determinant. Instead, we must follow the logic leading 
to Eq. (2.27), because L[ and Lu intersect in a one-dimen
sional curve. This requires us to find a new set of A 's and B 's. 

To begin, we notice that the quantity H(x,p)
H(x',p') generates orbits in the doubled phase space (with 
the doubled Poisson bracket being used to create Hamilton's 
equations) in which both (x,p) and (x',p') follow ordinary 
orbits in their respective phase spaces. Thus if an initial point 
(x,p,x',p') of the doubled phase space is such that (x,p), 
(x',p'), regarded as two points in the single phase space, lie 
on the same orbit with a given elapsed time between them, 
then they stay on this same orbit forever with the same time 
difference. This means that if an initial point (x,p,x',p') of 
the doubled phase space lies on L[, it stays on L[; and simi
larlyifitliesonLu . Therefore,H(x,p) - H(x',p') generates 
displacements along the intersection of L u with L [' and may 
be identified with the functionsA 2 B2 used in Eq. (2.27). 
Furthermore, the variablea2 ofEq. (2.27) can be identified 
with the elapsed time along the periodic orbit, so the integral 
is just the time required to go around the intersection of L[ 
with L u' This is not necessarily the period t of the orbit, 
because the orbit may not be primitive; instead, we have 

i da2 = T=l.-, 
LUIlL} n 

(4.39) 

where T is the primitive period and n is the number of itera
tions of the primitive period in time t. 

Next, we must find 2/ - 1 further A 's and 2f - 1 further 
B 's that commute with one another and which are constant 
on the manifolds L [ and L u , respectively. The pattern estab
lished in Eqs. (4.18) and (4.31) suggests that we let the A 's 
be the difference between the old and new variables in a ca
nonical coordinate system on the single phase space in which 
H is one of the coordinates. We write (17, r,E) for these ca
nonical coordinates, where 17 = (Y,Py) are 2/ - 2 canonical 
variables in a surface of section, where '1' is the elapsed time 
relative to the surface of section, measured along an orbit, 
and where E is interchangeable with H. We then take 

A'l (1/,r,E,1/',r',E') = 17 - 1/', 

A T (7J,r,E,7J',r',E') = '1' - '1", 

AE (7J,r,E,1/',7,E') = E - E', (4.40) 

where the first two equations specify the 2/ - 1 components 
of AI, and the last is A 2 • These A 's commute under the dou
bled Poisson bracket, and vanish on L I' 

Before proceeding to the B's, some comments on the 
coordinate system (17, r,E) are in order. These coordinates 
were used by Berry4 to compute the scars of Wigner func
tions in phase space. Berry did not point out, however, that 
these coordinates are not canonical unless the surface of sec
tion variables 17 in one energy surface are chosen in a particu-
1ar way relative to the 1/'s in nearby energy surfaces. In par-
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ticular, the surface of section variables commonly employed 
in mechanical problems are generally not canonical on the 
full phase space. The problem is the Poisson bracket {7J,r}, 
which does not vanish unless the 1/'S are chosen to be con
stant along the '1' trajectories. The fact that it is possible to 
choose 1/'S that are simultaneously constant along both the '1' 

trajectories and the H trajectories, i.e., so that 
{7J,T} = {7J,H} = 0, is due to the commutativity of the '1' 

flow and the H flow. This in turn is a consequence of the 
relation {T,R} = 1. These facts are a straightforward conse
quence of Darboux's theorem,18,40 in which R is initially 
chosen as one of the canonical coordinates. 

In our analysis we will assume that the constructive pro
gram of Darboux's theorem has been followed, so that 
(1/,T,E) are canonical. We will also let the surfacer = 0, 
which intersects the energy surfacesH Ein the surfaces of 
section, serve as a branch cut for 17 (x,p ) and r(x,p), so that 
these functions are single valued on phase space. Note that 
T(X,p) is time independent, even though it signifies elapsed 
time. 

It is also useful to consider branches of the functions 17 
and T other than the principal one. In particular, let 
1/ F(7J',E') specify (say) the mth return map in the sur
face of section, and let Tret ( 1/',E') be the corresponding re
turn time. Then we introduce the alternative branches of 1/ 
and '1', given by 

f;(1/,E) = F(7J,E), 

1'( 1/, r,E} = '1' - Tret ( 7J,E) , (4.41) 

which are the branches one obtains, not by following an orbit 
from a given point of phase space back to the most previous 
intersection with the surface of section, but rather back to 
the most previous and then forward in time m further inter
sections. The variables (f;,1',E) are also canonical variables 
on phase space, because of the preservation of Poisson brack
ets under Hamiltonian flows. 

We may now write down the B 's, in obvious analogy to 
Eq. (4.18). We have 

B,,(7J,r,E,1/',r',E') = 1/ - f;(7J',E'), 

B r (1/,T,E,1/',r',E') = '1' - 1'(7J',r',E') - t, 

BE (1/,r,E,1/',r',E') = E - E'. (4.42) 

The first 2/ - 1 of these constitute the B I 's and the last is B2 • 

These B's commute and have the property that every point 
on Lu satisfies B = 0 for some m, and conversely; if 
(x,p,x',p') is such a point, m is the number of times the orbit 
connecting (x' ,p') with (x,p) crosses the surface of section. 
Therefore, the intersections of L[ with Lu are given by 
A B = 0 for some m, and points on one of these intersec
tions are on a periodic orbit that crosses the surface of sec
tion m times. This m value must be divisible by n, the number 
of iterations of the primitive periodic orbit. 

The amplitude determinant, which involves a 
(2/ - 1) X (2/ - 1) matrix of doubled Poisson brackets, 
may now be computed. Partitioning this matrix according to 
2/-1 = (2/-2) + 1,wehave 
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aTret) r--
aTJ 

aTret ' 

aE 

(4.43) 

where the tilde represents the transpose and where r is the 
(2/ - 2) X (2/ - 2) constant matrix representing the co
symplectic form. This matrix is to be evaluated on the peri
odic orbit, where TJ = TJ' and E = E'. 

This matrix may be simplified. On the periodic orbit we 
have TJ = F( TJ,E) and t = n T = Tret (TJ,E), so we can elimi
nate TJ and solve for the primitive period Tas a function of E. 
Taking differentials and solving for dT IdE, we have 

n dT = a Tret aF(I _ aF) - I a Tret . (4.44) 
dE aE + aE aTJ aTJ 

This suggests that we multiply the first row of the matrix of 
Eq. (4.42) by the row vector (aF laE)(I - aF laTJ) -Ir- I 

on the left, and add to the second row. We also write 
aF laTJ = M n, where M is the linearized symplectic return 
map in the neighborhood of the primitive periodic orbit. The 
result is 

( 4.45) 

It is now easy to write out the desired trace. The result is 

Tr U(t) = I e - iE"tlli 

n 

1 Texp[(illi)R(t) - iJl(17/2)] 

= ~217"ili Iln(dTldE)lll2ldet(Mn-I)11I2' 
(4.46) 

where En are the energy eigenvalues. The second sum is tak
en over all periodic orbits of period t, for which 
R (t) = nR (n is Hamilton's principal function, evaluated 
around the orbit. This formula generalizes Tabor's result to 
the case that H is conserved. We note that in one degree of 
freedom, in which the surface of section is vacuous, the de
terminant factor in the denominator is simply replaced by 
unity. 

Equation (4.46) is easily converted into a formula for 
the density of states, by performing the time integration of 
Eq. (3.12) by the stationary phase approximation, and then 
taking the imaginary part. In this way we obtain the Gutz
willer trace formula, 

(E) = -(E) + _1_ ~ T cos [n(S(E)IIi) - Jl( 17"/2)] , 
P P 1T"Ii L.. Idet(Mn _I) 1112 

( 4.47) 

wherep(E) is the average density of states, where the sum is 
taken over all periodic orbits of energy E, and where S(E) is 
the reduced action taken around the corresponding primi
tive periodic orbit. The fact that the Maslov index Jl is pro
portional to the number of iterations of the primitive orbit is 
not obvious from this derivation (or from Gutzwiller'S, ei
ther), but is proven by Robbins22 and Creagh, Robbins, and 
Littlejohn.23 

It would be more in accordance with the geometrical 
philosophy of this paper to examine the time integration in 
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terms of Lagrangian manifolds in the extended, doubled 
phase space. We have not done this for several reasons, part
ly to avoid introducing another generalized phase space. 
Nevertheless, there can be no question that this is the space 
in which to fully understand the geometrical structure of the 
Gutzwiller trace formula. For example, the Maslov indices 
of the trace formula are ordinary Maslov indices on a La
grangian manifold in this space, precisely in accordance with 
Maslov's general theory;5 and the caustics that can occur in 
the trace formula are also best understood in this space. 

A trivial yet interesting point about the transition from 
Eq. (4.46) to Eq. (4.47) by time integration is that the trace 
of the propagator (a complexified partition function) and 
the density of states are two representations of the same wave 
function, whose semiclassical expressions are supported by 
Lagrangian manifolds in the time-energy phase plane. The 
Lagrangian manifolds in question are the time-energy curves 
for the periodic orbits, and the periodic orbit sum can be 
interpreted as a sum over the branches of a WKB wave func
tion. Interesting examples of these Lagrangian manifolds 
have been presented by Baranger and Davies.41 These La
grangian curves can also be regarded as slices through other 
Lagrangian manifolds in a phase space of higher dimension
ality. 

v. CONCLUSIONS 

We will now conclude by commenting on the results 
presented and raising questions for further investigation. 

First let us consider the results of Sec. II, in which the 
scalar product (a I b ) is expressed in terms of intersections of 
Lagrangian manifolds in phase space. We have worked out 
the simplest case, in which the Lagrangian manifolds inter
sect transversally at isolated points. The next simplest case 
would be the one in which the Lagrangian manifolds inter
sect in partial or complete tangency, but still at isolated 
points. This case leads to the standard theory of caustics and 
catastrophes,I7 but it would be interesting to see the geomet
rical elements involved expressed in terms of the A and B 
foliations. As discussed in Sec. IV, this case would be useful 
for providing new insights into the caustic structure of 
Wigner functions, a matter of some interest recently, since 
Berry4 has shown that the scars of periodic orbits in phase 
space are precisely such caustics. 

Another case, which we did develop in Sec. II, is the one 
in which the A and B manifolds intersect in surfaces of di
mensionality greater than zero. Here we assumed that there 
existed some coordinate transformations, replacing both the 
A 's and B 's by functions of themselves, such that some num
ber of the new A 's would. coincide with the same number of 
new B 's. This assumption leads to a simplification of the 
computation of the scalar product (alb), in that the inte
grand becomes independent of a 2 , as discussed in the deriva
tion ofEq. (2.27). Although this assumption makes the case 
we considered a rather special one, it is the simplest case of 
higher dimensional intersections of Lagrangian manifolds, 
and it is also the one we need for the Gutzwiller trace for
mula. It also explains, in a sense, why Gutzwiller is able to do 
the time integral around the periodic orbit, i.e., why the inte
grand is independent of time. 
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But it is not the most general case of higher dimensional 
intersections of Lagrangian manifolds, as counterexamples 
will show. Therefore, the question is raised, what is the deep
er meaning of the existence of a coordinate transformation 
causing some A 's and B 's to coincide? The answer seems to 
be connected with symmetries, in the sense that any observ
able which can be expressed as a function of only the A's, or 
alternatively of only the B's, must commute with both of 
them; and the set of all such functions forms an Abelian 
group. No doubt the proper way to express the scalar prod
uct (alb) of Eq.(2.27) would be in terms of some original 
collection of A 'sandB 's, combined with the generators ofthe 
symmetry group. This would yield a much more elegant cal
culation of Tr U(t), in the case of a time-independent sys
tem, than the one we presented in Sec. IV, in that it would 
not be necessary to work with surface of section coordinates. 
Instead, we could work with the original x's and p's, and the 
generator of the symmetry group, H(x,p) - H(x',p'). 

Perhaps the most interesting result of Sec. III, as simple 
as it is, is the realization of the close connection between the 
Green's function and the propagator in the surface of sec
tion. This shows, in a sense, why the surface of section mono
dromy matrix occurs in Gutzwiller's formula, while that for 
the full phase space occurs in Tabor's. In fact, apart from the 
period Tofthe orbit in Gutzwiller's formula and the reduc
tion of the dynamics by one degree of freedom, the two for
mulas are identical. The factor T can be explained as arising 
from the fact that the surface of section evolution is really 
governed by H, the real Hamiltonian, and not by the Hamil
tonian F for the surface of section evolution. This fact also 
explains why Gutzwiller's trace formula cannot be repre
sented as a sum over the quasi phases of the nominal quan
tized surface of section mapping (a tempting idea which was 
not mentioned in Sec. III because it fails). 

A natural extension of the work of Sec. IV would be to 
include the effects of arbitrary symmetry groups. The ex
treme cases of complete integrability and complete chaos are 
well known, but intermediate cases are less so. Non-Abelian 
symmetries, such as rotation, would be interesting to incor
porate into the geometrical framework presented here; this 
would build on the work of Strutinskii and Magner,42 but 
operating from a rather different standpoint. Discrete sym
metries in the trace formula have already been dealt with by 
Robbins.43 There are also certain improvements that can be 
made in the elimination of degrees of freedom from the am
plitude determinant of the trace formula, when symmetries 
exist. Finally, one should work in an extended phase space, 
in order to geometrize the time integrations and place them 
on an equal footing with all the others. These and other is
sues will be considered in the future. 
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In this paper, the relationship between Witten's approach to the (2 + 1 )-dimensional, vacuum 
Einstein equations (for spatially compact space-times) and the conventional Annowitt, Deser, 
and Misner (ADM) Hamiltonian approach is discussed. It is argued (especially for the space
times with higher genus Cauchy surfaces) that neither approach is complete in itself, Witten's 
because it does not provide a technique (even at the classical level) for recovering the space
time metric and the conventional approach because it provides no mechanism for solving a 
seemingly intractable set of Hamilton equations. It is also argued, however, that the two 
formulations are instead complementary in the sense that the Wilson loops, which playa key 
role in Witten's approach, provide (at least in principle) a mechanism for solving the reduced 
Hamilton equations and thereby completing the picture at the classical level. An example of 
this synthesis for the (explicitly computable) case of genus-one hypersurfaces is provided. The 
more tenuous problem of whether this synthesis can be extended to the quantized Einstein 
equations will also be discussed. A principal open question is whether the Wilson loops, when 
expressed in terms of the ADM canonical variables, can be ordered in such a way as to 
preserve, quantum mechanically, their (classical) Poisson bracket algebra. 

I. INTRODUCTION 

In a recent paper, Witten has argued that the (2 + 1)
dimensional, vacuum Einstein equations are an exactly solv
able system both classically and quantum mechanically. 1 At 
first glance the result sounds obvious since, in 2 + 1 dimen
sions, Einstein's equations imply that space-time is flat. 
Thus there seem to be no gravitational degrees of freedom 
left to study. On manifolds of the form ~ X R however, 
where ~ is a compact, orientable surface, there are topologi
cal degrees of freedom to consider and Witten's conclusion is 
far from evident. In fact, if one attempts to study the dynam
ics of these topological variables (which can be thought of as 
coordinates on the cotangent bundle of the Teichmiiller 
space associated to ~) by conventional Hamiltonian meth
ods one finds (at least in the more interesting cases for which 
the genus g of ~ is greater than or equal to 2), a seemingly 
intractable Hamiltonian governing the dynamics. 2 

By contrast, Witten finds that the classical solutions can 
be labeled by a set offunctions (which can also be thought of 
as coordinates for the cotangent bundle of Teichmiiller 
space) that have no dynamics at all, i.e., which are constants 
of the motion for the dynamics determined by Einstein's 
equations. Of these 12 g-12 independent coordinate func
tions (when g»2), Witten chooses a Poisson commuting 
subset of 6 g-6 functions that determine a real polarization 
on the phase space and formulates the associated quantum 
Hilbert space as the space of square integrable, complex 
functions of these 6 g-6 commuting coordinates. Since both 
the coordinates and their conjugate momenta are constants 
of the motion in this formulation, the Hamiltonian is identi
cally zero and thus there is no Schrodinger equation or Hei
senberg equations of motion to consider. The dynamics are 
trivia/both classically and quantum mechanically. 

There is a rigorous and coordinate independent sense 
(at the classical level) however in which the dynamics of 

these solutions are genuinely nontrivial. One can prove (by 
the same methods discussed in Ref. 3 for the vacuum Ein
stein equations in 3 + 1 dimensions) that none of the solu
tions discussed in Ref. 2 (with g»2) are stationary (Le., 
admit a globally defined timelike Killing field) and that only 
a 6 g-6-dimensional subfamily of the 12 g-12-dimensional 
space of these classical solutions are homothetically station
ary (i.e., admit a globally defined timelike, homothetic Kill
ing field). This latter set is well known and can be recovered, 
as also noted by Witten, by taking the quotient of three
dimensional Minkowski space with respect to suitably cho
sen discrete subgroups of the Lorentz group. The dynamics 
in this case are a relatively simple "rescaling" that reflects 
the homothetic symmetry of these solutions. These particu
lar solutions can easily be recovered from the Hamiltonian 
analysis of Ref. 2 as well. The highly nontrivial evolution of 
the canonical coordinates for the remaining solutions, deter
mined in principle by the solution of the Hamilton equa
tions, reflects the nonstationarity of these solutions (in even 
the homothetic sense). 

How can one reconcile the simple picture provided by 
Witten with the dramatically more complicated convention
al point of view, or is there a genuine conflict in the two 
analyses? An answer begins to emerge when one looks more 
carefully at the constants of the motion that Witten uses to 
coordinatize the classical phase space. These constants of the 
motion arise as "Wilson loops" for a connection of an 
ISO( 2,1) bundle over space-time that Witten introduces in 
order to reformulate the Einstein equations as an effective 
"Chern-Simons gauge theory." One can evaluate the Wilson 
loops, for example, on a spacelike hypersurface diffeomor
phic to ~ and then discover that the results of the computa
tion are invariant under deformations of ~ as a consequence 
of the flatness of the ISO(2,1) connection (which corre
sponds, in the Chern-Simons formulation, to the flatness of 
the space-time). Thus the Wilson loops, which provide the 

2978 J. Math. Phys. 31 (12), December 1990 0022-2488/90/122978-05$03.00 @ 1990 American Institute of PhYSics 2978 



                                                                                                                                    

topological information needed to characterize the solu
tions, are invariant under time translation no matter what 
gauge one chooses to represent "time." This is so in spite of 
the fact that there is a genuine evolution of the geometrical 
properties of the hypersurfaces taking place, under such 
time translation, which reflects the nonstationarity of the 
space-times being considered. In general, if one deforms l: to 
some l:' the first and second fundamental forms induced on 
these hypersurfaces by the space-time metric changes ac
cordingly and are determined in principle (for the special 
case in which l: and l:' are hypersurfaces of constant mean 
curvature) by the solution of the Hamilton equations dis
cussed in Ref. 2. 

But the Wilson loops, by their very constancy, are insen
sitive to this deformation and therefore cannot, by them
selves, distinguish anyone hypersurface in the chosen space
time from any other. They may label the chosen space-time 
unambiguously (and in a way which is hypersurface inde
pendent) but they give, by themselves, no information about 
the (equally invariantly defined) evolution which is rigor
ously known to be taking place. To recover the space-time 
metric however, a knowledge of this evolution is unavoid
able since that is exactly what the metric itself must describe. 
Indeed Witten's paper offers no examples (other than the 
special ones with homothetic symmetry and therefore trivial 
evolution in even the Hamiltonian sense) of metrics that 
satisfy Einstein's equations on l: X R and provides no direct 
method for their construction except to say that they can in 
principle be obtained by taking quotients of Minkowski 
space by suitably chosen discrete subgroups of the Poincare 
group. 

What seems unsatisfying about this state of affairs is 
that there are interesting dynamical questions about the 
class of space-times under study which neither approach 
seems capable of answering. In particular one could ask 
whether the classical solutions have any tendency to 
"change topology" in the sense that, under evolution, their 
genus g hypersurfaces evolve to "pinch ofr' toward some
thing like a connected sum of lower genus surfaces or 
whether, conversely, the solutions could exhibit a "global 
existence" property which excludes such singular behavior 
over the maximal allowed range of the mean curvature time 
variable 1" [i.e., over the range of either 1" E (0, (0) or ( - 00, 

0)]. These are interesting open questions which neither ap
proach seems at present able to answer; Witten's because his 
variables are insensitive to the evolution altogether and the 
conventional Hamiltonian approach because of the apparent 
intractability of the Hamiltonian. 

The main point of this paper is to suggest that there may 
be a well-defined way of answering such questions and, at the 
same time, of reconciling the disparate viewpoints described 
above. The basic idea is simply to evaluate the Wilson loops in 
terms of the conventional Hamiltonian variables. This can 
always be done (at least in principle) since, on the one hand, 
the Hamiltonian variables completely determine the metri
cal properties of the space-time relative to the constant mean 
curvature time slicing (and modulo spatial coordinate gauge 
transformations) and since, on the other, the Wilson loops 
are invariant with respect to local Lorentz and coordinate 
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gauge transformations (and thus pass to the quotient space 
parametrized by the Hamiltonian variables). The resulting 
mapping connecting the 12g-12 Hamiltonian variables and 
the 12 g-12 independent Wilson loops cannot simply be a 
fixed (local) diffeomorphism of the phase space but must 
incorporate the mean curvature variable 1" which plays the 
role of time. Otherwise, one could simply solve for the Ham
iltonian variables and discover that they are necessarily con
stants of the motion-a conclusion which is known to be 
false. 

The idea however is to solve for the Hamiltonian vari
ables in terms of the complete set of Wilson loops and the 
time variable 1" and thus to derive the general solution of the 
otherwise seemingly intractable Hamilton equations with
out ever writing down the Hamiltonian itself. Thus given the 
general solution of Hamilton's equations one could retrace 
the steps of Ref. 2 in reverse order and (at least in principle) 
reconstruct the space-time metric corresponding to any par
ticular such solution. 

We have not yet shown that this procedure is always 
mathematically well defined in the higher genus cases. In 
particular, the transformation might fail to be smoothly in
vertible (even locally) but this seems rather unlikely. In the 
following section we shall derive the transformation explicit
ly for the one case where everything is explicitly computa
ble-the genus-one case for which l: is diffeomorphic to the 
two-torus. In this case we shall find that transformation is 
indeed smoothly invertible almost everywhere and repro
duces the known exact solution for the T2 XR space-times. 
As is well known, the solution curves for this problem coin
cide with geodesics on hyperbolic two-space (which is the 
associated "Teichmiiller" space for T2) although 1" does not 
coincide with affine parametrization of these geodesics. 

Even in the absence of mathematical subtleties however 
the transformation suggested above can probably not be giv
en explicitly in the higher genus cases. The reason for this is 
that the evaluation of the Wilson loops in terms of the Ham
iltonian Cauchy data apparently requires some highly non
trivial mathematical operations such as the solution of the 
Lichnerowicz equation for the conformal factor that imple
ments the Hamiltonian constraint. On the other hand it 
seems plausible that a proof of the smooth invertibility (al
most everywhere) of this transformation might be possible 
and that such a proof would provide an affirmative answer to 
the "global existence" conjecture mentioned above and 
thereby exclude the possibility of "topology change" for the 
classical solutions throughout the maximal allowed range of 
mean curvature (i.e., the range which exhausts the maximal 
Cauchy developments of the space-times under study). 

The above remarks have mostly concerned the solution 
of the classical Einstein equations but Witten's paper also 
deals with their quantum counterpart and a proposal for 
solving (2 + 1 )-dimensional quantum gravity by means of 
Wilson loops as well. At the classical level our point of view 
has been that the Wilson loops by themselves are incomplete 
(except as labels for the classical solutions) and that a full 
solution of the classical Einstein equations (which, at least in 
principle, entails the reconstruction of the space-time met
rics) requires the computation of these conserved quantities 
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in terms of more conventional Hamiltonian Cauchy data. 
For similar reasons, one might question whether Witten's 
quantum solution is satisfying as it stands. 

His proposal is to choose a Poisson commuting subset of 
6 g-6 independent Wilson loops (which can be thought of 
as coordinates on a space diffeomorphic to Teichmiiller 
space) and to define the quantum Hilbert space as the space 
of complex-valued square integrable functions of these "ca
nonical coordinates." Since both these Wilson loops and 
their conjugate partners are constants of the (classical) mo
tion the Hamiltonian is identically zero and thus there is no 
quantum Schrodinger equation or Heisenberg equations of 
motion to consider. This is the quantum analog of the fact 
that, as far as the Wilson loops themselves are concerned, 
there are no Hamilton equations to consider in the classical 
theory. 

From our point of view, however, the constancy of the 
Wilson loops is analogous to the fact that any classical Ham
iltonian system may be transformed by a time-dependent ca
nonical transformation to a new set of canonical variables 
(via Hamilton-Jacobi theory, for example) which are all 
constants of the motion. From this point of view Witten's 
quantization procedure would seem to correspond to first 
expressing the classical problem in terms of variables for 
which the Hamiltonian is identically zero (the usual objec
tive of Hamilton-Jacobi theory) and then "quantizing" the 
transformed classical problem by simply declaring that it's 
quantum Hilbert space is the space of complex square inte
grable functions of a complete commuting subset of the new 
canonical variables. 

By contrast to this procedure one could adopt the more 
conventional approach to quantization by taking the re
duced Hamiltonian (which is nonzero) and formulating, 
after a suitable choice of operator ordering, either the Schro
dinger equation or the Heisenberg equations of motion. For 
the example to be discussed below this quantization is per
fectly tractable since, for example, the eigenstates of the as
sociated Schrodinger operator are simply the eigenfunctions 
of the Laplacian on hyperbolic two-space. For the higher 
genus cases, however, this approach seems completely in
tractable since, as we have mentioned, even the classical 
expression for the Hamiltonian is not known explicitly. 

Perhaps, however, there is a quantum analog to the 
technique we described above for solving the classical Ham
ilton equations by means of the Wilson loops. The idea 
would be first to try to choose an operator ordering in the 
quantized expressions for the Wilson loops that preserves 
(as far as possible) the Poisson bracket algebra of these con
stants of the motion. One could then try to regard the result
ing expressions as an implicit solution of the associated Hei
senberg equations of motion which, in principle, determines 
the conventional canonical coordinate and momentum oper
ators as functions of certain constant operators and the time 
variable 7. 

Given the implicit nature of the Wilson loop expressions 
(in the higher genus cases) there is no guarantee that this 
program can be made to work. It is interesting to note how
ever that, in the context of spatially open space-times with 
point particle sources, Martin has been able to prescribe an 
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ordering of the quantized Wilson loops that preserves their 
classical commutation relations.4 He is working however 
with Witten's original unreduced canonical variables (the 
orthonormal frame and associated Lorentz connection) in 
terms of which the Wilson loops are always linear in the 
canonical momenta (Le., in the frame fields). As we shall see 
in the example given below the reduced expressions for the 
Wilson loop integrals no longer have this simple linearity 
property (when expressed in terms of the conventional ca
nonical variables) so it is not clear whether Martin's result 
can be preserved upon reduction for the quantum problems 
considered here. 

II. FLAT SPACE-TIMES ON T2XR VIA WILSON LOOPS 

As discussed in Ref. 2 the fiat metrics on T2 X Rare 
spatially homogeneous and can be expressed in suitable co
ordinates (for which Xl and x 2 are "angle" coordinates on 
S\ each defined mod 217') in the form: 

di- = - N(t)2 dt 2 + e2JL(t) (dX I )2 

(1) 

To compute the Wilson loops we introduce the orthonormal 
frame: 

e(O) = N(t)dt, e(l) = eIl(t) dXI, 

e(2) = eV(t)(dx2 + P(t)dx l ) (2) 

and compute the connection one-forms C!l(a)(b) 

= C!l(a)(b)JL dxJL, 

C!l(1)(O) = -C!l(O)(1) =A(t)dx l +C(t)dx2, 

C!l(2)(O) = - C!l(O)(2) = B(t)dxl + D(t)dx2, (3) 

C!l(1)(2) = - C!l(2)(1) = !eV(t) -JL(t)P,t dt, 

where 

A(t) = [lIN(t)](eIlp,t +!e2v - JLpp,t), 

B(t) = [lIN(t) ](peVV,t + !eVp,t), 

C(t) = [lIN(t) ](!e2v - JLp,t), 

D(t) = [lIN(t)](eVv,t)' 

(4) 

Since the components of these one-forms are independent of 
position on the t = constant hypersurfaces it is relatively 
easy to compute the Wilson loops for simple closed curves of 
the form x2 = constant (the "a-loops") or Xl = constant 
(the "b loops") or Xl = (plq) x 2 ("twisting loops") byap
plying the techniques used by Martin in Ref. 4. The twisting 
loops do not give additional independent conserved quanti
ties but instead give certain functions of the conserved quan
tities determined by the a and b loops. Nevertheless, it is of 
interest to carry them along as though they were indepen
dent quantities. From the first representation ofISO(2,1) 
discussed by Martin one gets the conserved quantities 

C l =A(t)2+B(t)2, C2 =C(t)2+D(t)2, (5) 

from the a and b loops, respectively, and 

C3 = A (t)C(t) +B(t)D(t), (6) 

from the twisting loops. From the second representation dis
cussed by Martin one gets 
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C
4 

= e"(t)B(t) - ev(t){3(t)A(t), 

Cs = ev(t)C(t), (7) 

from the a and b loops, respectively, and 

C
6 

= e"(t)D(t) - ev(t)A(t) - eV ('){3(t)C(t) (8) 

from the twisting loops. It is straightforward to verify direct
ly that CI -C6 are conserved by Einstein's equations but this 
will follow more immediately after passing to the Hamilto
nian formulation. 

It is convenient to define the new variables 

(9) 

and to introduce their conjugate momenta PI' P2' P3 in the 
usual way, 

( 10) 

where {gab,1T"b} are the conventional Arnowitt, Deser, and 
Misner (ADM) canonical variables. In these variables ql 
and q2 parametrize the conformal metric 

hab = gab/~(2)g, (11) 

while q3 parametrizes the volume element and the mean cur
vature 1'is given by 

l' = P3/eq'. (12) 

As discussed in Ref. 2 (but with a different normalization of 
the time variable chosen to avoid the factors of 2 1T occurring 
there) we can solve the Hamiltonian constraint for the spa
tial volume element and impose the temporal coordinate 
condition l' = e' to obtain the reduced ADM Hamiltonian 
for the unconstrained variables {ql,q2,PI ,P2}' The result is 

( 13) 

which can be viewed as the square root of the usual generator 
for geodesic motion on hyperbolic two-space which, in these 
coordinates, is simply R 2 equipped with the metric 

(14) 

Since H is conserved it generates the same solution curves as 
H2, but relative to a nonconventional affine parameter 
(whose relation to the usual one depends on the value of H). 

We can now express the conserved quantities deter
mined by the Wilson loops in terms of the unconstrained 
canonical variables. The result is 

CI = !1'e- q'{(H - PI)(1 + (q2)2e2ql ) 

- 2 (q2P2 - PI )}, 

C2 = !1'e
ql 

(H - PI ), 

C3 = !1'eq' {q2(H - PI) - P2 e - 2ql }, 

C4 = Hp2e-2q' + 2q2pI - P2 (q2f}, 

Cs = !P2' C6 = PI - q
Z
P2' 

(15) 

As mentioned previously these are not all independent but in 
fact satisfy 

H 2=(C6 )2+4C4 CS ' (C3)Z=CICZ' (16) 
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It is not difficult to check that C4 , Cs , and C6 are the usual 
conserved quantities associated with the SL(2, R) isometry 
group of hyperbolic two-space; one can read off the Killing 
fields as coefficients of the canonical momenta. The first 
three quantities, CI , C2 , and C3 , depend explicitly upon the 
time through the factor l' = e', but it is straightforward to 
check that their Poisson brackets with H cancel their deriva
tives with respect to the explicit dependence on t and thus 
that they are conserved as expected. 

Although it is far from obvious from their expressions in 
terms of the ADM variables, it is also straightforward to 
check that CI , C2 , and C3 Poisson commute with one an
other. In Witten's approach to quantization one would take 
two of these variables, say CI and Cz , as independent canoni
cal coordinates and express the physical states as time inde
pendent, square integrable, complex-valued functions of 
these quantities. In the more conventional approach to 
quantization one would construct the operator analog of H 
(which, in this case, would be the square root ofthe negative 
of the usual covariant Laplacian on hyperbolic two-space) 
and formulate either the SchrOdinger equation or Heisen
berg equations of motion in terms of it. It seems far from 
clear whether there is any precise (e.g., unitary) connection 
between these two different "quantizations." 

From the classical point of view however there is no 
inconsistency in the different formulations. Indeed one can 
simply choose four independent conserved quantities, CI , 

C2, C4 , and Cs ' for example, set them equal to constant 
values and solve the resulting set of simultaneous equations 
for the ADM canonical variables as functions of the chosen 
constants and the time variable 1'. In this way one solves the 
Hamilton equations by purely algebraic manipulations. The 
algebra can be carried out explicitly for the present problem 
but is slightly tedious since there are several sign choices to 
be considered in getting all the different roots and since the 
chosen conserved quantities are not globally independent on 
phase space (although they are independent almost every
where). It is of interest to note however that if one computes 
the Jacobian determinant of the transformation expressing 
{CI ,CZ,C4 ,CS } in terms of {ql,qZ,PI ,P2} the result is simply 
- (C3 )2 and is thus constant along solution curves. Thus 

the chosen Wilson loop constants fail to provide a good coor
dinate system for the space of solutions only for those partic
ular solutions characterized by C3 = O. It seems likely that 
one could "patch the seams" in this coordinate system by 
making a different choice of Wilson loop constants to cover 
the solutions excluded in the choice above but we shall not 
pursue that issue here. 

Even though the conventional approach to quantization 
is perfectly tractable for the present problem it is of interest 
to ask whether one could sidestep the direct solution of 
Schrodinger's equation but arrive at an equivalent quantum 
mechanical solution by using a suitably quantized form of 
the Wilson loop constants of motion to solve the Heisenberg 
equations of motion. This would be the direct quantum ana
log of the method used above to solve Hamilton's equations 
for the classical problem. To see what one might mean by a 
"suitably quantized form" of the Wilson loop constants let 
us first consider the complete algebra of their Poisson brack-
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ets in the classical theory. It is straightforward to verify that 
if one defines 

PO=~(CI+C2)' PI=~(CI-C2)' P2 =C3 , 

J I2 = Cs - C4 , Jot = - C6 , J02 = C4 + Cs, (17) 

and identifies the {PI'} as the translation generators and the 
{Jl'v} as the rotation and boost generators in three-dimen
sional Minkowski space then indeed the Poisson brackets of 
these quantities generate precisely the Lie algebra of 
ISO(2,1), the Poincare group in three dimensions. Thus it 
seems clear that if one wishes to find an "inverse solution" of 
the Heisenberg equations by means of the Wilson loop con
stants he should seek an ordering of the canonical variables 
{ql,q2,PI ,P2} in the expressions for the generators {PI' ,Jl'v} 
so as to preserve the Lie algebra of the Poincare group. 

We conclude this section by pointing out that the lack of 
independence of the constants of the motion {CI -C6 ,H} 
pointed out above has an elegant expression in terms of the 
Poincare group generators: 

H2 = (JOI)2 + (J02)2 - (J\2 )2, - Po 2 + p I
2 + p2

2 = O. 
(18) 

III. CONCLUDING REMARKS 

One often hears of the desirability of constructing a 
complete set of "observables" for the gravitational field, i.e., 
a maximal independent set off unctions of the ADM canoni
cal variables {gab,1T"b} which Poisson commute with all of 
the constraints and thus define a complete set of constants of 
the motion for Einstein's equations. Indeed this is a key step 
in the long-standing program of Bergmann and Komar to 
quantize gravity in 3 + 1 dimensions. S One aspect of Wit
ten's work (as well as that of Ashtekar et al. in a closely 
related work based on the use of Ashtekar's variables6 

) has 
been to show that the Wilson loops provide a set of observa
bles for the gravitational field in 2 + 1 dimensions. 

A main point of this paper has been however that such 
observables, by themselves, merely provide an unambiguous 
set of labels for the space-times in question and do not yield, 
without further information, the geometrical properties of 
these space-times. In this respect they are somewhat analo
gous to the complete sets of initial positions and momenta 
that label the solutions of any problem in Hamiltonian me- . 
chanics. To understand the properties of the solutions them
selves one needs to know the transformation which relates 
these labels to the conventional canonical variables. 

The Wilson loops, however, are in principle expressible 
in terms of the conventional Cauchy data induced on an 
arbitrary slicing of space-time. If one expresses these loops in 
terms of the Cauchy data for the chosen slicing, he should 
obtain an implicit form of the solution of the reduced Ein
stein equations. From this point of view Witten's approach 
and the conventional Hamiltonian one are complementary to 
one another. Neither provides a full solution to the (classi
cal) vacuum Einstein problem (in say the higher genus 
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cases) but together they have the potential of solving this 
problem in at least an implicit way. 

The connection between Witten's approach and the 
conventional one seems much more tenuous at the quantum 
level however. Here, to use the Wilson loops to solve the 
Heisenberg equations of motion implicitly, one would pre
sumably need to order the operator expressions for these 
(classically) conserved quantities so that the quantum com
mutator algebra preserves the classical Poisson bracket alge
bra. Whether this can be done in general or whether the 
solution, ifit exists, is unique are open questions. The results 
ofMartin4 and Carlip7 on the somewhat related problem of 
particle scattering in spatially open geometries (via Wilson 
loops) may provide some insights in this direction as could a 
further development of the suggestions made in this paper or 
those of Ashtekar et al. in Ref. 6. 

An interesting question about (2 + 1 )-dimensional 
quantum gravity which we have not really touched upon is 
whether general covariance is compatible with quantization. 
The Hamiltonian approach described in Ref. 2 and used in 
the present paper works with a rigidly fixed temporal gauge 
condition, the constant mean curvature slicing, often called 
the York time gauge. In principle, one could have formulat
ed the reduced Einstein equations in terms of an arbitrary 
slicing and appealed to the Wilson loop constants to solve 
the associated classical equations of motion. Quantum me
chanically however it is far from evident that a correspond
ing solution exists (for the higher genus cases) in even a 
single such gauge, much less in an arbitrary one. 

What, after all, is a quantum space-time and does such 
an object admit a representation in terms of different space
like slicings? These questions seem interesting and nontrivial 
even in the context ofthe T2 X R models studied here, not to 
mention the higher genus cases where an explicit formula
tion still seems out of reach. 
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The Einstein equations with a cosmological constant, when restricted to Euclidean space-times 
with anti-self-dual Weyl tensor, can be replaced by a quadratic condition on the curvature of 
an SU(2) (spin) connection. As has been shown elsewhere, when the cosmological constant is 
positive and the space-time is compact, the moduli space of gauge-inequivalent solutions to this 
equation is discrete, i.e., zero dimensional; when the cosmological constant is negative, the 
dimension of the moduli space is essentially controlled by the Atiyah-Singer index theorem 
provided the field equations are linearization stable. It is shown that linearization instability 
occurs whenever the unperturbed geometry possesses a Killing vector and/or a "harmonic 
Weyl spinor." It is then proven that while there are no Killing vectors on compact conformally 
anti-self-dual Einstein spaces with a negative cosmological constant, it is possible to have 
harmonic Weyl spinors. Therefore, the conformally anti-self-dual Einstein equations on a 
compact Euclidean manifold are linearization stable when the cosmological constant is 
negative provided the unperturbed geometry admits no harmonic Weyl spinors. 

I. INTRODUCTION 

Recent work of Samuel) as well as Capovilla, Dell, and 
lacobson2 has shown that the Euclidean signature Einstein 
equations with a nonzero cosmological constant, when re
stricted to geometries with an anti-self-dual Weyl tensor, can 
be replaced by five quadratic conditions on the curvature of 
an SU (2) spin connection on the space-time manifold M: 

! F[ab (ABFcd I CD) = O. (1.1) 

In the equation above, Fab is the curvature of the left-handed 
spin connection; lower-case Latin indices are abstract space
time indices while capital Latin indices are abstract SU(2) 
spinor indices that are raised and lowered with the antisym
metric spinor ~B and its inverse. As shown in Ref. 2, ( 1.1) is 
equivalent to the statement that 

Fab AB = _ iAl:ab AB, 

where 

( 1.2) 

l:ab AB:=2Y[a AA 'YblA,B, (1.3) 

and A is the cosmological constant. 3 In (1.3) Ya is an 
SU (2) X SU (2) soldering form which defines the metric4 

via 

(1.4 ) 

the metric in turn defines a Hodge duality operation with 
respect to which l:ab-and, from (1.2), Fab-are self-dual. 
In a solution to (1.1), the curvature Fab corresponds to the 
self-dual part of the Riemann tensor; ( 1.2) then implies that 
the Weyl tensor is anti-self-dual. Conversely, every confor
mally anti-self-dual Einstein space arises as a solution to 
(1.1).5 

In Ref. 6 we began a study of the space of solutions to the 
conformally anti-self-dual Einstein equations by analyzing 

a) Current address: Physics Dept., Syracuse Univ., Syracuse, NY 13244-
1130. 

the linearized version of (1.1), which is given by 

D C· D (ABD C CD) 0 ) . = r[ab c d I =. ( 1.5) 

Here, Ca is the perturbation ofthe left-handed spin connec
tion and Dais the corresponding (unperturbed) derivative 
operator with curvature Fab ; Eq. ( 1.5) is obtained only if the 
unperturbed curvature satisfies (1.1). The linearized equa
tion (1.5) admits an infinite number of solutions that are 
generated by the action of the "gauge group" of general rela
tivity which, in the formalism being used here, is a semidirect 
product of the diffeomorphism and local SU(2) groups. In
finitesimal gauge transformations correspond to perturba
tions of the form (see Ref. 6 for details) 

Ca = Do (f,M,N): = (Vty)Fba + [DbM,Fba ] + DaN, 
( 1.6) 

where Nand Mare su(2)-valued functions7 and/is a real
valued function. Here, and in what follows, space-time in
dices are lowered and raised by the metric associated with 
the unperturbed solution to (1.1). Notice that we are using 
an su(2) matrix notation which suppresses spinor indices, 
e.g., the bracket in (1.6) is an su(2) commutator. As all 
perturbations of the form ( 1.6) solve ( 1.5), one is naturally 
lead to study gauge-inequivalent solutions of the linearized 
equations; they are the equivalence classes 

[C] = kernel D) /image Do. (1. 7) 

One of the central results of Ref. 6 was that these equiv
alence classes arise as the kernel of an elliptic operator D: 

[C] = kernel D, (1.8) 

where 

( 1.9) 

DtC = (tr FabDaCb; [DaCb,Fab]; - Daca). (1.10) 

The operator in Eq. (1.10) corresponds to the L 2 adjoint of 
Do; here and in what follows we extend the action of D a to 
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include tensor indices via the unique torsion-free derivative 
operator compatible with the metric obtained from the solu
tion to ( 1.1 ). Because D is an elliptic operator on a compact 
manifold without boundary (we shall only work with such 
manifolds) it is clear that the gauge-inequivalent solutions to 
( 1.5) form a finite-dimensional subspace of all possible per
turbations. Furthermore, it was shown6 that when the cos
mological constant is positive ( 1.5) admits only trivial (pure 
gauge) solutions; thus the moduli space of left-handed spin 
connections on conformally anti-self-dual Einstein spaces is 
discrete, i.e., zero dimensional, in this case. It was pointed 
out that the dimension of [C] in the A < 0 case could be 
determined via the Atiyah-Singer index theorem, however, 
the utility of this result for a determination of the dimension 
of the corresponding moduli space of gauge-inequivalent so
lutions to (1.1) depends on the linearization stability of 
( 1.1 ), i.e., on whether every solution of ( 1. 5) is an approxi
mation to a solution of ( 1.1 ) modulo gauge transformations. 
As shown in Ref. 6, Eq. (1.1) is linearization stable if the 
adjoint of the operator D has a trivial kernel. Here, the ad
joint is defined as 

D*=(Dt,Do), (1.11) 

where D t, which is the L 2 adjoint of D), acts on totally 
symmetric, valence-four spinor-valued four-forms (U via 

(1.12) 

We have used the unperturbed equations, in particular 
(1.2), to simplify (1.12). 

Our purpose in this paper is to analyze the issue of lin
earization stability by studying 

kernel D * = kernel Do Ukernel D t; (1.13) 

Eq. (1.1) is linearization stable if (1.13) is trivial. The exis
tence of a kernel for Do corresponds to the existence of infini
tesima� automorphisms of the SU (2) bundle over M that 
leave the connection invariant, i.e., elements of kernel Do are 
gauge symmetries of the spin connection. The correlation of 
linearization stability and the absence of symmetries is fa
miliar from the Cauchy problem in (Lorentzian) general 
relativity. 8 However, unlike the situation which arises with 
the full Einstein equations, linearization stability of the re
striction to the self-dual sector also involves the kernel of 
D *)' which turns out to correspond to "harmonic Weyl 
spinors" on M. We will treat each of these cases in the follow
ing two sections. 

II. INFINITESIMAL GAUGE SYMMETRIES 

Infinitesimal gauge symmetries, corresponding to ele
ments of kernel Do, can also be identified with the kernel of 
the elliptic operator6 

ao: = DtDo, (2.1) 

which leads to a coupled set of differential equations forf, M, 
and N. The results we desire can be obtained more easily if 
we follow a somewhat more indirect route, so we begin by 
studying gauge transformations of the form 

Ca = MbFba + DaN, (2.2) 

where M a is the vector field corresponding to an infinitesi-
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mal diffeomorphism. As shown in Ref. 6, (1.6) is equivalent 
to (2.2) on conforma11y anti-self-dual Einstein spaces with a 
positive cosmological constant; when A is negative (1.6) 
fails to be equivalentto (2.2) if Ma has a harmonic contribu
tion to its Hodge decomposition. We will see below that this 
disparity is irrelevant for the characterization of infinitesi
mal symmetries. 

Using (1.2) in (2.2), and then solving 

-AAMbl:ba +DaN=O (2.3) 

for Ma, we find a necessary condition for the existence of an 
infinitesimal symmetry to be 

Ma = - (lIA)trl:/DbN= - (lIA)Vb (trl:/N), 
(2.4) 

which, in particular, implies that Ma is coexact. From (2.4) 
we see that if M a generates the diffeomorphism part of a 
gauge symmetry it can have no harmonic contribution to its 
Hodge decomposition, hence the set of all solutions to (2.3) 
is equivalent to kernel Do. Furthermore, (2.4) implies that 
the term involving the function/in (1.6) must vanish since 
this term comes from the exact part of Ma (Ref. 6). 

Substituting (2.4) into (2.3) leads to a necessary and 
sufficient condition for N to generate the local SU (2) part of 
a gauge symmetry: 

doN:=DaN+Hl:/,DbN] =0. 

The L 2 adjoint of do is given by 

dtC= - DaCa + HDaCb,l:ab], 

and we have 

(2.5) 

(2.6) 

NEkernel do = kernel d~do~ - DaDaN - JAN = O. (2.7) 

From (2.7) we see that the operator d ~ do is positive definite 
when the cosmological constant is negative, thus in this case 
the only solution to (2.7) is N = 0; this forces M a to vanish 
also; so there are no infinitesimal symmetries of the spin 
connection on compact conformally anti-self-dual Einstein 
spaces with a negative cosmological constant. 

We can obtain a more transparent geometrical interpre
tation of this result if we look for the necessary and sufficient 
restriction on the vector field M a to yield an infinitesimal 
symmetry. Beginning again with (2.3), we now view it as an 
equation to be solved for N with M a treated as given; we find 

(2.8) 

which implies that N is the spinor representation of the self
dual part of the exterior derivative of Ma. After substituting 
(2.8) into (2.3) we obtain 

(2.9) 

By taking the divergence of both sides of (2.9) we deduce 

(2.10) 

which is consistent with (2.4). In the presence of (2.10), Eq. 
(2.9) becomes 

(2.11 ) 

which, as before, has no solutions if A < O. It is easily verified 
that (2.10) and (2.11) imply M a satisfies the Killing equa
tions on the compact Einstein space (M,g). 
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The results we have obtained in this section are analo
gous to the situation arising with compact two-dimensional 
(Riemann) surfaces. All such surfaces are Einstein spaces; 
genus-O, the sphere, has a positive cosmological constant, 
genus-I, the torus, has A = 0, while all higher genus surfaces 
have a negative cosmological constant. The relevant symme
try group here is the group of conformal isometries; it is well
known that the sphere admits conformal isometries connect
ed to the identity and, in addition, the moduli space of the 
sphere is trivial. For surfaces of genus greater than one, there 
are no infinitesimal conformal isometries, i.e., any confor
mal isometries are not in the connected component of the 
identity, while the moduli space for these surfaces is nontri
vial. 

III. HARMONIC WEYL SPINORS 

We now tum to a study of the kernel of D T, i.e., we 
analyze the solution space of 

(3.1 ) 

Keeping in mind that the unperturbed SU (2) curvature sat
isfies (1.2), Eq. (3.1) is equivalent to 

D b{J)ab = 0, (3.2) 

where the su(2)-valued two-form {J)ab is defined by 
AB ~ -1mnp ABCD 

{J)ab: = 6.abCDt: (J)/mnp • (3.3) 

From (3.3) it is clear that (J)ab is self-dual, thus (3.2) can be 
reexpressed as 

D[a{J)bc] = O. (3.4) 

Notice that Eqs. (3.2) and (3.4) are precisely the 
Yang-Mills equations (in the self-dual sector) for SU(2) 
gauge theory. Similar equations also arise in the lineariza
tion stability analysis of the self-duality condition in Yang
Mills theory,9 however, there are two important flaws in the 
analogy between the gravitational and gauge theoretic treat
ments: (1) (J) ab is not quite an SU (2) curvature-it has the 
symmetries of the (self-dual) Weyl spinor; in particular, (J) ab 

has only five independent components while a self-dual 
SU (2) curvature has nine independent components; (2) the 
linearization stability analysis of the self-dual Yang-Mills 
equations actually yields Eqs. (3.2) and (3.4) as conditions 
on an anti-self-dual su(2)-valued two-form. Still, we shall 
now show that these two differences, so to speak, cancel each 
other, and we arrive at a vanishiftg theorem quite analogous 
to that arising in Yang-Mills theory. 

We proceed using what is by now a familiar strategy. 
Denote by d T the differential operator appearing in (3.2): 

dT{J): = 2D
b
{J)ab' (3.5) 

The L 2 adjoint of d T is given by 

d l C = (o~ao~] + iEcdab)DaCb' 

and we have 

kernel dT = kernel dldT. 

(3.6) 

(3.7) 

Explicit computation, which makes use of the instanton 
equation (1.2) and the definition (3.3), reveals 

(J)abEkerneldldT~-DcDc{J)ab +U{J)ab =0. (3.8) 
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Equation (3.8), when rewritten in terms of the totally sym
metric spinor 

(J) ABCD: = ~bcd{J)~:'~D, 
is equivalent to 

(3.9) 

- DCDc{J)ABCD + U{J)ABCD = 0; (3.10) 

thus Eqs. (3.2) and (3.3) are satisfied when the manifold 
admits harmonic Weyl spinors. lo The terminology "har
monic Weyl spinor" is meant to be suggestive of (3.10) but is 
not to be taken too literally: the self-dual Weyl spinor, which 
appears in the spinor decomposition of the Riemann tensor, 
is required to vanish on the space-times we are studying here. 
We call (J) ABCD a Weyl spinor only because it possesses all the 
algebraic symmetries of the Weyl (conformal) curvature 
spinor. Similarly, the term "harmonic" is not to be interpret
ed in the usual sense of Hodge-de Rbam theory, but simply 
implies that (J) ABCD satisfies the most natural elliptic differen
tial equation compatible with its algebraic symmetries. 

When the cosmological constant is positive, the opera
tor on the left-hand side of (3.10) is positive definite, thus 
there are no harmonic (self-dual) Weyl spinors on confor
mally anti-self-dual Einstein spaces with a positive cosmolo
gical constant. Unfortunately, there is no general obstruc
tion to solutions of (3.10) when A < 0, i.e., linearization 
stability is not guaranteed for A < O. 

IV. LINEARIZATION STABILITY 

For the convenience of the reader we will now assemble 
the results of the preceding sections. It is natural to classify 
the results by the sign of the cosmological constant. 

A.A>O 

Linearization stability is not really an issue here because 
there are no nontrivial solutions to the linearized equations. 
Nevertheless, we have found that A> 0 is compatible with 
the existence of gauge symmetries of the connection; these 
correspond to the existence of Killing vectors on M. In addi
tion, there are no harmonic Weyl spinors in this case. 

B.A<O 

In this case the situation is the reverse of the previous 
results. There are no infinitesimal symmetries of the connec
tion; this corresponds to the absence of Killing vectors on 
compact Einstein spaces with a negative cosmological con
stant. On the other hand, there is no general obstruction to 
the existence of harmonic Weyl spinors when A < 0; we con
clude that the conformally anti-self-dual Einstein equations 
are linearization stable whenever there exist no Weyl spinors 
obeying the (eigenvalue) condition (3.10). 

V. DISCUSSION 

The linearization stability analysis of the conformally 
anti-self-dual Einstein equations is remarkably similar to the 
situation occurring in SU (2) Yang-Mills theory. 9 The grav
itational results do, however, differ from those of gauge theo
ry owing to the presence of the diffeomorphism group as a 
symmetry group as well as the (related) fact that the gravita
tional SU(2) curvature perturbation is required to be anti-
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self-dual even though the unperturbed SU(2) curvature is 
self-dual. 

As pointed out in Ref. 6, the relationship between the 
space of gauge symmetries, gauge inequivalent perturba
tions, and harmonic Weyl spinors is controlled by the 
Atiyah-Singer index theorem. If we denote the topological 
index as I, then we now know that 

I = dim kernel Do; A. > 0, (5.1a) 

I = dim kernel Dr 

- dim (kernel DI nkernel D ~);A. < 0, (5.1b) 

where the second term in (5.1b) is the dimension of the 
space of gauge-inequivalent perturbations satisfying (1.5). 
Clearly, it will be necessary to investigate the question of 
how "generic" is the existence ofWeyl spinors satisfying the 
eigenvalue condition (3.10). The type of result which one 
might be able to obtain could be analogous to the fact that "If 
M is a connected, compact orientable Einstein space of sca
lar curvature 1, then M admits an eigenfunction f with 
af = - nf if and only if M is isometric to S n ( 1) [the n
sphere of unit radius]" .11 In any event, it is clear that (5.1) 
may provide more than just a way to calculate the dimension 
of the moduli space ofleft-handed spin connections; indeed, 
the sign of I can represent a topological obstruction to the 
existence of a conformally anti-self-dual Einstein metric. 
For example, if the topology of M is such that 1<0, then 
(5.1) cannot be satisfied for any such metric with A. > 0. Al
ternatively, if the space-time admits no solutions to (3.10) 
and I > 0, then (5.1) cannot be satisfied when A. < 0. Another 
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interesting corollary to (5.1) is that the topological index 
controls the dimension (of the Lie algebra) of the isometry 
group when A. > 0. The topological implications of (5.1 ) will 
be explored in a future publication. 
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The space of labels characterizing the elements of Schwinger's basis for unitary quantum 
operators is endowed with a structure of symplectic type. This structure is embodied in a 
certain algebraic cocycle, whose main features are inherited by the symplectic form of 
classical phase space. In consequence, the label space may be taken as the quantum phase 
space: It plays, in the quantum case, the same role played by phase space in classical 
mechanics, some differences coming inevitably from its nonlinear character. 

I. INTRODUCTION 

The recent extension of Weyl-Wigner transformations 
to discrete quantum spectra) has drawn attention to a cer
tain discrete space with some characteristics of a "quantum 
phase space" (QPS).2 The extension makes use of 
Schwinger's complete basis3 of unitary operators for 
Weyl's realization of the Heisenberg group. Unlike usual 
classical phase spaces, QPS is not a linear space: Its points, 
besides being isolated, display themselves on the surface of 
a torus. The continuum quantum case may be obtained by 
a standard procedure that corresponds to stretching the 
torus radii to infinity while bringing the spacing between 
neighboring points to zero in a suitable way. This 
C-number representation of QPS closely parallels the clas
sical picture, its quantum character being signaled by the 
presence of Planck's constant fI in the expressions involved. 
It is of basic interest to examine the main properties ofQPS 
and their relations to the well-known characteristics of the 
classical phase space. We would of course expect to obtain 
the classical case as a fI ..... O limit of the quantum case. 

The basic feature of a classical phase space is its sym
plectic structure, embodied in a differential two-form 0 
which is closed (a cocycle) and nondegenerate. The fun
damental role of this symplectic form is especially visible in 
the Hamiltonian formulation of mechanics. So strongly 
does the symplectic structure stick to the very notion of 
phase space that QPS will only deserve its name if it in
cludes a structure of similar nature. Although we may not 
expect the presence of a complete analog to 0 on QPS, our 
objective here is to show that a certain structure exists 
indeed which plays on QPS a role as similar to a symplectic 
structure as could be expected. Such a "presympletic" 
structure is actualized in a certain two-cochain (also a 
cocycle) acting on the unitary operators, a purely algebraic 
object which acquires, in the continuous limit, a geometri
cal nature and tends, in the classical limit, to the symplec
tic form. The two-cochain marks in reality the projective 
character of Weyl's realization of the Heisenberg group. 

We start in Sec. II with a sketchy presentation of 
Hamiltonian mechanics4 intended to fix notation for later 
comparison, special emphasis being given to the role of the 
symplectic structure.s We then address ourselves to quan
tum kinematics and give a resume on Schwinger's complete 
basis of unitary operators in Sec. III. A crucial point will 

be that the basis provides in reality not a linear but a 
projective representation of the Heisenberg group. Prepar
ing to establish that, Sec. IV is a short introduction to the 
subject of projective representations6 from the cohomolog
ical point of view 7 which, being closer to the formalism of 
differential forms, is specially convenient to our purposes. 8 

The meaning of ray representations becomes specially clear 
in this language. The results are then applied in Sec. V to 
the Schwinger basis for the Weyl representation, emphasis 
being given to the emergence of the mentioned cocycle and 
to some of its properties. The continuum limit is examined 
and comparison is made with another C-number represen
tation of quantum mechanism, the Weyl-Wigner-MoyaI9 

approach. The meaning of the "presymplectic" fundamen
tal cocycle is clarified in terms of well-known features of 
that approach. 

II. CLASSICAL PHASE SPACE 

In the classical description of a system with n degrees 
of freedom, physical states constitute a differentiable sym
plectic manifold M of dimension 2n. The fundamental geo
metrical characteristic of this phase space is the symplectic 
two-form O. In terms of the generalized coordinates q 
= (qI,l, .. ·,qn) and momenta p = (P),P2, ... ,Pn)' 0 is writ
ten 

(2.1) 

It is clearly a closed form (that is, dO = 0), or cocyc/e, and 
can be shown also to be nondegenerate. Here, 0 is also an 
exact form (a coboundary, or a trivial cocycle) as it is, up 
to a sign, the differential of the canonical form 

(2.2) 

The structure defined by a closed nondegenerate two-form 
is called a symplectic structure and a manifold endowed 
with such a structure is a symplectic manifold. In reality, 
phase spaces are very particular cases of symplectic mani
folds. On general, topologically nontrivial symplectic man
ifolds there are no global coordinates such as the (qi,p;) 
supposed above and the basic closed nondegenerate two
form is not necessarily exact. Notice that every coboundary 
is a cocycle but not vice versa. A theorem by Darboux 
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ensures the existence of a chart (of "canonical," or "sym
plectic" coordinates) around any point on a (2n)
dimensional manifold M in which a closed nondegenerate 
two-form can be written as in (2.1), so that the equations 
here written in components hold locally. Notice, however, 
that 11 is globally defined and the equations written in the 
invariant language of forms are valid globally. 

The fundamental point about the symplectic structure 
is that 11 establishes a one-to-one relationship between one
forms and vector fields on the manifold M. The simplest 
example is the phase space velocity field, 

dqi a dpi a 
X H= dt aqi + dt api' (2.3 ) 

The time evolution of the state point (q,p) will take place 
along the integral curves of X H' Hamilton's equations put 
this evolution field into the form 

(2.4 ) 

The differential operator X H generates a one-parameter 
group of transformations, the Hamiltonian flow. On the 
other hand, the Hamiltonian function H(q,p) will have as 
differential the one-form 

aH aH. 
dH=-a dpi + -a i dql. 

'Pi q 
(2.5) 

The relationship for which 11 is responsible involves 
the interior product of a field by a form. The interior prod
uct of a field X by a one-form a, denoted ixa, is simply 
a(X). The interior product of a field X by a two-form 11, 
denoted ix11, is defined as that one-form satisfying 
ix11( y) = 11(X,Y) for any field Y. This is directly gener
alized to higher-order forms. We find easily that 

(2.6) 

Besides being a particular case of the general one-to-one 
relationship between fields (vectors) and one-forms (co
vectors) on M, this is also an example of relationship be
tween a transformation generator and the corresponding 
generating function. The Hamiltonian presides over the 
time evolution of the physical system under consideration: 
H(q,p) is the generating function of the velocity field 
X H' Applying X H to any given differentiable function 
F(q,p) on M, we find that 

aFaH aFaH 
XHF=-a i-a --a -a i={F,H}, 

q 'Pi 'Pi q 
(2.7) 

the Poisson bracket of F and H, so that its equation of 
motion is the Liouville equation 

(2.8) 

X H is frequently called Liouvillian operator. Functions like 
F(q,p) are the classical observables, or dynamical func
tions. To each such a function will correspond a field 
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aF a aF a 
X--- --

F- api aqi - aqi api 

through the relation 

ixF11=dF. 

(2.9) 

(2.10) 

Given another function G(q,p) and its corresponding field 
X G, it is immediate to verify that 

aFaG aFaG 
11(XF ,xG)=-a i-a -a--a i={F,G}. 

q 'Pi 'Pi q 
(2.11 ) 

Each field on M is the local generator of a one
dimensional group of transformations. The response of a 
tensor to the local transformations generated by a field is 
measured by the Lie derivative of the tensor with respect to 
the field. Of course, F (which is a zero-order tensor) is an 
integral of motion if its Lie derivative Lx)" = XHF van
ishes, or {F,H} =0. The Lie derivative of ti with respect to 
X H vanishes: 

Lx 11=0, 
H 

(2.12 ) 

because Lx = dOix + ixod. This means thatthe two-form 11 
is preserved by the Hamiltonian flow, or by the time evo
lution. This and the property Lx(11/\ 11) = (Lx11) /\ 11 
+ 11/\ (Lx11) of Lie derivatives establish the invariance of 
the whole series of Poincare invariants 11/\ 11· .. /\ 11, in
cluding that with a number of n of 11's, which is propor
tional to the volume form of M. The preservation of the 
volume form by the Hamiltonian flow is of course Liou
ville's theorem. 

For any field X F related to a dynamical function F, 

LxF11 =0. (2.13 ) 

This happens because 

Lx 11=doix 11 + ix od11=d2F=0. F F F 

Such transformations leaving 11 invariant are the canonical 
transformations, X F is said to be a Hamiltonian field and F 
its generating function. In a more usual language, F is the 
generating function of the corresponding canonical trans
formation. The simplest examples of generating functions 
are given by F(q,p) = qi, corresponding to the field X F 

- wapi; and G(q,p) = Pi> whose field is XG 
= a/aqi. Both lead to {qi,pj} = ~ii Next in simplicity are 
the dynamical functions of the type 

fab=aq+ bp, (2.14 ) 

with a, b real constants. The corresponding fields are 
Jab = - a a/ap + b a/aq. The commutator of two such 
fields is [Jab,Jed] = 0 and consequently the corresponding 
generating function F[J J ] = Fo is a constant. On the 

abo cd 
other hand, the Poisson brackets are determinants 

{fab,fed} = 11 (Jab,Jed ) =ad - bc. 

With the fields written as 

_ (Xqi) 
X- X ' 

Pi 
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.0. and .0. - ) may be seen as matrices: 

[ 0 In] _) [0 
.0. = _ In 0 ; .0. = In 

- In] 
o ' (2.16 ) 

where In is the n-dimensional unit matrix and n.(X,Y) 
=XTn.y. 

Most fields do not correspond to a generating function, 
as i xn. is not always exact. In general, a generating func
tion exists only locally. The one-form corresponding to any 
field preserving .0. will be closed, d(ixn.) = Lxn. = O. As 
a closed form is always locally exact, around any point of 
M there is a neighborhood where some F(q,p) satisfies 
ixn. = dF. 

The action of the two-form .0. on two contravariant 
fields X and Y will give 

(2.17) 

This is twice the area of the triangle defined on M by X and 
Y, as it is still easier to see from (2.14) and (2.15). 

An n-dimensional subspace of the 2n-dimensional 
phase space M is a Lagrange manifold if n.(X,Y) = 0 for 
any two vectors X, Y tangent to it. Examples are the con
figuration space and the momentum space. Canonical 
transformations preserve such subs paces of M, that is, they 
take a Lagrange manifold into another Lagrange manifold. 

The symplectic form being a cocycle is equivalent to 
the Jacobi identity for the Poisson brackets. In fact, it is 
not difficult to find that 

3 dn.(X,Y,Z) = - {Fx,{Fy,Fz}} - {Fz,{Fx,Fy}} 

- {Fy,{Fz,Fx}} =0. (2.18) 

There would be of course much more to be said about 
phase space. This brief outline, however, seems enough to 
establish notation and stress the basic role of the cocycle .0.. 
We shall see in Sec. V that on quantum phase space a 
cocycle is also defined which, even in the discrete case, has 
a comparably fundamental role. 

III. QUANTUM KINEMATICS 

The quantum description of a physical system requires 
a complete set of observables. Still better, it requires a 
complete set of operators in terms of which all dynamical 
operators can be built up. Kinematics is governed by 
Heisenberg's group,1O whose elements may be represented 
by real triples (a,b,r) obeying the group product rule)) 

(a,b,r)*(e,d,s) = (a + e,b + d,r + s + Had - be]). 

Weyl introduced a realization in terms of powers of two 
unitary operators U(a) and V(b) satisfying 

and 

U(a) U(a') = U(a + a'l, 

V(b) V(b' ) = V(b + b'), 

U(a) V(b) = V(b) U(a)ei/lab• 

A particular example is given by V = /bp, U = eiaq, which 
lead to the usual formulation of Heisenberg's algebra using 
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the basic operators p and q. Schwinger3 has recognized the 
fact that the above U and V generate a complete basis for 
all unitary operators and provided a classification of all the 
possible physical degrees of freedom. We shall here be in
terested only in some aspects of Schwinger'S work. What 
follows is a short presentation of them. 

Consider a space of quantum states of which a basis is 
given by orthonormalized kets IVk) with k = 1, 2, ... , N. A 
unitary operator U can be defined which shifts these kets 
through cyclic permutations as 

(3.1 ) 

Through the repeated action of U, a set of linearly inde
pendent unitary operators Um can be obtained whose ac
tion is given by 

(3.2) 

As UN = 1, the eigenvalues of U are Uk = ei(2rrIN)k, corre
sponding to another set of kets fixed by 

UIUk) =ukluk)' 

Another operator V exists such that 

VIUk)=luk_l) 

and 

(3.3 ) 

(3.4) 

vnIUk)=luk_n), withluk_N)=luk)' (3.5) 

Here, also, VN = 1 and the V eigenvalues are Vk 
= ei(2rrIN)k. The miracle of Schwinger'S basis is that the 
eigenkets I Vk) such that 

(3.6) 

are just those from which we have started. Of course, 

VnlVk) =ei(2rrIN)knlvk)' (3.7) 

A direct calculation in any basis shows that 

(3.8) 

Now, Schwinger'S final point: The set of operators 

(3.9) 

constitute a complete orthogonal basis in terms of which 
any dynamical quantity 0 can be constructed as 

m,n 

the Omn's being coefficients given by 

Omn=tr[S~nO]. 

(3.10) 

(3.11) 

Here, U and V are each one a generator of the cyclic group 
Z N' The operators S mn give a peculiar combination of the 
two ZN'S, providing a discrete version of Weyl's represen
tation of the Heisenberg group. 

The following results are easily obtained: (i) the action 
of the basic operators on the kets: 

S Iv) =ei(rrIN)(2k + m)nl v ). mn k k+ m , (3.12) 

(ii) the group product: 
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S ~ i(1rIN)(ms - nr)S . 
r~mn=e (m+r)(n+s)' 

(iii) the group identity: 

Soo=l; 

(iv) the inverse to a given element: 

(v) behavior under a similarity transformation: 

S ~ ~-) =e- i (21TIN)(ms nr)Srs' 
mfl"JrSJ mn 

(vi) associativity: 

(S mnSrs)S kl=S mn(Sr,s kl)' 

(3.13 ) 

(3.14 ) 

(3.15) 

(3.16) 

(3.17) 

With the periodicity conditions in (3.1) and (3.5), the 
numbers m, n, etc. take values on a torus lattice. It is this 
lattice who plays the role of a quantum phase space. The 
points of QPS are so labels of elements of a discrete gr?up. 
The operators S mn' obeying the product rule (3.13), give a 
projective representation of the group of transformati.ons 
on this space, which will be examined in the next section. 
Notice that they are themselves only semi periodical: S Np 

( - )PSo; S N = { - )PSpO' The quantum continuum 
limit, whic': h:s only been studied in detail in some 
cases,I,3 is in such cases attained by taking both the torus 
radii to be infinite while making the spacing between neigh
boring points go to zero, in such a way that 
[.J21T/Nm]-+some real constant a, [.J21T/Nn]-another 
real constant b, etc. In this limit, a particular realization of 
the above operators is 

(3.18 ) 

(3.19 ) 

where the operators p and q have eigenvalues .J21T/Nk. In 
this case, 

S S _ei(aq + hp) 
mn --+ ab- . (3.20) 

The expression (3.13) takes the form 

S -~ (i/2l[ad- chls 
ctfJah=e (a+c)(h+d)' (3.21) 

The exponent in Sah is the quantum. version of the dyna~
ical functions (2.14) and the phase m the group product IS 

just (half) the Poisson bracket (2.15). . 
To a given degree of freedom corresponds a paIr of 

operators U, V satisfying (3.8) which will provide a basis 
for a realization of the Heisenberg group. A curious and 
important example is given by the nonlocal order and dis
order operators determining the confined and unconfined 
phases in quarkionic matterY The algebra (3.8) appears 
then because of the crucial role attributed to the center of 
the group SU(N), which is precisely ZN' 

The above considerations on the continuum limit sug
gest that each pair of operators U, V satisfying (3.8) is 
related to a pair of (exponentiated) canonically conjugate 
variables and, so, to a degree of freedom. This is true only 
when N is a prime number.3 Otherwise, the representation 
involved is reducible. When N is prime, (3.8) is the only 
possible combination of powers of U and V leading to such 
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a kind of expression. When N is not prime, however, things 
are different; N can be written in terms of its prime factors, 
N=N1N 2" 'Njand particular powers of U and V combine 
to give expressions like (3.8) with N replaced by each one 
of the factors N;. The basis can then be redefined to become 
a direct product.3 In the continuous limit, N goes to in
finity through prime values. 

IV. PROJECTIVE REPRESENTATIONS 

Projective representations6 are treated, even in the best 
of older physicists' texts, in a rather involved way. The 
modem, homological approach 7 of which a brief account is 
given in the following has many advantages, not the least 
being its assignment of the subjet's correct place in the 

8 h' wider chapter of group extensions. In our case t e mam 
advantage is that the evident analogy with the formalism of 
differential forms allows a clearer view of the connections 
between Schwinger'S basis and classical phase space. 

Let us consider, to fix the ideas, a group G of elements 
g, h, etc., acting through their representative operators 
U(g}, U(h), etc. on kets l'Px), ItPy ), etc. The indices x, y 
include not only configuration or momentum space coor
dinates but also spin and/or isospin indices and any other 
necessary state labels. We shall call them parameters. We 
might alternatively talk of the corresponding wave func
tions 'P(r} = (ri'P), etc., but will use kets to keep in pace 
with previous notation. The space {1'Px)} ofkets will be the 
carrier space of the representation. 

Suppose to begin with that we have 

(4.1 ) 

where "xg" is the set of labels as transformed by the action 
of g. Suppose further that, by composition, 

(4.2) 

meaning, in particular, that the composition by itself is 
independent of the point x in parameter space. This is what 
is usually called a representation, but will in the present 
context be called a linear representation. The mapping 
U:g- U(g) is in this case a homomorphism. 

We may next suppose that, instead of (4.1), the action 
of a transformation is given by 

(4.3) 

The wave function acquires a phase a) (x;g) which de
pends both on the transformation and the point in param
eter space. The transformation will operate differently at 
different x. In quantum mechanics, of course, a state is 
fixed by a ray (a wave function with any phase factor). A 
representation acting according to (4.3) has been called a 
ray representation. It is a particular case of projective rep
resentation, as will be seen in the following. 

Suppose condition (4.2) holds, 

U(h) U(g) itPx> U(gh) itPx)' 
A direct calculation shows that this implies 

at(xg;h) - al(x;gh) + al(x;g) =0, (4.4) 
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another form of the homomorphic condition. If a function 
ao(x) exists such that al(x;g) can be written in the form 

al (x;g) =ao(xg) - ao(x), 

then (4.4) holds automatically, (4.3) becomes 

U(g)eiao(x) Il/Ix) =eiao(xg) Il/Ixg) 

and phases can be eliminated by redefining 

l'Px) =eiao(x) Il/Ix), 

(4.5) 

which brings the group action back to the form (4.1). 
In the cohomological theory of group representations, 

phases such as the above ao(x) and al (x;g) are considered 
as results of the action of cochains on the group G. Co
chains are antisymmetric mappings on the group, purely 
defined by their action. They have much in common with 
differential forms (which are in reality special cochains) 
but it should be kept in mind that here they are not nec
essarily acting on elements of a linear space. Here they take 
one, two, or more group elements to give numbers. The 
group elements have the role vectors have in the case of 
differential forms. Cochains may be defined on any group, 
even discrete ones-which is just the case of our interest. 
Here, ao is a zero-cochain, a function on parameter space 
whose value at point x is the phase ao(x); at is a one
cochain because it operates on one element g of G at point 
x of the parameter space to give al (x;g); a cochain taking 
two group elements as arguments will be a two-cochain, 
etc. An operation analogous to the exterior differentiation 
of differential forms is definedB on cochains: it is the deriv
ative operation fJ taking a p-cochain a p into a (p + 1)
cochain /3 p + I according to 13 

fJ:ap-+some/3p+ l=fJap, 

fJap(x;gbg2, ... ,gp + I) 

=ap(xgl;g2, .. ·,gp+ I) - a p(x;glg2, ... ,gp+ I) 

+ ... + ( - )P+ lap(x;gbg2, ... ,gp)' (4.6) 

An important property is the Poincare lemma fJ2 = 0, 
which can be verified directly from this expression. The 
first examples are 

(4.7) 

fJal(x;g,h)=al(xg;h) -al(x;gh) +al(x;g); (4.8) 

fJa2(x;g,h,j) =a2(xg;h,j) - a2(x;gh,j) 

+ a2(x;g,hf) - a2(x;g,h). (4.9) 

A cochain a p satisfying fJap = 0 is a closed p-cochain, or a 
p-cocycle, and a cochain a p for which a cochain ap_t exists 
such that a p = fJap _ I is exact, or a coboundary (or trivial 
cocycle). An exact cochain is automatically closed. We see 
that condition (4.4) means that at is closed, 

(4.10) 

still another form of the homomorphic condition. As to 
(4.5), it says simply that at is exact: 

(4.11 ) 
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Summing up, the composition rule (4.2) implies the 
closedness of at; if in addition at is a derivative, a redefi
nition of the functions exists such that it simply disappears. 
When at is closed but not exact, it cannot be eliminated 
but the representation is still equivalent to a linear repre
sentation. A pure projective representation appears when, 
instead of (4.2), we only require 

U(h) U(g) Il/Ix> =eia2 (x;g,h) U(gh) Il/Ix), ( 4.12) 

allowing the composition to depend on the "position" x 
through a phase factor. The mapping U:g-+ U(g) is no 
more a homomorphism. Applying (4.3) successively, we 
have 

U(h)U(g) Il/Ix) 

=ei[a\(xg;h) - a\(x;gh) + a\(x;g)] U(gh) Il/Ix). (4.13 ) 

Consequently, 

fJal (x;g,h) =a2(x;g,h). (4.14 ) 

In this case at is not closed and the representation is no 
more equivalent to a linear one. The cochain a2 is an ob
struction to homomorphism. On the other hand, ray rep
resentations like (4.3) require a2 to be exact. 

Let us see what comes out from the imposition of as
sociativity: equaling 

U( f) [U(h) U(g) )Il/Ix) 

=eia2 (x;g.h) U( f) U(gh) Il/Ix) 

and 

[U( f )U(h») [U(g)ll/Ix») 

=eia2(xg;h,j) U(hf ) U(g) Il/Ix) 
=eia2 (xg;h,j )eia2 (x;g,hj) U(ghf ) Il/Ix> 

brings forth, from (4.9), just the closedness of a20 

fJa2=0. 

(4.15 ) 

( 4.16) 

( 4.17) 

This "associativity condition" is of course coherent with 
(4.14). 

Condition (4.14) has an interesting consequence. Sup
pose it holds and let us proceed to a redefinition of the 
operators U: define new operators u* by 

U*(g) =e - ia\(x;g) U(g). (4.18 ) 

They depend, through the phase, on the point x at which 
they will operate and are, in this sense, "gaugefied" ver
sions of the previous U(g). In terms of such operators, 
( 4.13) becomes 

U*(h) U*(g) Il/Ix) = U*(gh) Il/Ix), 

which is just of the form (4.2). 
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Concerning only the group operator representatives 
(and not the particular carrier space), it is expression 
( 4.12) which characterizes a projective representation. As
sociativity implies that a2 is a cocycle. If it is also exact, 
there exists a al satisfying (4.14) which will appear as a 
ket phase and a2 can be absorbed by the procedure just 
described into the "gaugefied" operators, in terms of which 
the representation reduces (but only locally in parameter 
space) to a linear one. We will say in this case that the 
representation is locally linear but globally projective. The 
unitary quantum operators to be studied in next section 
will be of this type. If a2 is closed but not exact, there exists 
no a 1 as in (4.14) and a2 cannot be eliminated. The pro
jective representation is not even locally equivalent to a 
linear representation and is not of the form (4.3). Conse
quently, it is better to reserve the name "ray representa
tions" to locally linear representations. 

If an exact cochain ~f11 is added to a2, the exact part 
can be eliminated but the nonexact "core" cannot. Adding 
an exact cochain is an equivalence relation, the corre
sponding classes being the elements of the quotient space of 
the closed by the exact cochains. This quotient space is the 
additive cohomology group H2( G). There is a one-to-one 
relation between the inequivalent projective representa
tions and the elements of H2( G), which thereby "classi
fies" them. 7,8 

To obtain condition (4.17), we have taken associativ
ity for granted in its usual way. If we are enough of a free 
thinker to accept that it holds up only to a phase factor, 

[U( f) U(h)] U(g) ItPx) 

= eiu) (x;g,h,f) U( f ) [ U(h) U(g») I tPx) (4.20) 

then 

(4.21 ) 

instead of (4.17). Here, a3 is a three-cochain, as it takes 
three elements of G to give the number a3 (x;g,h,J ). When 
it is non vanishing, a2 is no more a cocycle and there is no 
associativity: a3 is an obstruction to associativity. In prin
ciple, we can proceed with such successive steps of require
ments and a corresponding hierarchy of closed and exact 
cochains. Nevertheless, associativity is part of the defini
tion of a group and so desirable a property for a represen
tation that it is usual to stop at this point. We say then 
simply that a3 is an obstruction to the construction of 
projective representations. 

It is also possible to introduce a notion akin to the 
interior product: Given the p-cochain ap, its "interior 
product" with hEG is that (p - 1) -cochain thap satisfying 

(4.22) 

for all gl,g20'''' gp_ I' A natural further step is to introduce 
a formal "Lie derivative" with respect to a hEG by 

(4.23) 

Some of its formal properties, again analogous to those of 
differential forms, are 

(4.24a) 
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(AhaO)(x)=ao(xh) -ao(x)=~ao(x;h); (4.24b) 

(Ahal)(x;g)=al(xg;h) -al(x;hg) +al(xh;g); (4.24c) 

(Aha 2) (x;gJ) =a2(xh;gJ) - a2(x;hgJ) 

( 4.24d) 

The limited character of such analogies should how
ever be stressed. Unlike differential forms, the above co
chains are not acting on a linear space and consequently 
share with them only some of their properties. They lack a 
tensorial character and, as a consequence, all the qualities 
coming with it. For example, there are no basis in terms of 
which any p-cochain can be written. 

v. THE FUNDAMENTAL COCYCLE 

As said in Sec. III, it is the toroidal lattice formed by 
the labels (m,n) of Schwinger'S operators Smn that consti
tute quantum phase space. Our objective, to which we fi
nally arrive, is to show that indeed a certain cocycle (a2 
below) exists which endows the space of a structure similar 
to the symplectic structure of classical phase space and 
tends to the symplectic form in the classical limit. Consider 
the unitary operators of Sec. III. It comes directly from 
(3.12) and (4.3) that 

al (k;Smn) = (rrlN) [(2k + m)n), 

of which two particular cases are 

a.(k;V)=(2rrIN)k 

and 

We need the two expressions 

a.(kSmn;Srs) =a.(k + m;Srs) 

(5.1) 

(5.2) 

(5.3 ) 

=(rrIN)[2(k+m) +r)s, (5.4) 

and 

a.(k;SmnSrs) = (rrIN)[(2k + m + r)(n +s»), (5.5) 

to verify, using (4.8), that 

~a.(k;SmmSrs) =a.(kSmn;Srs) - a.(k;SmnSrs) 

+ a.(k;Smn) 

= (rrIN)[ms - nr). (5.6) 

This is nonvanishing in general, hinting, after the discus
sion of the previous section, to a globally projective char
acter. Indeed, from (3.13) we obtain 

a2(k;SmmSrs) = (rrIN) [ms - nr), 

so that a2 is exact: 

a2(k;SmmSrs) =~a.(k;SmmSrs)' 

(5.7) 

(5.8) 

for any pair S mmS rs' This means that the representation 
only reduces to a linear one if we want to pay the price of 
"gaugefying" it as in (4.18): it is a ray representation, 
locally linear although globally projective. 
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Notice that a2(k;SmmSrs) is independent of the state 
label k. A particular value of interest is 

(5.9) 

That the cochain a2 is a cocycle is a consequence of the 
associativity condition (3.17): 

(5.10) 

Of course, this was already implied by the triviality (5.8) 
of a2 and actually contained in the product rules (3.13). 
We should call attention to an obvious but important as
pect. The cochains act on group elements to produce 
phases, exponentiated numbers. Unitary operators are not 
observables, only their Hermitian exponents are. The pa
rameters m, n appear always exponentiated also, as in 
(3.9) and in the continuum limit [as in (3.19)] they do 
seem to tend to observables with classical counterparts. It 
is as if the parameters belonged not to the group but to its 
algebra. We must consequently be prepared to the fact that 
the relation between a2 and n is exponential and, for fa
cility, compare the results of their respective actions. There 
is no obvious correlation between associativity and the 
property related to the closedness of n, the Jacobi identity 
(2.18) for the Poisson bracket. Associativity is a much 
more general condition, a property of every group while 
Jacobi identity, typically an integrability condition, 
appears (exponentiated, as a property of the generators) 
only for Lie groups. Presumably this general property gets 
somehow weakened in the limiting process. An analogy 
may, however, help to shed some light on this point. There 
is a strong similarity of the formalism above with the basic 
structure of gauge theories: al recalls the gauge potential 
A, fJ the covariant derivative D, a2 the field strength 
F=DA. Or, it happens that in gauge theories the closed
ness of F, DF=O (the Bianchi identity) is precisely equiv
alent to the Jacobi identity for the gauge group genera
tors. 14 We might conjecture that the closed ness of a2 is 
somehow related to that of n. 

It is instructive to consider on the parameter space of 
the numbers m, n, r, etc. column vectors 

with them as components. The row vectors X~m X~ will 
behave as dual vectors by simple scalar product. Then, 
with the usual product of rows, matrices, and columns, 

a2 (k;S mmSrs) = ('TTl N) [ms - nr] =X~nnXrS' (5.11) 

where n is the symplectic matrix (2.16). On the toroidal 
grid formed by the parameters a2(k;SmmSrs) is propor
tional to the "area" defined by the vectors (m,n) and (r,s), 
as was the case for n in (2.17). We may also check that 
ts a2 is closed and takes a column vector X mn into 

mn 

X -n,m' 

[ts a2] (k;Srs) =N'TT ( _ n,m) (r) . 
mil S 

(5.12 ) 
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FIG. I. The simplest loops on QPS: (a) an elementary loop; (b) a double 
loop with negative sense; (c) a triple loop. Each enclosed elementary cell 
contributes a phase 2rr/Nto Smw 

This duality corresponds to relation established by n be
tween vectors and forms. Furthermore, putting together 
the considerations on the continuum limit at the end of 
Sec. III and Eqs. (2.14) and (2.15), we see that a2 plays 
on the lattice torus a role quite analogous to that of the 
symplectic form: from (3.21), we see that in the contin
uum limit a2 gives (minus) half the value (2.15) of n 
applied to the corresponding vectors: 

a2(k;Sab,Scd) = - Had - cb] = - ~n(Jab,Jcd)' 

Using (4.23) we find that 

(AS a2) (k;Srs,Spq) =0, 
mn 

(5.13 ) 

for all Smm SrS' and Spq, stating the invariance of a2 under 
all transformations of the Weyl group. In this sense, all of 
them are "canonical transformations." Another analogy, 
trivial to obtain but interesting, comes from the very defi
nition of a2: It vanishes when applied to two commuting 
elements, just as n vanishes when applied to two fields 
corresponding to dynamical functions whose Poisson 
bracket vanishes. Such two fields are tangent to the same 
Lagrange manifold. On QPS, this corresponds to subsets of 
intercom muting operators. Finally, from (5.8), we see that 
the role of the canonical form a is played by the cochain 
al' 

Points in QPS can be attained from each other by suc
cessive applications of the operators U and V. Operators 
Smn will meanwhile acquire phases. This is better seen if we 
start with some state IUk) and look such successive trans
formations as forming paths on QPS. Each time U is ap
plied the state is shifted and each time V is applied the ket 
gains a phase. This phase depends on the state arrived at. 
In Fig. l(a), operator V acts at "k + I", but its inverse 
U - I acts at "k." As a consequence of this point depen
dence, closed loops give a net result phase. Going around 
the loop in Fig. 1 (a), for example, will give to IUk) a phase 
~ = (2'TTIN). This ~ is the unit phase: It comes each time 
a unit cell in QPS is surrounded. The sum of phases is 
algebraic: Going around the unit loop in the inverse sense 
changes its sign. In our convention, positive sign is given 
by counterclockwise motion. So, the path of Fig. 1 (b) con
tributes a phase (- 2102

), that of Fig. 1 (c) a phase 
( - 3102

), etc. Closed loops may give vanishing phases. 
This is trivial for the two closed paths generated by UN and 
VN

, which simply close around the torus, but there are 
nontrivial cases: In Fig. 2, the contributions from the two 
unit loops cancel each other. As a2 measures just (half) 
the areas in units of 10, there is at work here a version of 
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cE 
k Ic+' 1c+2 

FIG. 2. A loop giving a vanishing contribution to the phase of Smw 

Gauss theorem: the total (algebraic) area circumvented by 
a loop is obtained by just following the loop step by step, at 
each step summing the corresponding al> as given by (5.2) 
and (5.3). As exhibited in Fig. 3, the product Sm"srs is 
equivalent to taking Smn then Srs only when 
a2(k;SmmSrs) = O. The closed paths of Figs. 1 and 2 are 
projections of paths in the space of the operators S mm 
where the paths are, as a rule, open. A kind of nonintegra
bility appears: Starting from a given point, the phase at 
another point will depend on the path, unless the "flux" of 
a2 through the surface defined by any two paths is zero. In 
this sense al is a nonintegrable phase like those of gauge 
theories l5 and a2 would act as the corresponding "curva
ture." As already mentioned, there are many aspects in 
common with gauge theories in the present formalism, but 
we shall not discuss them here. Neither shall we consider 
the possible relation of al to a generalized l6 Berry's 
phase,17 a subject deserving further study. 

As an example, the commutator V-I u- I VU of Fig. 
1 (a) produces in operator space (see Fig. 4 ) an arc which 
fails to close precisely by the phase E2. Such trajectories in 
operator space only close when the unit cell is surrounded 
a multiple of N times, in which case it becomes a closed 
spiral. The role of a2, similar to a curvature on QPS, is 
different here: As it measures such defects in the operator 
space, it is reminiscent of that of torsion in differential 
geometry. 

In the continuum limit we must consider "large" re
gions of sizes mE and nE tending to limits a and b and the 
operators (now putting fl back into our expressions 
U m -+ eiap/fz and vn -+ eibq1fz. The phase 

a2(k;Um,Vn ) = (rrIN)mn= (E2/2)mn 

tends to tab,just (half) the value of 0 (aXq,bXp). Actually, 
to examine the continuum limit, as well as to get some 

/ 

} _.111;5 ..... 5.,1 

011 It. m;S.,1 

8 .. s_y 
S_ 

OI l lk; ' ... 5" I 

" ... '" 
FIG. 3. The fundamental cocycle measures the phase difference between 
S m,,s yo; and the successive applications of S,"" and S ". 
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v .. 
m+1 

FIG. 4. An elementary loop in parameter space corresponds to an open 
trajectory in operator space. 

more insight on the role of the cocycle a2 it is convenient 
to apply the formula giving the Weyl-Wigner transform 
W (AB) = (AB) w of the product of two operators A and 
B in terms of their transforms W(A) = Aw(q,p) and 
W(B) = Bw(q,p), which is 

W(AB) =ei(fzIZ)[aA tDp - aApaDqlAw(q,p)Bw(q,p). 

! 5.14) 

The upper indices in iJA q' aB
p are reminders: iJA p is the 

derivative with respect to q but which applies only on 
Aw(q,p); aB

p derives with respect to p but only acts on 
Bw(q,p), etc. The Poisson bracket always comes up at first 
order in fl: 

W(AB) =Aw(q,p)Bw(q,p) - (flI2i) 

X {Aw(q,p),Bw(q,p)} + ... (5.15) 

but the Weyl-Wigner transformed functions Aw(q,p) and 
Bw(q,p) may still exhibit additional powers of fl, depend
ing on their explicit form in terms of q and p. In fact, only 
in the strict classical (fl-+O) limit will such functions re
duce to their classical counterparts. Getting the Poisson 
bracket from a quantum commutator is only achieved 
when we pass from a noncom mutative algebra to a com
mutative one at the price of ignoring the cell structure of 
quantum phase space. 18 Only then (ilfl) 
X [A,B) ..... {Aclas.,Bclasj. To clarify this point, let us con
sider the operators A = SaO = e(ilfz)aq and B = SOb 
= e(ilfz)bP. From the previous formalism, their product will 
be 

(5.16 ) 

The Weyl-Wigner transform of the right-hand side is 

(5.17 ) 

where now q and p behave like classical variables. On the 
other hand, (5.14) will say that 

W(AB) =ei(fzI2)[aA ~p - aA ~ql [e(ilfz)(aq + bp )]. (5.18 ) 
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We see that in some way a2 sums up all the intricate action 
of the exponentiated operator. The present example is spe
cially simple but reflects much of the fundamental struc
ture of the continuum quantum phase space, as in this case 
Sab is a typical base element. The Poisson bracket is con
stant and it is possible to write down the exact result, 

W(AB) =e- Ul2fi)abeU/fi)(aq+ bp), 

so that 

a2(A,B) = - (l/21i){A,B}. 

( 5.19) 

(5.20) 

An analogous result would come if we took operators of 
type (3.21). In such cases related to the harmonic oscilla
tor, whose semiclassical approximation is exact, a2 gives 
the classical result up to a factor Ii - 1. This is indeed the 
hallmark of the quantum structure of phase space embod
ied in a2, which is not at all a classical object. It is ex
pressed above in terms of the Poisson bracket, but of 
Weyl-Wigner representatives of quantum objects. In this 
continuum case, a2 heralds the noncommutativity of the 
basic pair q-p. In the general case, it highlights the funda
mental cellular structure of QPS. 

VI. SUMMARY 

Every feature of classical mechanics stems from some 
quantum mechanical feature. Let us try to review the anal
ogies and differences between the cocycle a2 and the sym
plectic form. To begin with, n is globally defined on the 
classical state space and az(k;SmmS,s) is independent of 
the state label k. The first is invariant under canonical 
transformations, the second under all unitary transforma
tions. Both measure areas defined by vectors in the corre
sponding spaces. The closedness of n guarantees the Jacobi 
identity for the Poisson brackets, that of az the projective 
character of the Weyl representation. Classical Lagrange 
manifolds are on QPS replaced by subsets of intercommut
ing unitary operators. The symplectic form is a linear op
erator, which we could not expect of az. Finally, az tends 
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to the symplectic form n when, in the continuum limit, the 
noncommutativity of dynamical variables is relaxed. The 
cocycle az is that feature of quantum mechanics on which 
the symplectic structure of classical mechanics casts its 
roots. 
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From the concept of generalized condensation [M. Van den Berg, J. T. Lewis, and J. V. Pule, 
Helv. Phys. Acta 59, 1271 (1986)] it is known that two critical densities Pc andpm exist for a 
free boson gas. Density Pc is the classical one and Pm is the critical density below which there 
can be no macroscopic occupation of ground state. A free boson gas is studied in a weak 

external potential which behaves asymptotically like Ix1l a
, + Ix2 1a2 + .. , + IXd lad near the 

origin. It is shown that there are only two possibilities to get Pc <Pm < 00, namely, 
a I = a 2 = 00 and d> 3 (this corresponds to Dirichlet boundary conditions), and 
a l = 2 and d>2(Le., a harmonic oscillator). 

I. INTRODUCTION 

The aim of this paper is twofold: to give some more 
examples of generalized condensation I of the free boson gas 
and to simplify the proofs of already known examples2

-
5 of 

macroscopic occupation of low lying levels. Van den Berg, 
Lewis, and Pule gave a unified treatment of Bose-Einstein 
condensation in noninteracting systems of bosons with a 
general single-particle Hamiltonian. They show that there 
are two critical densities: Pc, at which singularities in the 
thermodynamic functions occur, and Pm' below which there 
can be no macroscopic occupation of the ground state. To 
the best of our knowledge there is only one example given by 
vanden Berg3 which shows that Pc <Pm < 00 can occur. Van 
den Berg considers a prism of sides L 1,L2 , ... ,Ld,d>3, and 
takes the single-particle Hamiltonian to be the Laplacian 
with Dirichlet boundary conditions. This is one generaliza
tion of Casimir' S6 examples, and will be a special case of our 
setting. Consider as a single-particle Hamiltonian, 

HL,.L, ..... Ld - ~ + VI(~J + ... + Vd(~:)' (1) 

such that trace (e - PH L,..L
d

) < 00 for all f3 in (O, 00 ). Let 

Ek(L 1,L2,· .. ,Ld) =Ek,(L1) + Ek,(L2 ) + ... + Ek,,(Ld), 

k = (kl, ... ,kd ) 

be the eigenvalues of HL,.L, ..... Ld ' where E1(L;) <E2 (L i ) 

..;; .. , are the eigenvalues of - d 2; dx2 + Vi (x; L i ) in as
cending order. 

Note that the thermodynamic functions as a function of 
the total mean density do not depend directly on the eigen
values but only on the distances 

Ak (L1, ... ,Ld ) = Ek (L1,· .. ,Ld) - E(I.I ..... I) (L1, .. ·,Ld ), 

k = (kw .. ,kd ). 

It is convenient to introduce the distribution functions 

FL, ..... Ld{A) 

1 = Card{ k:Ak {L1, ... ,Ld).;;;-i }. 
L 1•• .. 'Ld 

To discuss condensation it is necessary to introduce first the 
occupation numbers nk (L1, ... ,Ld ) of the k th energy level of 

HL, .... ,L
d

• Then one takes the thermodynamic limit 
L 1,L2 , ... ,Ld -+ 00 while one keeps the density P fixed. In the 
following sections we shall be interested in how this limit 
must be taken. However for this starting section this will be 
not important we simply write L -+ 00 : 

where the activity z(L1, ... ,Ld ) is the unique solution of 

P = 2: nk (L1, .. ·,Ld ) 
k 

I z(L1,· .. ,Ld ) 
= ePA dFL.L,,(A), 

[0.00) z(L1, ... ,Ld ) .. 

with fixed density p. Define 

cf>L, ... L)f3) = f e-PAdFL" .. ,L,,(A). 
)[0.00) 

(2) 

Van den Berg, Lewis, and Pule l derived the following result: 
If cf>(f3) = limL_ 00 cf> L, ..... L

d 
(f3) exists for all f3 in (0,00) and 

is nonzero for some f3 in (0,00) then there exists a unique 
distribution function F(A) determined by 

cf>(f3) = f e- PA dF(A). 
)[0.00 ) 

One has for c > ° 
lim I _Z_dF (A) 

_8A L ...... L d 
L- 00 i£.oo) e-- - Z 

= f _z_dF(A), forallzE(O,I]. (3) 
)i£.oo) ePA - z 

Define now the critical density Pc by 

Pc f -A 1_ dF{A), if (ePA 1) -I is integrable 
)[0.00) ef1 - 1 with respect to F 

Pc 00, otherwise. 

Then z = lim z(L1, ... ,Ld ) exists and equals 1 ifp>pc and is 
L- oo 

the unique root in (0,1) of the equation 

P= f +dF(A) ifp<pc' 
J{o.oo) ef1 z 
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If F( A,) - CA, a as A, ! 0 with a > 1 then Pc is finite. In order 
to decide whether the k th energy level will be macroscopical
ly occupied, i.e., 

nk = lim nk (L), ... ,Ld ) > 0, 
L, •... ,Ld- 00 

one needs some finer properties of the spectrum of HL" .... L
d

' 

or in other words of FL, .... ,L)A,) asA,!O. To make now our 
setting precise we consider the single-particle Hamiltonian 
HL" ... L

d 
of (1) acting on the Hilbert spaceL 2(R4) and sup

pose7 the existence of rp(/3) described above such that (3) 
holds and z = limL_ 00 z(L), ... ,Ld ) exists. Suppose moreover 
that the potentials Vi (Xi) of (1) are continuous functions 
defined on JR, and behave around their minima asymptotical

ly like ailxila',i = 1, ... ,d, in the sense of the following defini
tion. 

Definition 1: Let a,a > O. If for every e, 0 < e < a, there 
exists Xc > 0 such that 

(a-e)'lxla<V(x)«a+e)lxla, for all x, Ixl<xc (4a) 

(a .. e)x~<V(x), otherwise. (4b) 

Then the continuous function V(x) is called a asymptotical
ly a'lxl a potential. 

II. ESTIMATES ON THE DISTRIBUTION FUNCTIONS 
FL, ....• Ld 

In what follows we use the notations of Reed and Si
mon.s 

Definition 2: If A,B are two self-adjoint non-negative 
operators, densely defined in Hilbert spaces K,K), respec
tively, K1kK. We write O<A<B if and only if 
(i) Q(A) :;;JQ(B) Q(.) the domain of definition of the forms. 
(ii) 0< (,p.A,p) < (,p,B,p),tf;eQ(B). Further we make exten
sive use of Dirichlet Neumann bracketing. Denote by - ag 
(resp. - a~) the Dirichlet (resp. Neumann) Laplacian 
with Dirichlet (resp. Neumann) boundary conditions at the 
boundary of the open domain fi. ND (fi,E) 
[resp. NN (fi,E)] denote the number of eigenvalues <E of 
these operators. 

Let us first discuss the one-dimensional case, d = 1. Fix 
e>O,andletA,c = (a-e)x~,L=LI,a a). We have 

For the right-hand side of (5) Van den Berg and Lewis5 have 
already derived an upper bound, say Mk (e)L - 2a/(a+2) for 
the eigenvalues. Hence it holds that 

Ek(L)<Mde)L -2a/(a+2) (6) 

fortheeigenvaluesE1(L) <E2 (L)<'" of H L • In Appendix 
A we will calculate also a lower bound for the distance of the 
two first eigenvalues: 

E2(L) -E1(L»-mL -2a/(a+2l (7) 

with some positive constant m. 
Lemma 1: There exist sequences {An}nEN,{Bn}nEN 

such that for all A, < A, c 
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_~+ An 'A,1/2+l/a 
L 'IT(a + e) I/a 

B 
<FL (A,) < n (A, + MIL - 2a/(a + 2»)12 + I/a 

'IT(a - e)l/a 

n+2 +--Z-' (8a) 

for sufficiently large L, and 

timAn = limBn = i (1 -It la)I/2 dt 
n- 00 n- 00 [1~1] 

2·r(~)·r(1Ia) 
= , (8b) 

a·rq + 1Ia) 

where r ( . ) denotes the usual gamma function. 
Proof: From (6) and the definition of FL one has 

(1IL) 'Card{k:EdL) <A, } 

<FL(A,)«1IL) Card{k:Ek(L)<E}, 

where E A, + MIL - 2a/(2 + a). 

If L is large enough to provide E <A,E we make the fol
lowing choices to prove the second relation of (8a) for 
n = 21 (the case n = 21 + 1 can be handled in a similar man
ner): 

x
E 

(~)I/a, 
a-e 

k= -/, ... ,1-1, 

II = (xEL,xcL), 11+ I = (xcL,oo), 

1_ 1_ 1 = (-x£L,-xEL), 

1_ 1_ 2 = (- 00, -xcL), 
1+1 

fi = U I k • 
k -1- 2 

By Dirichlet-Neumann bracketing6 one gets 

-a+v(~)- 1:1 (-a~+v(~)). (9) 
L k= I 2 L 

If one substitutes now on each interval Ik the potential 
V(xIL) by the constant potential equal to the minimum of 
V(xIL) on Ik then one gets yet a smaller operator which has 
eventually more eigenvalues smaller than E. Obviously the 
minimum of V(xIL) on II is E, whereas that on 
II+lequalSA,c' As A,s>E we have NN(//'O) 
= NN (/_1_ pO) = I, and NN (//+»E - A,s) 
= NN (/_1_ 2,E - A,c) = 0 thus we get from (9) 

2 1- I ( ( k )a) 2 FdA,)<- 2: NN Ik,E-(a-e) -XE +-
L k=O 1 L 

<~ II,I xEL '(E _ (.!:...)aE )I/2 + 21 + 2 
L k=O 'lT1 I L 

E1/2+ I/a n + 2 
= ·B +--

'IT' (a - e) I/a n L' 
where 

I-I 1 ( (k)jIl2 22:- 1- - , 
k=O I 1 

(10) 

which is a lower Riemann sum of the integral in (8b). Let us 
sketch the proof of the first relation of (8a) for n = 2/. We 

K.Voigt 2997 



                                                                                                                                    

make the following choices: 

E=A., XE = (~)a, n. 
X+E 

I-I 
U I k , 

k= -I 

Ik being unchanged. Instead of relation (9) we obtain 

- a + V(~)<k~;~K - a~ + V(~)). (11) 

Instead of the minimum we take the maximum of V(x/ L) on 
each of the intervals I k' Here, A n will be defined in a similar 
manner as Bn in (10) and turns out to be a upper Riemann 
sum of the integral in (8b). The lemma now follows. 

Now let the dimension d be arbitrary. For E > 0 define A.e 

mini (a - E )x~~:i = 1 , ... ,d }, where x;,e are defined by 
( 4) corresponding to the potentials Vi' 

Lemma 2: There exist numbers 'CI,CZ such that for all 

A. <A.e' 

FL" .... Ld (A.) 

<C)(A. + Cz(L)- 1', + ... + L i 1'd»dl2+ Ila, + ... + lIa", 
(12) 

where 

Yi = 2a;l(a j + 2), i = 1, ... ,d. (13) 
Proof From Lemma 1 we have for d = l,n = I 

FL (A.) < 2 (A. + MIL 1- 1',) 112 + Iia + !::.... 
, tr(a

l
-E)lIa, 3 

<C1(A. + CzL 1-1',)112+ lIa" 

with 

2max(1,21 1',) (3tr(a l -E)lIa,)1" 
C1 = , Cz M 1 + . 

tr(a
l 

- E) lIa, 2 

The second inequality is a consequence of a1' + bY 
<max ( I,ZI 1') (a + b) 1'. The lemma follows now by simple 
induction. 

III. CONDENSATION IN THE PRESENCE OF V(x) 

As already remarked in the introduction Pc is finite 
whenever F(A.) - CA. a as A. to with a> 1. 

Lemma 3: If V(x) >0 is continuous, V(x) -+ 00 as 
Ixl .... 00, xE]Rd and if E1(L1, ... ,Ld ) <Ez(LI, ... ,Ld )<"· are 
the ordered eigenvalues of the Hamiltonian 
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HL L = -a+ V(~,~, ... ,~) 
, .... , d LI L2 Ld 

(14) 

and if limL_ '" EI (L1, ... ,Ld ) = 0 there exists 

F(A.) = limFL" ... L)A.) 
L-<x> 

= ~ r (A. - V(X»dI2 dx, (15) 
(2tr)d JV(X) d 

T d being the volume of the unit ball in ]Rd. 
This is a slight generalization9 of Pule's Lemma 1 in Ref. 

to already discussed by Voigt. II The proof is very similar to 
our Lemma 1 and will therefore be omitted. We remark that 
the operator (14) is quite more general than our HL, ..... L

d 

introduced at the end of the introduction. Let us return now 
to the latter. 

Proposition 1: If Vex) = VI(X I) + ... + Vd(Xd)' each 
of the Vi being a asymptotically ai IXi la, potential as de
scribed in Definition 1, then 

C - ( ) 1 d 12 + lIa, + ... + lIa" a,a,E /l. 

<F(A)<C + (a,a,E)A. dl2+ lIa, + ... + lIad 

for all A <Ae , where 

(16) 

(17) 

Proo!' Define W ± (x) (a l ± E) Ixla, + ... 
+ (ad ± E)lxl a

". 

If A. <A.e then one can conclude 

~ r (A. - W + (X»dI2 dx 
(Ztr)d Jw + (xl d 

<~ r (A. - V(X»dI2 dx<F(A.) 
(Ztr)d Jw + (xl d 

and 

F(A.)<~ r (A. - W - (X»dI2 dx 
(2tr)d JV(X) d 

But 

.. t )dI2t lla,-I . ... ·tllad-Idt· ... 'dtd . - dId I 

K. Voigt 2998 



                                                                                                                                    

Corollary: Under the assumptions of the Introduction it 
holds that Pc < 00 if and only if d /2 + 1/al + ... 
+ 1/ad> 1. 

Proof: Obvious from (3) and Proposition 1. 
Using the properties of the distribution functions F L (A. ) 

we obtain in the following theorem results concerning the 
macroscopic occupation of the low-lying levels. Alternative
ly one can use the results of Ref. 1 if one studies the Laplace 
transforms <l> L ({3) and the limit of the rescaled density dis
tributions r L (u) defined there. Our concept is much more 
direct and seems to be simpler. 

IV. MACROSCOPIC OCCUPATION OF LOW-LYING 
LEVELS 

Theorem: Let the infinite volumeI2 limit (L~ (0) be 
such that the mean density P is kept fixed and 

1. L [';;;.L r';;;.···;;;.L ~d~ 00, where rj = 2a j (a j + 2); 
(18) 

(d;;;.3); 

(d;;;.2); 

4. lim LI = C (d;;;.2); 
Lr'" L2L 3 ' .•• 'Ld 

L (a, - 2)/(a, + 2) 

5. lim I = D (d;;;.2). 
Lr ", L 2L 3"'Ld 

Let us differentiate between the following cases. 
(i) Case 1/a l + 1/a2> 0 
a l < 2: then only the ground state can be macrosco

pically occupied, n l •I ..... 1 = (p - Pc) +. 

a l = 2: there exists a critical density Pm: Pm 
= Pc + B /2{3 JQ;, and none of the single

particle states are macroscopically occupied 
if p<p m' If P > Pm again only the ground 
state will be macroscopically occupied, 

nl,l ..... 1 =P - Pm' 
In dependence on D one has three cases: 
one has the same situation as for 
a <2,h l •I •...• 1 = (p - Pc) + . 

O<D< 00: Ifp<pc thennk•I.I ..... I >O,k= 1,2, .... 
D = 00: then none of the single-particle states are 

macroscopically occupied. 
(ii) Case 1/a l + 1/a2 = 0 

This means that there are Dirichlet boundary condi
tions in the first and the second direction. Obviously d;;;.3 is 
necessary to have condensation. There exists a second criti
cal density Pm =Pc + (2·A)/(1T·{3). If P<Pm none of the 
single-particle states are macroscopically occupied. If P > Pm 
one has to differentiate between three cases in dependence of 
C. 
C = 0: only the ground state will be macroscopically 

occupied, nI.I ..... 1 = P - Pm; 
O<C< 00: nk•I•I •...• 1 = ({3~(k2-1) +E)-I, k= 1,2, ... , 

where E is the positive solution of 
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'" L (f3~(k 2 - 1) + E) - 1= C - I(p - Pm); 
k=I 

C = 00: none of the single-particle states will be macro-
scopically occupied. 

Proof: Supposep>pc' From the corollary of Sec. III we 
see d /2 + 1/a l + ... + 1/ad> 1. Fix £">0 and take A.E as 
in (11). Consider the expression 

L nk (LI, .. ·,Ld ) 
Ak>mdLd- Yd 

r z(LI, .. ·,Ld ) 
= ) I[ - Yd _BA (L L) dFL, ..... Ld (A.) 

m~d .Ae) t; - Z I'"'' d 

1 

z(LI, .. ·,Ld ) 
+ _BA (L L) dFL, ..... Ld (A.). 

[A"",) t; - Z I'"'' d 

(19) 

To prove the existence of the limit (Ld ~ (0) we observe that 
the second expression in the rhs simply converges to 

r ~dF(A.) 
)[A,..",) t; - 1 

by (3) and the fact that z/(ePA 
- z), 1/(ePA 

- 1), z, 1, the 
latter being bounded on [A.o 00 ). From (18) and Lemma 2 
we conclude 

F (A.) /C (A. + dC L - Yd)d12 + I/a, + ... + lIad 
L, •...• L" ... I 2 d 

,C
I
[(1 + (C2/md )ci)A. ]dl2+lIa""+l/a" 

for all A. in [ mdL ;; Yd,A.E ). It follows that 
const'1/ (ePA - 1)' A. d 12 + I/a, + ... + I/ad is a integrable 

(on [O.A. E » majorant of the integrand of the first term of 
( 19). By the dominated convergence principle we get 

= r ~dF(A.) =Pc' 
)[0.",) t; - 1 

(20) 

The relations (20) and (7) together yield 

= lim -1-1 z(LI, .. ·,Ld ) dF (A.). 
L J1A L, •...• L d I 

Ld - '" d [0.",) t; - z(LI, ... ,Ld ) -

The method now becomes clear. One restarts from ( 19) with 
d - 1 and repeats the conclusions made in the discussion of 
relation (20). Let us do so now. 

To shorten the notation denote s = d - 1. Again we 
split the sum into two parts: 

L nk (LI, .. ·,Ld) 
AI..>m.\L \.- 1\ 

k = (k, •...• k.1l 

(21 ) 

We are interested in whether the term in parentheses is 
bounded. Again only the first of the integrals is critical. Re-
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peating the arguments following (19) we arrive at a major-
ant [ 1/ (efM - 1)] II. s/2 + t/a, + ... + t/a, which is integrable at 
zero if and only if s/2 + 1/ at + ... + 1/ a y > 1. This will be 
the case for s;>2 if 1/at + 1/a2>0 and for s;>3 if 1/at 
+ 1/ a2 = 0 and consequently (21) tends to zero in all these 
cases. Iterating now s = d - I,d - 2, ... one concludes from 
(20) and the convergence to zero in the cases described 
above of (21) that 

P-Pc = lim L ndLt,··.,Ld ), if~+~>O 
Ld-oo k=(k,.t ..... \) at a 2 

(22) 

and 

if~+~=O. (23) 
at a 2 

(j)Case l/a1 + l/a2> 0 
Denote a = at,m = mt,r = rt, and L = (Lt, ... ,Ld ). 

From (22) we have 

P - Pc = lim n\,l, .... t (L) + S(L), (24a) 

where 
00 

S(L) = L nk,t.t ..... t (L), (24b) 
k=2 

1 (1 i z(Lw .. ,Ld) S(L) = + 
L2' ... 'Ld [mL ,- Y.A,) [.1.,,00) efM - z(Lt, ... ,Ld ) 

X dFL, (11.»). (25) 

a <2: deduces from FL, (II.) <Ct(1I. + C2L t- y)t/2+ t/a 
the existence of a majorant [1/(efM - 1)]11. tl2 + lIa of the 
integrand in question which is integrable at zero because 
! + -fi > 1. Therefore, S(L) tends to zero. 

a = 2: Define (Jh = 1 - z(L), W L tending to zero if 
P>Pc' In Appendix B we will show the following two rela
tions: 

lim sup S(L) <B/2PJO; =Pm -Pc' 
L-oo 

(26) 

and if{wL 'L t } is bounded then 

lim inf S(L);>B 12PJO; =Pm - Pc' 
L-oo 

(27) 

Ifpc <P<Pm then limwL 'L t = 00, because from (24) one 
L-oo 

always has S(L) <p - Pc <Pm - Pc' Therefore, relation 
(27) cannot be valid. This implies 

. . 1 - W L 
hm n t•t ..... t (L) = hm = 0, 
L-oo L-oo Lt' ... 'Ld'WL 

and consequently none of the single-particle states are ma
croscopically occupied. 

3000 

IfP>Pm we have from (24) and (26) 

lim inf nt.t ..... dL) = lim inf(o - Pc - S(L» 
L-oo L-oc 

;>p - Pc - (Pm - Pc) 

>P-Pm >0. 
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It follows that WL < «p - Pm)' Lt' .... Ld) - t, and WL . L t 
tends to zero. Now relation (27) holds and consequently 

lim n t•t ..... t (L) = nt,t ..... t = P - Pm' 
L-oo 

Moreover the ground state is the unique state which is ma
croscopically occupied because from II.k > mL t- t for all 
k =1= (1,1, ... ,1) we see that 

limnk(L)<lim 1 -0 
L-oo L-oo Lt' ... 'Ld mLt-t+wL - . 

a > 2: Again we are interested in the first part of (25) 
because the second is bounded and therefore multiplication 
by (L2' '" . Ld ) - t yields a term tending to zero as L ..... 00. 

We shall use partial integrationS and get 

r -13/ dFL (II.) 
)[e.oo) e-- - Z 

=p r eP~ePA 2(Fdll.) -Fde»dll.. (28) 
)[e.oo) ( - z) 

Consider 

p r zeP
A 

(F (II.) __ 1 )dll. 
) [ mL ,- Y.A,) (ePA - z) 2 L, L t 
ePA, ( C )tl2 + lIa 1 II. 112 + lIa 

<-'C2 1 +_t dll. 
P m [mL,-Y.A,) (lI.+p-tWL )2 

<const 1 (II. + P - tWL ) - 3/2 + lIa dll. 
[mL ,- " . .1.,) 

= const( a - 2(mL - y + P - tWL ) - (a-2)l2a 
2a 

_ a-2(lI.
e 
+p-twL )-(a-2)l2a). 

2a 

We again neglect the second term because it is bounded. The 
first is equal to 

const L (a - 2)/(a + 2)(m + P - tWL .L Y) - (a - 2)l2a. 

(29) 

Ifnow D = 0 then lim S(L) = 0, and consequently none but 
the ground state is macroscopically occupied. 

o < D < 00 will imply {w L • L n is bounded. Suppose to 
the contrary limL_oowLL r = 00. Then lim S(L) = 0 from 
(29). But 

lim n t. t ..... t (L) = lim 1 
L-oo Lt' ... 'Ld'WL 

L la-2)/(a+2) 
= lim =0 

L-oo L2' ... 'Ld'wL'L r 
in contrast to (24) because P - Pc < O. 

From relation (6) we havell.k <MkL.- Ywhich yields a 
lower bound for the occupation number 

where we used the inequality eX - 1 <xl ( 1 - x) for x < 2. 

As {w L • L n is bounded we get a lower bound from (30) 
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lim inf nk•I •I •...• 1 (L) 
L-oo 

L (a-2)/(a+2) 
;;;.lim inf >0. 

L-oo L 2· .. · 'Ld {JMk + f.t)LL r 
D= 00: From 

lim n l •I .... 1 (L) = lim 1 <'P - Pc < 00 
L-oo L-oo L I' ... ·Ld·f.t)L 

we conclude 
L (a-2)/(a+2) 

00 > lim = lim ~l~ ___ - __ 

L-oo L I' ... ·Ld·f.t)L L-oo L2· .. · 'Ld 

and finally lim f.t)LL r = 00 as D = 00. 

Again, from (30) we conclude 

lim infnk,I.I ..... 1 (L) 
L-oo 

=n l •I •...• I • 

Consequently we have a equipartition of the condensate. 
Thus n k = 0 for all k = (k l ,k2, ... ,kd ). 

(ii)Case l/a1 + l/a2 = 0 
This corresponds to Dirichlet boundary conditions and 

is actually identical with a result of Van den Berg.3 There is 
some discrepancy concerning Pm' coming from the fact that 
we handle here a prism of sides 2 X L j instead of L j and the 
fact that we have - a instead of - a/2. Our proof is actu
ally much more simpler and intuitive. Equation (23) proves 
one half of the theorem. We sketch the remainder. From 
(23) we have 

P-Pc = 1~n:C=(6 ..... I) ndL) +S(L»). (31) 

where 

S(L) = L ndL) 
k = (k,.k,.I.I •...• \) 
k,>2 

X z(L) dF (A). 
rf3A _ z(L) L,.L, 

(32) 

(33) 

To derive the limit L-- 00 we need estimates on FL,.L, (A). 
But for Dirichlet eigenvalues we have simply8.10 

const fT A 
-~1 +"A (L I +L2»+-

L I 'L2 1T 

<.F (A)<'~ + const(1 + V(L + L » 
L,.L, L .L "/I-' I 2 1T I 2 

where 

A + =A + E I •I ..... (L). 
From this one obtains in a similar way as in Appendix B 

limS(L) =2Ahr{J=Pm -Pc' 
L-oo 
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APPENDIX A 

To calculate a lower bound for the distances of the 
eigenvalues of an operator _d 2/dx2+ V(x)(d= 1) with 
eigenvalues En we cite here a result of Kirsch and Simon. \3 

Define 

A = max IE - Vex) 1112. 
Ee! E" -I.E,,) 
xe(a.b) 

(A1) 

They show: If V is continuous (but perhaps not bounded 
above), and suppose that for A>O, V(x);;;.En +A2 on 
R\ [u,v], where En >En_ 1 are eigenvalues of - d 2/dx2 

+ Vex). Then 

En -En_ I ;;;'1T'A 2'A'(A+A)-leXp[ -A(v-u»). 
(A2) 

We want to use this for our operator H L 

= - d 2/dx2 + v(x/L) with eigenvalues EI(L) <E2(L) 
<..... From (6) we have a constant M,E2(L) 
<.M·L -2a/(a+2), take A = L -a/(a+2), and a symmetric 
interval ( - b,b) with b = BL a/(a + 2), where 

((
M + 1)lIa ) B = max a _ £ ,1 0 < £ < a. 

TakeL large enough tosecureB'L -2I(a+2) <Xli' Iflxl;;;'b 
then 

V(x/L);;;,(a - £)IBL -2I(a+2)la 

;;;.(M + 1)'L -2a/(a+2);;;'E2(L) +A. (A3) 

If Ixl < b then 

v(~)<.(a + £)IBL -2I(a+2)la 

<.max(a+£(M+ l),a+£)L -2a/(a+2). (A4) 
a-£ 

One concludes 

(
a+£ ) max --(M + 1),a + £ 
a-£ 

XL -a/(a+2) = Q XL -a/(a+2) 

A;;;'A - =A. 

The function 

j(A) = A 2A' (A +A) - le-2J.b, A;;;'O 

reaches its maximum at 

Ao = (A /4B)(~4B2 + 12B + 1 - 2B + 1). 

We haveAo <A if B;;;.l such that we have Ao<.A - <.A<.A + . 

From this and from (A2) we see 

E2(L) - E I(L);;;'1TA 2A' (A + A) -le -2·).-b 

;>1T(A + )2A' (A + + A) -le -2'A + b 

;;;'1TQ2(Q+ 1) -le -2'Q'B'L -2a/(a+2). 

(A5) 

Now the proof of (7) is complete. 
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APPENDIXB 

From Lemma 1 we have for a = 2 

_~+ AN A 
L I 1T(a + £) 112 

BN I N+2 
<FL (.1.)< (A + MIL 1- ) +--. (Bl) 

'1T(a-£)1I2 LI 

We use throughout the appendix the partial integrated form 
(28) of our integrals. Note that 

lim sup S(L) = lim sup l. Ld P 
L-<x> L-<x> L2 •••• 

In order to use (B l) we first remark 

1 ( dA _ 1 (!:L-A) 
L I'L2 ' ••• 'Ld J[mL,-'.A,) .1. 2 - L I' ... 'Ld m £' 

(B3) 

Secondly we use the following estimate for the intc;grand of 
(B2): 

z(L)eP
A 

F (A) 
(ePA _ Z(L»2 L, 

ePA ( BN ? C) <-- /L+-(PA)2 1T(a _ £) 112 L I ' 
(B4) 

Keeping in mind relations (Bl)-(B4) we conclude 

lim supS(L) 
L-<x> 

BN 
= lim ----------:--::-

L-<x> L 2 ' 'Ld p1T(a-£)I12 

X (log .1.£ -log mL I-I) 

B'BN = -----=.---=.-
p1T(a - £)112 

(B5) 

In (B5) we simply ignored ePA which is correct in the limit. 
Integrating term by term 1/.1. + 1 + A /2! + ... all but the 
first give zero in the limit. 

Tocalculate a lower bound we have 

(B6) 

if PA£ < 1. This will be the case if £ is small enough. For 
A < .1.£ one has ePA - 1 <PA / (1 - PA£) such that (B6) fol
lows. From (B 1 ), (B2), (B3), and (B6) one concludes 
now 
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lim inf SeLl 
L-<x> 

A N (1-A£{3)2 .. l-OJL ;;;. . hm mf-----
p1T(a + £)112 L-<x> L 2 •••• 'Ld 

X( ~. 
J[ mL ,- '.A,) (A + (P - 1_ .1.£ )OJd2 

(B7) 

The integral in (B7) can easily be calculated 

J dA 
(A + (P - 1_ .1.£ )OJd2 

= 10g(A + (P - I - .1.£ )OJL) 

+ (P -I _ .1.£ )OJL .(.1. + (P -I - .1.£ )OJd - I. (B8) 

Again only the value at m' L 1- I will be important, 

-log LI + (log(m + (P - I - .1.£ )OJL . L I) 

( 
(P-I-A) ) 

+ m(OJL'LI)-I+(;-I_ A£) . 
(B9) 

Clearly the terms in parentheses are bounded if OJ L • L I < oc. 

Claiming this one gets finally 

B'A (I-A P)2 
I· . fS(L) N £ 1m m;;;. . 

p1T(a + £) 112 
(BlO) 

The relations (26) and (27) follow now by taking the limits 
N -+ oc, and £ -+ 0, because lim£_o .1.£ = 0, and 
lim AN = lim BN = 1T/2 from (8b). 
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Completely solvable models of the nonlinear Boltzmann equation 
I. Case of three velocities 
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In one space and one time dimension, a class of models of the nonlinear Boltzmann equation 
is presented that is exactly solvable for all initial conditions. The models have three 
velocity components and the following desirable properties: (a) conservation of the number 
of particles; (b) energy conservation; (c) nonlinearity; (d) positivity of distribution 
functions; and (e) unique equilibrium state (for any given density), which is approached as 
t --> 00. These models are very rich in structure, and some of their simple properties are 
studied. 

I. INTRODUCTION 

Because of the inherent complexity of the nonlinear 
Boltzmann transport equation, a great deal of insight has 
been provided by simplified models where some exact so
lutions can be found explicitly. For example, the exact 
solution discovered by Krook and Wu, I and also by Bo
bylev,2 in connection with controlled thermonuclear fu
sion, has been used by Olaussen3 to destroy a conjecture4 

concerning the approach to equilibrium. There is by now a 
rather large number of such particular exact solutions5 to 
various models of the nonlinear Boltzmann equation, in
cluding an especially interesting class given by Cornille.6 

These particular exact solutions are all of the following 
nature: they are exact solutions to well-defined models of 
the Boltzmann equation and contain a finite number of 
arbitrary constants. In none of these cases can these exact 
solutions be used to solve the general initial problem, be
cause such an initial value problem necessarily includes 
one or more arbitrary functions giving the initial distribu
tions. It is for this reason that these solutions are referred 
to as particular exact solutions. 

It is clearly desirable to have some simplified model of 
the Boltzmann equation where the exact solution can be 
written down for arbitrary initial conditions. It was nearly 
a decade ago when the first such model was found.7 The 
input that made that attempt successful came from particle 
physics. Christenson et al.8 found experimentally a quarter 
of a century ago that time reversal is not an invariance for 
weak interactions. Even before this beautiful and decisive 
experiment, it was known that time reversal invariance 
does not playa central role in kinetic theory.9 Accordingly, 
in a model for the nonlinear Boltzmann equation, not only 
is there no compelling reason, but indeed it may not even 
be desirable, to satisfy detailed balance. 

With this point in mind, in the proposed modeC there 
is one space dimension and of course one time dimension, 
and there are only two allowed velocities, called + 1 and 
- 1, with corresponding distribution functions II (x,t) and 

12(x,t), respectively. The model Boltzmann equation con
sists of 

(at + ax)/1 =/il2 - all + {3/2' 

(at - ax)/2= - lil2 + all - {3/2, 

( l.1a) 

(l.1b) 

where a and {3 are two positive constants. It is seen that 
there are three collision processes as follows: 

+ - --> + + 1, 

+ --> - a, 

- --> + {3. 

( 1.2) 

(1.3 ) 

(1.4) 

The second and the third collision processes may be inter
preted as collisions with some kind of background gas. 

Ever since the discovery of this completely solvable 
model, we have been making a continual effort to look for 
other models of this nature. The first hint of the existence 
of larger classes of completely solvable models came in 
1985. It is the purpose of this paper to describe the next 
simplest such model that has been found so far, and to give 
some of the more elementary properties. 

II. BASIC IDEA 

In the model given previously,7 there are, as already 
mentioned, two allowed velocities. In the present paper, we 
consider the case of three allowed velocities. However, this 
increase from two velocities to three velocities turns out to 
be most difficult. The reason is as follows. In Ref. 7, the 
way to solve the model Boltzmann equation is to express 
both of the distribution functions II and f2 as suitable 
derivatives of a single function, called F. That the model is 
completely solvable comes from the fact that the exponen
tial of F satisfies a linear partial differential equation. Since 
there are only two independent variables, namely x and t, 
this F can have only two independent derivatives. Accord
ingly, how is it possible to have more than two allowed 
velocities? 

The central point here is to avoid introducing F alto
gether. In other words, it is essential to work on the level of 
the fs rather than on the level of the F, even though in the 
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previous, much simpler case it was the introduction of F 
that led to the complete solution. 

The model we propose to study has three distribution 
functions, I, (X,t),J2(x,f), and 13 (x,t) , associated with the 
velocities v" V2, and V3, respectively. These distribution 
functions satisfy the following nonlinear Boltzmann equa
tion: 

(at +v,aX>/,=/,[aJ"2- aJ3] - (a + a')/, +{3/2 

+r'/3, 

(at + v2ax)/2=/2[ail3 - aJ"d - ({3 + {3')/2 + r/3 

(at + v3ax)/3=/3[aJ, - a,/2] - (r + y')/3 + ai, 

+ {3'/2, 

(2.1) 

where the ai and a,{3, ... ,r' are constants. The latter are 
non-negative, 

a>O, {3>0, ... , r'>O. (2.2) 

The model is constructed such that the total number of 
particles is conserved, i.e., the distribution functions obey 
the continuity equation, 

3 3 

at L li+ L vA/i=O. (2.3 ) 
i=' i=' 

Of course, the three distribution functions are required to 
be non-negative, 

li=li(X,t) >0, i= 1,2,3. (2.4) 

The collision terms ± aJ" il2 represent collisions in 
which (with a3 > 0) particles of initial velocities v, and V2 
undergo an interaction and both achieve velocity v,. The 
linear collision terms represent interactions with some kind 
of background gas: The terms ± ai, represent particles of 
species 1 interacting with the background and turning into 
particles of species 3. The different collision processes are 
summarized in Table I. 

We are primarily interested in the case when all three 
velocities are different. It is clear from Table I that the 
number of particles is conserved. In order for energy to be 
conserved, the particles having different velocities should 
also have different masses and/or different internal ener
gies. In kinetic theory, the conservation of momentum is 
usually not important. However, if it is desired to have also 
momentum conservation, it is only necessary to choose the 
three velocities to have the same sign. In this case, let 
m" m2, and m3 be the masses of the particles with the 
velocities v" V2, and V3, respectively, and let e" e2, and e3 be 
the corresponding internal or excitation energies. Then 
both energy and momentum are conserved if, with non
relativistic kinematics, 

(2.Sa) 

and 

(2.Sb) 
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TABLE I. Collision processes. 

Collision process 

V2V3 ~ V2V2 

V3 VI- V3V3 

VIV2~VIVI 

Relative probability 

V2V3~V2V2 al 

V3VI ~VIVI la21 

VI~V2 

VI-V" 

V2~V3 

U2- VI 

U3- Vl 

U3- V2 

a' 

a 
{3' 
(3 

r' 
r 

When v" Vb and V3 have the same sign, these equations 
have a two-parameter family of solutions; furthermore, the 
three masses are all positive, as they should be. 

In order to overcome the major problem discussed at 
the beginning of this section, the introduction of the func
tion F is avoided here. Instead, the basic idea, which leads 
to solvable equations, is to take out a common denomina
tor from the distribution functions. Let 

li(X,t) =gi(x,t)/D(x,t), i= 1,2,3. 

Clearly, this D(x,f) must be nonzero everywhere, 

D(x,t)=I=O, for all x and all t. 

(2.6) 

(2.7) 

Substituting this form into Eq. (2.1), we obtain equa
tions where all terms are bilinear in the four new functions 
g" g2, g3, and D: 

- g, (at + v,ax)D + D(at + v,ax)g, 

=g, (a~2 - a~3) - (a + a')g,D + D({3g2 + r'g3) , 

- g2(at + v2ax)D + D(at + V2ax)g2 

=g2(a,g3 - a~,) - ({3 + (3')g2D + D( rg3 + a'g,), 
(2.8) 

=g3(a~, - a,g2) - (r + y')g3D + D(ag, + (3'g2)· 

We may now satisfy (2.8) by requiring simultaneously 

- (at + v,ax)D=a~2 - a~3 - (i'D, 

- (at + v2ax)D=a,g3 - a~, - 13 'D, (2.9) 

- (at + v3ax)D=a~, - a,g2 - r'D 

and 
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(at + V2ax)g2 = - lJ g2 + yg3 + a'gl> 

(at + V3ax)g3= - y g3 + agl + {3'g2· 

(2.10) 

The terms in (2.8) that are proportional to g;D have been 
split in an as yet unspecified way, 

a + a'=a+a', 

lJ + lJ' = {3 + {3', 

Y + Y'=y+y'· 

(2.11 ) 

Whereas all six parameters on the right-hand side of Eq. 
(2.11) are non-negative, we have no corresponding 
requirement to those on the left-hand side. Some might be 
negative. 

It should be noted that the crucial feature ofthe model 
that leads to the linear equations (2.9)-(2.10) is the factor 
fi in the quadratic collision term for the function fi. Thus, 
in the equation for fl' for example, there is no term 
- f~. When we equate terms pairwise in Eq. (2.8), a factor 
gi can thus be canceled, and one obtains (2.9). 

It is seen that the approach here is quite different from 
that used previously in dealing with the two-velocity 
model. 7 This approach avoids the problem explained at the 
beginning of this section, and makes it possible to construct 
much larger and interesting classes of completely solvable 
models. 

The four functions D, gl, g2, and g3 must satisfy the six 
partial differential equations given by (2.9) and (2.10). 
While it is often possible to satisfy more equations than 
unknowns, what is needed here is much more. In order for 
this model to be completely solvable, i.e., exactly solvable 
for all initial conditions, we seek relations between the 12 
parameters VI> V2, V3, 01' 02, 03, a, {3, Y, a', {3', and y' such 
that these six equations are consistent for all initial condi
tions. Another way of stating our problem is as follows: 
For any initial conditions on fl> f2' and f3' we look for 
relations between the 12 parameters such that, after solving 
(2.10) for gl> g2, and g3, the three equations (2.9) are 
consistent so that a D can be found. 

III. GENERALIZATIONS 

The model can be generalized to more velocities. With 
N discrete velocities Vi and N distribution functions fi' the 
model is given by 

i=I, ... ,N, 

(3.1) 

with 

aij>O for i=l=j. (3.2) 

Particles can switch from distribution f j (with velocity 
Vj) to distribution fi (with velocity Vi) at rates given by the 
coefficients of the nonlinear and linear collision terms, 0ij 
and aij. Conservation of the total number of particles, 

(3.3 ) 
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imposes the constraints 

(3.4 ) 

and 

(3.5) 

The basic idea described in the preceding section is 
applicable also in this case: There is one D and N gjs, and 
these N + 1 functions are required to satisfy 2N linear 
partial differential equations. Consistency can still be 
achieved by imposing suitable relations between the pa
rameters. 

One new feature appears when N> 3 as distinct from 
the case N =3 of the present paper. Let .s;£(N) be the NXN 
matrix whose elements are the coefficients 0ij' then by (3.4) 
.s;£(N) is always antisymmetric. Since the rank of an anti
symmetric matrix is always even, \0 the rank of .s;£(3) is 2. 
For N> 3, the rank is not necessarily 2, and there may be 
interesting models where the rank of .s;£(N) is higher. 

To a limited extent, these models can be generalized to 
the case of infinite N and also to two spatial dimensions. 
These generalizations to N larger than 3 and/or to two 
dimensions will be discussed in later publications. 

IV. SCALING AND GALILEAN TRANSFORMATIONS 

As already mentioned, there are 12 parameters in these 
models, namely, VI, V2, V3, 01' 02, 03, a, {3, y, a', {3', and y'. 
Scaling and Galilean transformations relate models with 
different values of parameters. 

In all these transformations, VI, V2, and V3 always trans
form the same way; so do the three o's. Similarly, the six 
parameters a, {3, y, a', {3', and y' always transform the 
same way. Therefore, in this section, it is convenient and 
more transparent to use the following short-hand nota
tions: 

V stands for VI,V2, or V3; 

° stands for °1>°2, or 03; 

a stands for a,{3,y,a',{3', or y'. 

(4.1 ) 

With this notation, we list explicitly the various scaling and 
Galilean transformations. 

(a) First, the time variable may be scaled. Equations 
(2.1) are invariant under the following transformation: 

x-x, 

f-f, 

and 

a-a/Ct· (4.2) 

Because of (2.2), Ct must be positive. 
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(b) Second, the spatial variable may be similarly 
scaled. The corresponding transformation is 

(-t, 

/-/, 
(4.3) 

Unlike C(l this Cx can be positive or negative. 
(c) Similarly, the distribution functions/ix,t) may be 

scaled by a common factor C f independent of both x and t. 
The corresponding transformation is 

t --> t, 

x-x, 

v-v, 

Because of (2.4), this cf again must be positive. 
(d) Finally, the Galilean transformation is 

t-t, 

x-x - Vt, 

/-/, 

v-v + V, 

a--a, 

a-a. 

Here, V can take on any real value. 

(4.4 ) 

(4.5 ) 

These four transformations, three scaling and one Gal
ilean, are independent. Therefore, of the 12 parameters, 
only eight are independent. 

In two respects, the Galilean transformation (4.5) is of 
a slightly different nature from the scaling transformations 
(4.2 )-( 4.4). If energy conservation is required to hold af
ter the Galilean transformation, then by (2.5b) the masses 
mj and/or the internal energies ej must also be suitably 
transformed. Second, in the discussion of possible equilib
rium distributions in Sec. VI, (4.2)-(4.4) apply, but not 
( 4. 5), since equilibrium distributions that are not spatially 
homogeneous are not invariant under a Galilean transfor
mation. 

V. DESCRIPTION OF THE COMPLETELY SOLVABLE 
MODELS 

In this section, we shall specify the subspace in the 
12-dimensional parameter space where the nonlinear 
Boltzmann equation (2.1) can be explicitly and completely 
solved for all initial conditions. The conditions, Eq. (5.18) 
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below, tum out to be two relations between the six param
eters VI, V2, v3, ai' a2, and a3' 

Throughout this section, it is assumed that the three 
v's are not all equal. In other words, the completely unin
teresting case VI = V2 = V3 is excluded, because, by the Gal
ilean transformation (4.5), all velocities can be reduced to 
zero and hence the Boltzmann equation (2.1) merely con
sists of three ordinary differential equations in the time 
variable. It is allowed to have two velocities equal, so long 
as they are not equal to the third. 

In Sec. II we arrived at one set of partial differential 
equations involving gl' gz, and g3 as well as D, Eq. (2.9), 
and another set, Eq. (2.10), involving gl> g2, and g3 only. 
We shall consider the first set. If we multiply those three 
equations by al> a2, and a3, respectively, and add them, 
then the terms involving the gi cancel: 

[(at + az + a3)af + (aivi + a2v2 + a3V3)ax 

(5.1 ) 

This first-order partial differential equation is either 
trivial, i.e., 

aj + a2 + a3=0, 

atVt + a2v2 + a3v3=0, 

ala' +azf3' +a3Y'=0, 

(5.2) 

(5.3) 

(5.4 ) 

or nontrivial, i.e., either (5.2) or (5.3) or both is not sat
isfied. 

We want to show that the nonlinear Boltzmann equa
tion (2.1) is completely solvable only if (5.l) is trivial; in 
other words, (5.2), (5.3), and (5.4) are all satisfied. In 
order to reach this conclusion, assume the opposite. With 
the notation 

A=al + az + a3, 

B=ajVl + alvl + a3v3, 

C=aj a' + adJ' + a3 y', 
(5.1) is 

(AJ t + Bax - C)D(x,t) =0, 

and the most general solution is 

D(x,t) = e"f+qxDo(Bt - Ax), 

where the constants p and q satisfy 

Ap+Bq- C=O, 

and Do is a function of only one variable, 

S=Bt-Ax. 

(5.5 ) 

(5.6) 

(5.7) 

(5.8) 

(5.9) 

Define the following three first-order partial differen
tial operators: 

(5.10) 

then (2.9) takes the form 

P. Osland and T. T. Wu 3006 



                                                                                                                                    

a ID= - a~2 + a~3' 
a 2D= - alg3 + a~1> 
a 3D= - a~1 + alg2' 

(5.11 ) 

On the other hand, it follows from adding together the 
three equations of (2.10) and using (2.11) that 

algI + a ~2 + a ~3=0. (5.12) 

However, since [a I> a 2] = 0, the first two equations of 
(5.11) imply that 

al( -alg3+a~I)= a 2( -a~2+a~3) 

or 

a3( algI + a ~2 + a ~3) = (al a 1+ a2 a 2 + a3 a 3)g3' 
(5.13 ) 

The substitution of (5.12) into (5.13) gives 

(al a 1+ a2 a 2 + a3 a 3)g3=0' 

By (5.10) and (5.5), this is precisely 

(Aal + Bax - C)g3(X,t) =0, 

(5.14 ) 

(5.15 ) 

and the most general solution is the same as (5.7), namely, 

g3(x,t)=ellI+ qx xfunction of 5, (5.16) 

with 5 defined by (5.9). By cyclic permutation, gl (x,t) and 
g2 (x,t) are also of the same form. [Note that, while p and 
q are not uniquely determined by (5.7), any shift 
(p,q) ..... (p' ,q') will merely modify the multiplying function 
of 5.] Since (5.7) and (5.16) are of the same form, by 
(2.6) the three distribution functions are all functions of 
one variable: 

fi(X,t) = function of (Bt - Ax). (5.17 ) 

Solutions of such a simple form do not have enough struc
ture and therefore such models with Eq. (5.1) not trivial 
are not completely solvable. Appendices A, B, and Care 
devoted to a further discussion of this class of partially 
solvable models. 

The conclusion is therefore that the parameters of any 
completely solvable model (2.1) must satisfy (5.2) and 
(5.3). An alternative way of stating these two conditions is 
that there is a constant C I such that the a's and v's are 
related by 

al =CI (V2 - V3), 

a2=CI(V3 - VI), 

a3=CI(vl - v2)' 

(5.18 ) 

If C I = 0, then al = a2 = a3 = 0 and the Boltzmann 
equation (2.1) is linear. Since linear Boltzmann equations 
without binary collisions are not difficult to study directly, 
there is not much point in constructing simplified models 
in such cases. We therefore exclude this uninteresting case 
and assume that the constant CI is not zero. 

Without loss of generality, this constant CI can be cho
sen to be 1. This is most easily accomplished by making a 
scale transformation on the spatial variable x. By (4.3), 
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this changes v without altering a, a, or f. Since the ex there 
can be positive or negative, C I can be transformed into 1. 
Thus, by (5.18), 

(5.19 ) 

a3=vl - V2' 

The next step is to get rid of the constants a', P', and 
i ' introduced in (2.9). This is accomplished by first ob· 
serving that, for the same distributions fl' f2' and f3' there 
are many possible choices of D(x,t), and then choosing an 
especially simple D(x,t). If (5.2 )-( 5.4) are considered to 
be three linear equations for the three a's, then it follows 
that there are two constants C2 and C3 such that 

a'=C2 + C3VI> 

P' =C2 + C3v2, 

r '=C2 + C3V3' 

Therefore the transformation 

D(x,t) ..... D(x,t)eC21 + c3x, 

g/x,t) ..... g/x,t)eC21+ c3x, 

(5.20) 

(5.21 ) 

withj= 1,2,3 leaves fl> f2' and f3 unchanged while simpli
fying the partial differential equations (2.9) and (2.10) for 
D and gj to 

- (al + vlax)D= (VI - v2)g2 + (VI - V3)g3, 

- (al + v2ax)D=(V2- V3)g3 + (V2- VI)gl> 

- (al + v3ax)D= (V3 - vl)gl + (V3 - V2)g2 

and 

(al + vlax)gl = - (a + a')gl + (3g2 + y'g3' 

(al + V2ax)g2= - «(3 + (3')g2 + yg3 + a'gl, 

(al + V3ax)g3= - (Y + y')g3 + agl + (3'g2' 

(5.22) 

(5.23 ) 

The three equations (5.22) are equivalent to the following 
two: 

alD=vlgl + V~2 + V~3 (5.24 ) 

and 

(5.25 ) 

The six equations of motion (2.9) and (2.10) are 
therefore reduced to four: (5.23) and (5.24) for the four 
unknowns D, gl, g2, and g3' Similar to the familiar case of 
Maxwell's equations, (5.25) is a boundary condition, not 
an equation of motion. It only remains to show, using 
(5.23) and (5.24), that, if (5.25) holds at one time, then it 
holds for all times. This is easily accomplished by adding 
together the three equations of (5.23): 

al(gl + g2 + g3) + ax(vlgl + V~2 + V~3) =0. (5.26) 

The use of (5.24) then gives 

(5.27) 
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This proves the assertion. 
The most general initial values for the nonlinear Boltz

mann equation (2.1) are 

fl (X,O) = f\O(x), 

f2(X,O) =f20(X), 

f3(X,O) =f30(X), 

(5.28 ) 

where f\O(x), f20(X), and f30(X) are given. With the !'S 
given by (2.6), this initial-value problem, under the con
dition (5.18) for the parameters, has been reduced to the 
linear one of solving the four partial differential equations 
(5.23) and (5.24) for the four unknowns D, gl, g2, and 
g3 under the four initial conditions (5.25) and 

gl (x,O) = f\O(x)D(x,Q), 

g2(X,O) = f20(x)D(x,O), 

g3(X,O) = f30(x)D(x,Q). 

(5.29) 

This well-posed problem is to be solved explicitly and ex
actly in Sec. VII. 

VI. EQUILIBRIUM DISTRIBUTIONS 

In this section, we initiate the study of equilibrium 
distributions for the Boltzmann equation (2.1). Although 
this discussion is entirely elementary, it is nevertheless not 
easy to present. We choose to follow a comparatively in
tuitive line of reasoning as follows. 

(a) The term "equilibrium distributions" refers to the 
case where the distributions fl(X,t), f2(X,t}, and f3(X,t) 
are all independent of t, and hence are written as fl (x), 
f2 (x), and f3 (x). In this case, (2.1) becomes 

VI ~1=fl[a:J2-a2f3] - (a+a')fl +(3f2 + y'f3, 

V2 ~2 =f2[aJ"3 - a:Jd - «(3 + (3')f2 + yf3 + a'fl> 

(6.1 ) 

V3 ~ =f3[a2f1 - aJ"2] - (y + y')f3 + afl + (3'f2' 

If these three equations are added together, the result is 

d 
dx (VJ"I + V2f2 + VJ3) =0, 

or 

(6.2) 

(b) In this section, we concentrate entirely on the spe
cial case where the values of fl> fz, and f3 are furthermore 
independent of x. They can be interpreted also as the lim
iting values of fl(X), f2(X), and f3(X) as x ...... 00 or 
x ...... - 00. 

By (6.1), these!'s satisfy simply 

fl[a:J2- a2f3] - (a+a')fl +(3f2+y'f3=0, 
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( 6.3a) 

f2[aJ"3 - aJd - «(3 + (3')f2 + yf3 + a'fl =0, 

f3[a2f1 - aJ"2] - (y + y')f3 + afl + (3'f2=0. 

By (6.2), they also satisfy 

VJ"I + V2f2 + V:J3 = C. 

(6.3b) 

(6.3c) 

(6.4) 

It will also be assumed throughout that the relations 
(5.19) between the three a's and the three V's are valid. It 
is realized that the problem of equilibrium distributions 
without these relations is of great interest in its own right. 
However, such solutions are not relevant to the present 
completely solvable models of the nonlinear Boltzmann 
equation. 

(c) As a Boltzmann equation, the parameters a, (3, y, 
a', (3', and y' in (2.1) must satisfy (2.2), i.e., they must be 
non-negative. In this section, we use a stronger assump
tion, i.e., they are all positive: 

a > 0, (3 > 0, y> 0, 

a'>O, (3'>0, y'>O. 
( 6.5) 

In the preceding section, it has been assumed that not all 
three V's are equal. Here we use the stronger assumption 
that they are all unequal, 

VI#:V2#:V3#:VI> 

so that by (5.19) 

al#:O, a2#:0, a3#:0. 

Of course the condition (2.4) is not modified 

fl>O, f2>0, f3>0. 

(6.6) 

(6.7) 

( 6.8) 

Actually there is no loss of generality in assuming 
(6.5) and (6.6). All the other cases can be recovered by 
taking suitable limits. 

(d) By a suitable permutation of the three distribu
tions, we can, without loss of generality, take 

(6.9) 

This implies, by (5.19), that 

( 6.10) 

These signs play a salient role in the following analysis. 
(e) Given aI' a2, a3, a, (3, y, a', (3', and y', we define CtJ 

to be the set of points (f1,J2,J3) that satisfy (6.3) and 
(6.8). We proceed to study this C(J which is clearly an 
algebraic curve, or more precisely a part of a real algebraic 
curve. In particular, we want to determine the number of 
points there are in the intersection of this C(J with the plane 
( 6.4 ) . We first concentrate on obtaining some of the prop
erties of this curve CtJ; only later we introduce the V's and 
C to define the plane. 

Let Yt be the set of points (f1,J2,J3) that satisfy (6.8). 
Then clearly C(J is in Yt. Also the point (0,0,0) is clearly in 
C(J. 

(f) The first result about C(J is that the point (0,0,0) is 
not an isolated point on C(J. 
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This is readily seen by looking at the neighborhood of 
(0,0,0), i.e., by taking II> 12, and 13 all small. Thus by 
(6.3) these small f's satisfy the linear equations 

- (a + a')/1 + f3/2 + r'/3=0, 

a'il - (f3 + f3')/2 + rI3=0. 

These two equations imply 

f3r + f3'r' + f3r' r a + y'a' + r a ' af3 + a'f3' + a(3' . 
(6.11 ) 

By (6.5) all three denominators are positive. This proves 
the assertion. 

(g) The next elementary property of CtJ is that, aside 
from the point (0,0,0), CtJ does not intersect the boundary 
of !!ll. 

This is readily seen as follows. Let 13 = 0, then (6.3c) 
reduces to 

(6.12 ) 

By (6.5), a and (3' are positive; by (6.8), II and 12 are 
non-negative. Therefore (6.12) can only be satisfied with 
II = 12 = 0. This proves the assertion. 

A picture of this curve CtJ is beginning to emerge. It 
has one end point at (0,0,0). Since it cannot intersect the 
boundary of!!ll anywhere else, it must approach infinity. 

(h) The infinity behavior of CtJ is 

11 --+ 00, 

(6.13 ) 

13 --> - a/ a2· 

That II goes to infinity while 12 and 13 do not is closely 
related to the ordering (6.9) of the velocities. Equivalently, 
this is due to the signs of the a's, as given by (6.10). 

Because of (6.10), the terms quadratic in thef's are of 
the same sign in both (6.3a) and (6.3c). Therefore it is not 
possible for more than one of the three f's to approach 
infinity. Furthermore, in (6. 3a), the coefficient of 12 is 

Substitution into (6.14) then gives 

aJiI + f3 and the coefficient of 13 is - az!1 + y'; they are 
both positive. It is therefore not possible to have either 
12 or 13 approach infinity with the other two bounded. 

Therefore the only possibility is for II to approach 
infinity. The result (6.13) then follows immediately from 
(6.3b) and (6.3c). 

(i) Let 12 and 13 be expressed in terms of II. From 
(6.3b) it follows that 

13 = aJi J2 - a'il + «(3 + (3' )12 . 

aJ2+r 

Substitution into (6.3a) then gives 

- a2aJii/2 + a3aJJ~ + a2a'/i - [al(a + a') 

+ a2«(3 + (3') - a3(r + r') ]/1/2 + alf3/~ 

(6.14 ) 

- (ra + y'a' + ra')/1 + (f3r + (3'y' + f3y')/2 

=0. (6.15) 

We shall encounter repeatedly equations of this type. It 
is thus convenient to introduce the following notation: 

Delinition: 

x<=>y (6.16 ) 

means that x and y satisfy a third-order polynomial equa
tion where the x 3 and i terms are absent. 

The absence of these x 3 and i terms means that, for 
each x, there are at most two values of y that satisfy the 
equation, and also that, for each y, there are at most two 
x's. 

An example of this notation is 11<=>/2. 
In (6.15), by (6.8) and (6.10), the coefficient of I~ is 

a3al/l + alf3> 0, 

while that of Ii is 

a2a'/i - (ra + r'a' + ra')/1 <0 

for II > 0. Therefore only one of the two possible values of 
12 is positive, and it is given by 

(6.17 ) 

a2aJii + [ - al (a + a') + a2«(3 + f3') - a3( r + r') ]/1 - (f3r + f3'r' + (3y') + .Jii 
13 2al(az!1 - y') . 

(6.18 ) 

In (6.17) and (6.18), !!.. is given by 

!!..={a2aJii + [al (a + a') + a2«(3 + (3') - a3(r + r') ]/1 - «(3r + (3'r' + (3r,)}2 + 4aJI(aJiI + (3) 

X [ ( ra + y' a' + ra') - a2a'/l ] . 
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Equations (6.17) and (6.18), with I, taking all non
negative values, give an explicit parametrization of C(f. In 
particular, it is seen that the algebraic curve C(J consists of 
just one continuous semi-infinite curve that goes from the 
origin to infinity in the three-dimensional (/,,/2,/3) space. 

(j) Asymptotic evaluation of the right-hand expres
sions of (6.17) and (6.18) for large I, gives immediately 

and 

(6.21) 

In particular, as I, -+ 00, 12 approaches its limiting 
value a'/a3 from below (above) if 

(6.22) 

and 13 approaches its limiting value - a/ a2 from below 
(above) if 

(6.23 ) 

(k) Considered as functions of I" 12 and/or 13 is 
monotonically increasing. 

This follows from the fact that, by (6.10), 

[a,aa' + a2a'({3 + {3') + a3yaj - [a,aa' + a2a'{3' 

+ a3a(y + y')]=a2a'{3 - a3y'a <0. (6.24) 

Therefore, by (6.22) and (6.23), it is not possible, as 
I, -+ 00, for both 12 and 13 to approach their respective 
limiting values from above. At least one of them must 
approach its limiting value from below. 

By (6.15), cyclic permutation, and the definition in
troduced in subsection (i), we have both 1,¢;}/2 and 
1,¢;}/3' Therefore, if 12 and/or 13 approaches its limiting 
value from below, then 12 and/or 13 is a monotonically 
increasing function of I,. 

(I) So far we have been studying the algebraic curve 
defined by (6.3), and the additional relation (6.4) between 
the!,s has not been used. In order to analyze the intersec
tion of C(J with this plane (6.4), it is convenient to intro
duce the quantities 

h,= -aJi2+aJ3' 

h2= - a,/3 + aJi" 

h3= - aJ, + aJ'2' 

They are the combinations that appear in (6.3). 
These three h's are not linearly independent: 

a,h, + a2h2 + a3h3=0. 

In (6.15), the third-order terms are 

- a2aJii/2 + a3a,IJ'~=aJiJ'2h3' 
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(6.25a) 

(6.25b) 

(6.25c) 

(6.26 ) 

(6.27) 

By expressing I, in terms of 12 and h3' (6.15) can be 
readily rewritten as a third-order algebraic equation for 
12 and h3• Furthermore, the terms I~ and h~ are not 
present. Therefore, by the definition of subsection (i), 
12¢;}h3. The same argument also shows that 1,¢;}h3. There
fore, by cyclic permutation, the following six relations 
hold: 

12¢;}h3, 13¢;}h" 1,¢;}h2, 

1,¢;}h3, 12¢;}h" 13¢;}h2· 
( 6.28) 

(m) Considered as functions of II> h, and h3 are 
both monotonically increasing. 

For h3' this is obvious. Since by (6.10) a, is positive 
while a2 is negative, h3 is an increasing function of I, for 
small I,. By (6.13), it is also an increasing function of I, 
for large I,. Thus 1,¢;}h3 of (6.28) implies that h3 is a 
monotonically increasing function of I,. 

The argument for - h, is more complicated. First, by 
(6.20), (6.21), and (6.25a), the asymptotic behavior of 

h, for large values of I, is given by 

- h, = (a + a') - (l/a2aJi,)(a2a'{3 - a3y'a) 

+ 0(/,-2). (6.29) 

This implies that, as I, -+ 00, h, always approaches its 
limiting value a + a' from below. 

Secondly, by (k), either 12 or 13 or both is a mono
tonically increasing function of I,. Suppose 12 is monoton
ically increasing. (An entirely similar argument applies in 
the case of 13') In this case, - h, is an increasing function 
of 12 for 12 near its largest value a'/a3' Therefore 12¢;}h, of 
(6.28) implies that - h, is a monotonically increasing 
function of 12, and hence of I,. This proves the assertion. 

(n) Because of result (m), it is natural to use the 
variables - h, and h3. In terms of these variables [cf. 
(5.19)] 

vJ', + VJ2 + vJi3=h3 - (V3/a2)(h3 - hi)' 

The plane (6.4) is thus 

( 6.30) 

(6.31) 

Thus the algebraic curve C(f is to be projected into this 
( - h "h3) plane and its intersections with the line (6.31) 
are to be studied. 

This is very fortunate because algebraic curves in two 
variables are quite simple. In connection with the general
izations discussed in Sec. III, the projection into a two
dimensional plane can also be carried out when the rank of 
the matrix d(N) is two, for any finite integer N. 

(0) If (6.3) are considered to be linear equations for 
the !'S with the h's of (6.25) as coefficients, then 

-h,-a-a' {3 Y' 

a' -h2-{3-{3' Y =0. 

a {3' - h3 - Y - Y' 
(6.32) 
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When h2 is expressed in terms of hI and h3 using (6.26), 
this is the third-order polynomial relating hI and h3' and 
hence gives the projection of '6' into this ( hl>h3) plane. 
In particular, 

(6.33 ) 

(p) Let '6" be the algebraic curve in the ( - hl,h3) 
plane given by (6.32) and (6.26). Since the third-order 
terms are simply - hlh2h3' this curve '6" has six asymp
totes given by 

hI = - (a + a'), (6.34a) 

h2= - (f3 + f3'), (6.34b) 

(6.34c) 

For general values of the parameters, 'Ii' connects 
these six asymptotics pairwise, and hence has three disjoint 
pieces. Being a third-order polynomial curve, 'Ii' can in
tersect any straight line at most three times, and further
more each of the three disjoint pieces can intersect the 
straight line at most twice. 

(q) From (6.11), the slope of 'Ii' at the origin is 

d( - hI) I _ - (V3 - vI)(af3 + a'f3' + af3') + (VI - v2)(ya + y'a' + ya') 

dh3 0- - (v3 - VI )(f3y + f3'y' + f3y') + (v2 - v3)(ya + y'a' + ya') . 
(6.35) 

This is to be compared'with the slope of the straight line (6.31). The difference is 

_ ~ _ d( - hI) I = _ VI - V3 vI(f3y + f3'y' + f3y') + v2(ya + y'a' + ya') + v3(af3 + a'f3' + af3') 

V3 dh3 0 V3 (VI- V3)(f3y+f3'y'+f3y') + (V2- v3)(ya+y'a'+ya') . 
(6.36) 

The sign of this quantity depends on the sign of V3 and that 
of 

Z=VI (f3y + f3'y' + f3y') + v2(ya + y'a' + ya') 

+ v3(af3 + a'f3' + af3'). (6.37) 

(r) With the conventions on the v's and a's as given by 
(6.9) and (5.19) (i.e., CI = 1), the number of solutions 
(/1'/2'/3) for (6.3) and (6.4) with fixed parameters in
cluding C is as follows. 

First, if VI = 0, then (6.4) reduces to hI = C. Therefore, 
there is one solution if 

- (a + a') <C<O, (6.38) 

and no solution otherwise. 
Let VI=.f:0. If the h3 intercept of the line (6.31) is pos

itive, i.e., 

(6.39 ) 

then there is one solution. 
It remains to consider the case when this intercept is 

zero or negative. If the three v's have the same sign (in
cluding the case V3 = 0), then there is one solution when 
C=O, and no solution if VIC < 0. If the three V's do not 
have the same sign, then VI > ° and V3 < 0, and there are 
two subcases. If Z>O, then there is one solution for C=O 
and no solution for C < 0. If Z < 0, there are two solutions 
for C=O, and there are either zero or two solutions for 
C < 0. Whether there are zero or two solutions in the last 
case depends on the sign of the discriminant of a cubic 
equation. 

Under no circumstance are there three solutions to 
(6.3), (6.4), and (6.8). 
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VII. SOLUTION OF THE INITIAL-VALUE PROBLEM 

In this section, we solve, under the assumption (5.18), 
the nonlinear Boltzmann equation (2.1) with the initial 
conditions (5.28). 

It has been shown in Sec. V that this is equivalent to 
solving the partial differential equations (5.23) and (5.24) 
with the initial conditions (5.25) and (5.29). 

or 

The substitution of (5.29) into (5.25) gives 

d 
dx D(x,O) = - [flO(X) + f20(X) + f30(X) ]D(x,Q) 

(7.1) 

D(x,O) =exp ( - J dx[flO(x) + f20(X) + f30(X)] ). 

(7.2) 

The choice of the constant of integration in the exponent is 
of no consequence. Therefore, the initial conditions for the 
linear partial differential equations (5.23) are, for j= 1,2,3, 

g/x,O) =gp(x), 

where 

gp(x) =fp(x)exp( - J dx[flO(X) + f20(X) 

(7.3 ) 

+f30(X)]) (7.4) 

are known. 
Because of the presence of the integral in the exponent, 

these gp(x) are expected to be exponentially increasing for 
large Ixl in many cases of interest. The use of Green's 
functions is thus called for. 
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Let g and go be the column matrices 

and 

g) (x,t) 

g(x,t) = g2(x,t) 

g3(X,t) 

vIt= -a' 

-a 

-{3 

at + V2ax + {3 + {3' 

-(3' 

then the problem to be solved is 

vltg=O, 

with the initial conditions 

g(x,O) =go(x). 

(7.5) 

(7.8) 

(7.9) 

Let 1 be the 3 X 3 identity matrix, then the retarded 
matrix Green's function 

G l1 (x,t) G12 (x,t) G13 (x,t) 

G=G(x,t)= G2)(x,t) G22 (x,t) G23 (X,t) (7.10) 

G3) (x,t) Gdx,t) G33 (X,t) 

satisfies the linear partial differential equations 

vltG=B(t)B(x)/, 

together with the initial condition 

G(x,t) =0, for all f< O. 

(7.11) 

(7.12 ) 

In terms of this Green's function, the complete solu
tion to the initial-value problem for the nonlinear Boltz
mann equation (2.1) is, for j= 1,2,3, 

f/x,t) =g/x,t)ID(x,t) , (7.13) 

. 3 

g/x,t) = f: 00 dx' k~) Gjk(x - X',t)gkO(X'), (7.14) 

-a' 

-a 

-{3 

at + V2ax + {3 + {3' 

-(3' 

Define a scalar Green's function Go = Go(x,t) by 

~Go=B(x)B(t), 

and the initial condition 

Go(x,t) =0, for all t.;;O. 

[

glO(X,t) 

go(x,t) = g20(X,t) . 

g30(X,t) 

(7.6) 

Define vIt to be the 3 X 3 matrix differential operator with 
constant coefficients 

-y' 

(7.7) 

and 

(t 3 

+ Jo dt' j~) vp/x,t'). (7.15) 

It remains to find explicitly the Green's function G. 
Similar to (5.10), define, for j= 1,2,3, 

aj=vltjj, 

or, more explicitly, 

a)=at + v)ax + a + a', 

a2=at + V2ax + {3 + {3', 

a3=at + V3ax + y + y'. 

(7.16) 

(7.17) 

From (7.7), define another 3 X 3 matrix differential oper
ator with constant coefficients 

a2a3 - {3'y {3a3 + {3'y' y'a2 + (3y 

vIt'= a'a3 + ya a3a) - y'a ya) + y'a' , (7.18) 

aa2 + a'{3' (3'a) + a{3 a)a2 - a'{3 

then 

vltvlt' =vIt'vIt=/~, (7.19) 

where ~ is the third-order differential operator defined by 

-y' 

(7.20) 

(7.21 ) 

(7.22) 

Then a comparison of (7.11), (7.21), and (7.19) shows that 

G=vIt'IGo· (7.23) 

It remains to find the scalar Green's function Go. This is 
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most conveniently accomplished by Fourier transform. 

and 

Let 

1 foo ";x-
G(x,t)=21T -00 d~e' G(~,t), 

Go(X,t) =2~ f: 00 d~ ei;xGo(~,t), 

at + iVI~ + a + a' - fJ 

::i = - a' at + iV2~ + fJ + fJ' -y , 
-a -fJ' 

- r' 1 
at + iV3~ + y + y' 

a j=::ijj> 

I 
a2a3 -fJ'y 

::i' = a'_a 3 + ya 

a a 2 + a'fJ' 

fJa 3 + fJ'y' 

a3 al -r'a 
fJ'al+afJ 

r' a 2 + fJy 

ya I + r'a' , 
a I a 2 - a'fJ 

at + iVI~ + a + a' -fJ -y' 

-a' at + iV2~ + fJ + fJ' - Y 

-a - fJ' at + iV3~ + y + r' 
then 

and 

::i::i' =::i'::i=I?), 

::iG =13(t)I, 

?) G o=13(t), 

G=::i'IGo, 

G (~,t) =0, Go(~,t) =0, for all t.;;;O. 

(7.24) 

(7.25) 

(7.26) 

(7.27) 

(7.28) 

(7.29) 

(7.30) 

(7.31) 

(7.32) 

(7.33 ) 

Equation (7.31) is merely a third-order ordinary differential equation with constant coefficients, and its solution is, for 
t>O, 

Go(~,t) =AI(~)e"'I(;)t + A2(~)e"'2Wt +A3(~)e"'3Wt, (7.34) 

where WI (~), W2(~)' and W3(~) are the roots of the cubic equation 

W(~) + iVI~ + a + a' -fJ -r' 
-a' W(~) + iV2~ + fJ + fJ' - Y =0, (7.35 ) 

-a - fJ' w(~) + iV3~ + y + r' 

(7.36) 
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as follows from the boundary condition at t=O. Equations 
(7.24), (7.32), (7.25)-(7.27), and (7.34)-(7.36) give the 
matrix Green's function Gjk(x,t). Together with (7.13)
(7.15), the initial-value problem of the Boltzmann equa
tion (2.1) is solved explicitly and completely. 

We add a few remarks about the Green's function 
G(x,t). 

It follows from (7.34)-(7.36) that Go(~,t) [and hence 
G(~,t)] is an analytic function of ~ for any fixed value of t. 
Furthermore, for large ~, 

WI (~) - - iVI~ - a - a', 

W2(~) - - iV2~ - f3 - f3', 

W3(~) - - iV3~ - r - r', 

and hence Go(~,t) is given asymptotically by 

x [(V2 - v3)e - (ivl; + a + a')t 

+ (V3 - vI)e- (iv2;+{3+{3')t 

+ (VI - v2)e - (iv3; + r+ y')t]. 

(7.37) 

(7.38) 

(7.39) 

The substitution of (7.39) into (7.32) gives the asymptotic 
behavior of G jk( ~,t) as 

G II (~,t) -e - (ivl; + a + a')t, 

G22(~,t) -e - (i"2; + {3 + (3')t, (7.40) 

G33(~,t) -e- (iv3;+r+y')t, 

and 

o 

Both (7.39) and (7.40) hold asymptotically for ~ -+ 00 and 
with any fixed t> O. 

Because of (7.39) and the analytic property of 
Go(~,t), the contour of integration in (7.24) can be closed 
at infinity when x - VI t, x - V2t, and x - V3t all have 
the same sign. With the convention (6.9), VI > V2 > V3, we 
get, for t> 0, 

G,()(x,t) =0, and G(x,t) =0, (7.41 ) 

when 

(7.42) 

(7.43) 

This is an expression of the fact that the Boltzmann equa
tion (2.1) has limited velocities for the particles colliding 
with each other and the background gas. Substitution into 
(7.14) then gives, for j= 1,2,3, 

(7.44) 

Here the - and + signs in the range of integration 
merely express the fact that there are fJ functions in Gjk at 
the end points of the range of integration that must be 
included. 

For purposes of numerical integration, it is desirable to 
write out explicitly these fJ functions in Gjk(x,t). They are 
readily available from (7.40). Define 

H I1 (x,t) Hu(x,t) H I3 (X,t) 

H=H(x,t) = H 21 (x,t) H 22 (x,t) H 23 (X,t) , (7.45) 

H 31 (X,t) H 32 (x,t) H 33 (x,t) 

so that 

o 
G(x,t) =H(x,t) + 

e - (a + a')tfJ(x - vlt) 

o e-({3+{3')tfJ(X-V2t) 0 (7.46) 

o o e- (r+y')tfJ(x - V3t) 

then H(x,t) contains no fJ-function term. 
We summarize the results of this section. Go(~,t) is given by (7.34)-(7.36), and then G(~,t) is given by (7.32) and 

(7.27). Let 

e-(iVI;+a+a')t 

H({;,t)~G({;,t)-[ ~ 
o 
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and 

1 Joo "r -
H(x,t)=2rr -00 d~el.xH(~,t), (7.48) 

then 

g/x,t) =e - V!gp(x - vi) 

3 

+ rx
- V3

t 
dx' L Hjk(x - x',t)gkO(X'), (7.49) 

)X-vlt k=1 

where gp is given by (7.4) and 

VI=a+a', 

V2={3+{3', 

V3=Y + y'. 

(7.50) 

(These are Greek v's in the exponential in (7.49), not to be 
confused with the velocities v) 

Finally, in terms of this g/x,t), the time evolution of 
the distributionsfj(x,t) is given by (7.13) and (7.15). 

VIII. SIMPLE ILLUSTRATIONS 

A program has been initiated to study numerically the 
present exact solutions of the Boltzmann equation. The 
results will be reported on in a separate publication. II 
However, in order to develop some intuition for these mod
els, we include also here a couple of examples that illus
trate the most simple properties. 

In Figs. 1, 2, and 3 we consider three examples (ex
ample A, example B, and example C) given by the follow
ing initial distributions: 

example A: 

flO(x) =e- (x+ 1)2, 

f ( ) - - (x - 1)2 20 X -e , 

f30(X) =0; 

example B: 

flO(x) = 1/0 + ~), 

f20(X) =~/O + ~), 

f30(X) =0; 

example c: 

flO(x) = 1 - e-~, 

f20(X) =e-~, 

f30(X) =0. 

(8.1 ) 

( 8.2) 

(8.3 ) 

Thus, for these three examples, there are initially no 
slow particles, f3 (x,f) =0. The distributions are shown in 
Figs. 1 (a), 2(a), and 3(a). 

We consider the velocities 

(8.4) 
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The time evolution will be indicated for three choices 
of the parameters a, {3, y, a', {3', and y'. 

With 

a = {3 = y = a' = (3' = y' = 0, (8.5) 

the time development is given entirely by the nonlinear 
terms. Figures l(b), 2(b), and 3(b) show how particles 
get transferred from a distribution of slow ones, to another 
of faster ones, at rates given by the overlap of the two 
distributions. If we define 

(8.6) 

we see that NI (t) increases, while N 2(t) decreases with 
increasing f, with N 3 (t) remaining zero. 

With the choice (8.5), the H(x,t) of Eqs. (7.45)
(7.49) vanishes. Thus, only the c5-function part of the 
Green's function contributes, and the numerical evaluation 
of the gj(x,t) of Eq. (7.49) becomes trivial. [However, the 
numerical integration (7.15) that gives D(x,t) still has to 
be performed.] 

When the coefficients of the linear terms are nonzero, 
particles also get transferred from one distribution to an
other, irrespectively of the overlap. (The linear collision 
terms may be interpreted as representing interactions with 
a background gas.) In Figs. I ( c ), 2 ( c ), and 3 ( c) we show 
the initial time evolution (t=0, 0.025, 0.050, ... ,0.200) for 

a =a' = 1, 

{3 = (3' = y = y' = O. 
(8.7) 

With this choice, the only linear collision terms that are 
active, are those by which the distribution fl (x,t) loses 
particles to f2(X,f) and f3(X,t). [Compare Eq. (2.0.] 
With these parameters, f3(x,t) thus becomes nonzero. We 
see from the figures that it only "inherits" particles from 
fl (x,t), not from f2(X,t). 

In this case, the cubic equation (7.35), which governs 
the time evolution of the Green's function, becomes trivial 
and the (J)i(~) become linear expressions in ~. As a result, 
the Green's function can be determined analytically. 

The last set of parameters considered here, is 

a = {3 = y = a' = (3' = y' = 1, (8.8) 

i.e., all linear terms are present, with equal strength. The 
initial time evolutions (t=0,0.025,0.050, ... ,0.200) are 
shown in Figs. l(d), 2(d), and 3(d). A rich structure is 
seen to emerge. 

IX. SUMMARY 

The models described in the present paper have the 
property that particles are transferred between three dis
tributions by two independent and sometimes competing 
mechanisms. 

( I) Particles are transferred from a distribution of 
slow ones, to another of faster ones, at rates given by the 
difference in velocity, and the overlap of the two distribu
tions, according to the nonlinear collision terms in Eq. 
(2.0 [see also (5.18)]. 
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FIG. 1. Time evolutions forinitial conditions specified by example AofEq. (8.1), and VI = 4, V2 = 2, and V3 = 1. (a) Initial (1=0) distributions. (b) Only 
the nonlinear collision terms are present. The distributions are shown for 1=0 [solid, same as (a)], 1=0.1, 0.2, 0.3, 0.4, and 0.5 (dashed, increasing times 
to the right). Note that 13 remains zero. (c) Two linear collision terms are present, a = a' = I, whereas (3 = /3' = r = r' = 0, for 1=0 (solid), 1=0.025, 
0.005,0.075, ... up to 0,20 (alternately dotted and dashed, increasing times to the right). Note that 13 is fed by I •. (d) Same as (c) except that all linear 
collision terms are present with equal strength, a = a' = (3 = /3' = r = r' = 1. Now 13 is fed by both I. and 12' 
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FIG. 2. Similar to Fig. 1, for initial conditions given by example B ofEq. (8.2). 
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FIG. 3. Similar to Fig. 1, for initial conditions given by example C ofEq. (8.3). 
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(2) Particles are transferred between the three distri
butions at rates given by the linear terms, i.e., irrespectively 
of any overlap. 

Various different time evolutions will thus occur, de
pending upon how the two mechanisms interfere, which is 
determined by the initial distributions and by the parame
ters of the Boltzmann equation. Some of these will be fur
ther explored in a separate paper. 11 
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APPENDIX A: MODELS WITH INITIAL DATA GIVEN 
BY ONE ARBITRARY FUNCTION 

There are some classes of models where the three dis
tribution functions are given by functions of one argument, 
IMBt - Ax) [see Eq. (5.17)]. The initial values must then 
be given by the same functions, evaluated at t=O. Not 
including cases where one of the distribution functions 
vanishes identically, we have a priori the following possi
bilities: 

Class AI: II (x,t) =</11 (Bt - Ax), 

12(x,t) =C2, 

13 (x,t) =C3; 

Class A2: II (x,t) =</11 (Bt - Ax), 

12(x,t) = </12 (Bt - Ax), 

13 (x,t) =C3; 

Class A3: II (x,t) =</11 (Bt - Ax), 

12 (x,t) =</12(Bt - Ax), 

13 (x,t) = </13(Bt - Ax), 

(At) 

(A2) 

(A3) 

where cyclic permutations of classes Al and A2 are not 
distinct classes, and with C2 and C3 nonzero constants. We 
leave open the possibility that some of the </1j might be 
proportional. 

A lengthy analysis is required in order to determine 
which of these classes are permitted (class A3 does not 
exist), and whether there are any conditions on the </1j. In 
this appendix we first give some general results, and sub
sequently present models where the </1j can be expressed in 
terms of one arbitrary function, while in Appendix B we 
present models where two arbitrary functions are accom-
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modated. 

1. Preliminaries 

We start out defining three auxiliary functions, 

FI = (at + vlax - Ci')D, 

F 2= (at + V2ax - f3 ')D, (A4) 

F3= (at + V3ax - r ')D. 

Equation (5.6) is then equivalent to the condition 

alFI + a2F2 + a~3=0. (A5) 

In terms of Do(s) [cf. Eqs. (5.7) and (5.9)], these three 
quantities are 

FI = [ (p + vlq - Ci' )Do + (B - VIA )Db] e{.>t+ qx, 

F2=[(P+V2q- f3')Do + (B-v,.A)Db]ePt+ qx, (A6) 

F3= [(p + v3q - r ')Do + (B - vy4)Db]ePt+qx, 

with Db = (dlds)Do(s). 
Returning now to Eq. (2.9), we find that the gj must 

satisfy 

a~2 - a~3= - F I, 

(A7) 

a~1 - alg2 = - F 3· 

Assuming all a #0 (the case of one or two of the a j being 
zero is discussed in Appendix C), the most general solu
tion to Eq. (A7) is given by 

(A8) 

g3=-3
1 

(FI _ F2) + a~(x,t) =g30 + a~(x,t), 
a2 al 

as is readily confirmed by substitution. 
The function g(x,t) is constrained by the fact that the 

gj have to satisfy Eq. (2.10). Substituting Eq. (A8) into 
(2.10 ), we find the following three equations: 

(at + vlax)(gto + alg) = - (a + a' - Ci'){gto + alg) 

+ /3(g2o + a~) 
+ y'(g30 + a~), 

(at + V2ax)(g20 + a~) = - (/3 + /3' - f3' )(g20 + a~) 
+ r(g3o + a~) 
+ a'(gto + alg), (A9) 

(at + V3ax)(g30 + a~) = - (r + y' - r ')(g30 + a~) 
+ a(glo + alg) 

+ /3' (g20 + a~). 
Before studying these equations in detail, we note that their 
sum yields [cf. Eq. (5.15)] 
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(Aar + Bax - C)g(x,t) =0. 

This is the same as Eq. (5.6), i.e., g(x,t) and D(x,t) must 
satisfy the same partial differential equation. 

In analogy with Eq. (5.7), we introduce a function of 
one variable, goes), by the ansatz 

(AW) 

If we now substitute this into Eq. (A9), and substitute for 
the glO. g20. and g30 in terms of Do(s), according to Eqs. 
(A8) and (A6), we obtain three coupled ordinary differ
ential equations for goes) and Do(s). These have the forms 

(PI ~+ QI)go+ (Rl ~+Sl~+ TI)Do=O, 

(P2 ~ + Q2 )gO + ( R2 ~ + S2 ~ + T2 )Do=O, (All) 

(P3 :s + Q3 )gO + (R3 ~ + S3 ~ + T3 )Do=O, 

with 

PI=a\(B - VIA), 

QI =a\ (p + vlq + a) - a-J3 a3y', 

I (B - V2A B - V~) 
R I =-3 (B-vIA) - , 

a3 a2 

y' _P+Vlq- a') 
a3 

(A12a) 

(A12b) 

(A12c) 

(A12d) 

(A12e) 

and P2, Q2, ... ,T3 obtained by cyclic permutations. (The 
corresponding results for al = ° and for al = a2 = ° are 
given in Appendix C.) 

Because of (5.8) and (2.11), it follows that 

3 3 3 3 3 

L Pj= L Qj= L Rj = L Sj= L Tj=O. 
~\ ~\ ~\ ~I ~1 

(AB) 

Therefore, one of the three equations in (All) is redun
dant, and it suffices to consider the two equations 
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(PI§! + QI)go + (R 1§!2 + SI§! + TI)Do=O, 

(P2§! + Q2)gO + (R2§!2 + S2§! + T2)Do=0, 
(A14) 

where §! == (dlds). The above differential operators com
mute, so we can apply (P2§! + Q2) to the first equation, 
and (PI§! + Ql) to the second, thereby eliminating go. 
This yields 

UDo=o, 

with 

U=(PI§! + QI)(R2§!2 +S2§! + T2) 

- (P2§! + Q2)(R I§!2 + SI§! + T I )· 

Similarly, one finds 

Ugo=O. 

(A15) 

(A16) 

Hence, Do and go satisfy the same ordinary differential 
equation with constant coefficients. This differential equa
tion has to be trivial. Otherwise, Do and go would be sums 
of exponentials, and more general initial (t=O) conditions 
could not be satisfied. We must therefore require 

U==O. 

More explicitly, this means 

PIR2=P2R b 

PIS2 + QIR2=P2S1 + Q2R b 

PI T2 + QIS2=P2T I + Q2S b 

Q I T2=QzT I • 

(A17a) 

(A17b) 

(A17c) 

(A17d) 

These are the consistency conditions for "model I." When 
these conditions are satisfied, DoCs) is arbitrary, with 
goes) determined by DoCs) according to (A14). 

Alternatively, one could require 

P;=Qi=R;=Si=T;=O, i=1,2. 

Then goes) and Do(s) would both be arbitrary. This leads 
to "model 2," which is discussed in Appendix B. 

2. Model 1 with P2'/=O, P3=FO 

By Eq. CAB), we must have 

PI + Pz + P3=0. 

There are two possibilities, either all Pi vanish, or at least 
two of them are nonzero. We first consider the latter pos
sibility. By a suitable labeling, these nonvanishing ones can 
be chosen as P2 and P3• Hence, 

P2=FO, P3=FO, 

and by (AI2a) we must have 

a2=FO, a3=FO, B - V2A=FO, B - V~=FO. (A18) 

Irrespectively of whether or not al=FO, the consistency 
condition (A17a) is then found to lead to the requirement 
that 

(A19) 
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i.e., 

(A20) 

Equations (AI8) and (AI9) imply that all velocities have 
to be different: 

(A21) 

Furthermore, Eq. (AI9) implies [see Eqs. (AI2a) and 
(AI2c)] 

RI=O. 

Equation (AI7b) then simplifies to 

QIR 2=P2S to 

(A22a) 

(A22b) 

which leads to the following condition involving P and q: 

(A23) 

In order to proceed with the analysis of Eqs. (AI7c) 
and (AI7d), we have to consider separately the two cases 
of 01=1=0 and 01 = 0. For both cases, the consistency condi
tion (AI7c), which by (A22a) reduces to 

QIS 2=P2T I + Q2S to 

yields 

where K is some constant. 

(A24) 

For 01 = 0, the original equations (2.1) are symmetric 
under the interchange 12++/3, provided one also inter
changes 

(A25) 

Equation (A24) is seen to satisfy this symmetry require
ment. 

The remaining consistency condition, Eq. (AI7d), is 
more involved. We first consider 01=1=0. Invoking Eq. 
(5.8), which can be written out as 

01(P+Vlq- a') +02(P+V2q-lJ') 

+03(P+V3q- r')=O, (A26) 

and furthermore Eqs. (AI9) and (A23), we find 

(a + a')(p + P')y' - (p + vlq - a')Py 

+ (p + V2q - lJ ')ay' + (p + v3q - r ')a'p=O. 

We here use Eqs. (A24) and (A26) to combine the last 
two terms, obtaining thus 

(A27) 
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A corresponding analysis for the case of 01 = ° yields the 
"same" result, i.e., one may simply substitute 01 = ° in Eq. 
(A27). 

There are two solutions to Eq. (A27): 

(i) a = a' = 0; Oto02,03'P,P',y,y' arbitrary, 

(ii) py + py' + P'y' + KoI/0203=0; 

a,a' subject to (A24). 

(A28) 

(A29) 

In both cases, VI' V2' and V3 are subject to conditions (A20) 
and (A2l). 

If in the latter case ° I = 0, it suffices to have 

P = P' = 0, with 03y'a=O, 

or 

P = y' = 0, or y = y' = 0, with oz!1a'=O. 

We next study the corresponding distribution functions 
Ij· 

3. Model 1 with P2=1=O, P3=1=O, and 81=1=0 

We first consider 

Cose l' 

01=1=0. 

The gj are then given by the general expression, Eq. (A8), 
with the auxiliary functions F j given by Eqs. (A6) and 
(AI9) as: 

FI = (p + vlq - a')Doe"t+qx, 

F2= [(p + V2q - lJ ')Do + (B - vzA)Do]ePt+qx, 

F3= [(p + v3q - r ')Do + (B - v~)Do]ePt+ qx. 

It follows from Eq. (2.6) that 

I [P + V2q - lJ' P + V3Q - r' (B - vzA II (x,t) =-3 - + 
03 02 03 

(A30) 

B - vzA Do(S) ] go(S) 
- 01 Do(S) + °3 Do(S) . 

The functions go(S) and Do(S) are related by Eq. 
(AI4). For the case under consideration [see Eqs. (A22a) 
and (A22b)]: 
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(A31) 

By Eqs. (AI2b), (AI2d), (AI2e), (AI9), and (A23), 

(A32) 

Quite generally, for model I with P2=1=O, P3=1=O, and 
a 1=1=0, we then have 

goes) I - f3(B - vy4) + y' (B - V2A) Db(s) 

Do(s) = 3a l azf3 + a3Y' Do(S) 

I 

3(azf3 + a3Y') 

X [f3(P+V3Q- y' _p+vlq- (i') 
al a3 

(A33) 

Therefore, the distribution functions depend on one "arbi
trary" function q,(S) as follows: 

fl (x,t) = flO + 111q,(S), 

f2(x,t) = f20 + 112q,(S), 

f3(x,t) = f30 + 113q,(S)' 

(A34) 

Substituting (A33) into (A30), and using (5.8) and 
(A23), we find 

112 = 0, 

113 = o. 

4. Model 1 with P2=1=O, P3=1=O, and a1 =0 

We next consider 

Case II: 

al=O. 

The gi are then given by Eqs. (C3 )-( C4) of Appendix C. 
Thus, by Eq. (A23), 
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a + a' goeS) 
f2(x,t) =~ + a2 Do(s) , 

a + a' goes) 
f3(x,t) = -~ + a3 Do(s) . 

Now QI is still given by (A32), whereas [see Eqs. 
(C6), (AI9), and (A23)] 

TI = - (a + a') [(azf3 - a3y')/2a2a3]' 

It follows from (A31) that 

a + a' azf3 - a3Y' 

2a2a3 azf3 + a3Y' 
const. 

The distribution functions will again be of the form (A34), 
now with 

111= - (B-vy4)/az, 

112 = 0, 

113 = O. 

Thus, whatever the value of ai' we conclude that for this 
model I with P2=1=O, P3=1=O, two distribution functions have 
.to be constant, i.e., the solutions belong to class Al [cf. Eq. 
(Al)]. 

5. Model 1 with P1 =P2=P3 =0 

The remaining subsections of this appendix are 
devoted to a study of the consistency equations of model I, 
(A17), in the case of 

PI =al (B - vIA) =0, 

P2=a2(B - V2A) =0, 

P3=a3(B - vy4) =0. 

We shall distinguish two cases: 

Case Ill' 

aJ =0, a2=1=O, a3=1=O, 

B- V2A=0, 

B - vy4=O, i.e., V2=V3' 

Case IV: 

B - vy4=O, 

(A35) 

(A36a) 

(A36b) 

(A36c) 

(A37a) 

(A37b) 

(A37c) 

to be explored in subsections 6 and 7, respectively. Note 
that we cannot have also a3 = 0, since then the model 
would no longer contain any nonlinear term. 

6. Case III, a1 =0, a2=1=O, a3=1=0 

In case III, one clearly has 

B - vJA=I=O, i.e., VJ=I=V2=V3, 
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since we do not want all three velocities to be the same. 
The coefficients given in Appendix C then simplify [see Eq. 
(C7)]. In particular, one has 

(A38) 

and only two of the consistency conditions, Eqs. (A17a)
(A17d), are nontrivial: 

QIS2=Q2SI> 

Q I T2=Q2T I' 

With the abbreviations 

X 2=P+V2q+ p, X 3=P+V2q+ y, 
the first of these, Eq. (A39a), leads to 

X 2X 3=(3'y, 

whereas the second one, Eq. (A39b), yields 

ay' X 2 + a' (3X 3 + a(3y + a' (3' y' = 0. 

(A39a) 

(A39b) 

(A40) 

Squaring the latter, and substituting according to the 
former, we obtain 

(ay'X2 + a'(3X3)2 - 4aa'(3y'(X2X 3) 

= (a(3y + a'(3'y')2 - 4aa'(3y'«(3'y) 

or 

ay'X2 - a'(3X3= ± (a(3y - a'(3'y'). 

When combining this with Eq. (A40), one can solve 
for X 2 and X 3• The two signs yield the solutions denoted 
case IlIA and case I1IB below: 

Case lIlA: 

ay'X2= - a'(3'y', a'(3X3= - a(3y. 

There are two possibilities: 

(i) y' = 0, (3=1=0, 

a'X3= - ay, or a'(p + v2q + y) + ay = 0; 

(ii) (3 = 0, y' =1=0, 

aX2= - a'(3', or a(p + v2q + P) + a'(3' = 0. 

Case IIIB: 

ay'X2= - a(3y, a'(3X3= - a'(3'y'. 

There are again two possibilities: 
(i) a = 0, a'=I=0, 

(3X3= - (3'y', or (3(p + V2q + y) + (3'y' =0; 

(ii) a' = 0, a=l=0, 

y'X2= - (3y, or y'(p + V2q + P) + (3y=O. 

Here, the g; are given by Eqs. (C3) and (C4) as 

gl=~ (F2 _ F3), 
2 a3 a2 
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g3=FI/2a2 + a~(x,t), 
and the three auxiliary functions F; are given byEqs. (A6) 
and (A36) as: 

FI = [(p + vlq - a')Do + (B - vIA)D~lePt+ qx, 

F2=(p+V2q- P')DoePt+qx
, 

F3= (p + v2Q - Y ')DoePt+ qx. 

It follows from Eq. (2.6) that 

_~ [P + v2Q - P' P + v2Q - y,] 
II (x,t) -2 - , 

a3 a2 

_~ [ _ P + vIQ - a' _ B - VIA DO<s) ] 
12 (x,t) -2 . a3 a3 Do(s) 

go(s) 
+ a2 Do(s) , (A41) 

_~ [P+VIQ- a' B-VIAD~(s)] 
13(X,t) -2 a2 + a2 Do(S) 

go(S) 
+ a3 Do(S) . 

By (A14), (A35), and (A38), 

go(s) = - ~I [SI ~ + TI ]Do(s). 

Here, QI> SI> and TI are given by (C7), and 

go(s) 1 [ (P+V2Q- P'+(3 
Do(s) 2(a~ + a3Y') (B - VIA) a3 

P + v2Q - y' + y') D~(s) _ 
- a2 Do(s) + (p + vIQ + a) 

X(P+V2Q- P' _P+V2Q- y,) 
a3 a2 

(A42) 

Therefore, the distribution functions are of the form 
(A34). Substituting (A42) into (A41), we find 

171 = 0, 

B- VIA _ 
172 2a3(a~ + a3Y') [-2a3Y' + a2(p + v2Q - (3') 

-a3(p+ V2Q- y'»)' 
B- VIA _ 

173=2a2(a~ + a3Y') [2a~ + a2(p + v2Q - (3') 

- a3 (p + V2Q - y')]. 

These solutions belong to the class A2 of Eq. (A2). 
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7. Case IV, 81=82=0, 8 3:;60 

In case IV we have 

A=a3:;60, B=a3v3, C=a3r', 

and there are three consistency conditions: 

Q\R2=Q2R b 

Q\S2=Q2S b 

Q\T2=Q2T \. 

The first one gives immediately 

and we must distinguish two subcases: 

Case IVA: 

r= r' =0. 

Case IVB: 

B- v~=O, i.e., V2=V3' 

(A43a) 

(A43b) 

(A43c) 

(A44) 

(A45) 

We first consider case IV A. It follows from (A44) and 
Appendix C that 

Q\=Q2=0, 

and the remaining conditions, (A43b) and (A43c), are 
trivially satisfied. 

Since for case IVA, Pi = Qi = 0, it follows from (A14) 
that we have two differential equations (with constant co
efficients) for Do. We must make sure they have at least 
one common solution. With the solution of the form 

Do = ct/s, 
z must satisfy the two equations 

R\z2 + S\z + T\ =0, S)Z + T3=0. 

(It is convenient to consider the equation with i=3 instead 
of the one for i = 2, since R3 = 0.) Eliminating here z, we 
find the condition 

R\T~ - S\S3T3 + T\S~=O. 
Substituting for these quantities according to Appendix C, 
we find 

(V3 - V\)(V3 - V2)[ - a(p + V2q - P') + {3'(p + v\q - a') Ha{3 - {3'(a + a')] + a{3'{(v3 - VI)2(p + V2q - P') 

X (p + v2q - p' +{3) + (V3 - V2)2(p + vlq - a')(p + vlq + a) - 2(V3 - V\)(V3 - V2) [(p + v\q + a) 

X (p + V2q - P') + {3(p + vlq - a'»)} + (V3 - VI)2{3,2(a + a')(p + v2q - P') + (V3 - v2)2a2{3(p + vlq - a') =0. 
(A46) 

The expression in curly brackets can be simplified. We first write it as 

{"'}=[(V3-V2)(P+Vlq- a') - (V3-VI)(P+V2q- p')]2+ (V3-V2)2(p+Vlq- a')(a+a') 

+ (V3 - VI)2(p + V2q - P '){3 - 2(V3 - V2)(V3 - VI)[ (p + vlq - a'){3 + (p + v2q - p')(a + a')], 

and then use (5.8) in the form (remember a\ = a2 = 0) 

to rewrite the square as 

- 2 
+ (VI - V2) r'] . 

Substituting back into (A46), we get 

X [a{3 + {3'(a + a')] =0. 

Invoking again (A47), we find 
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(A47) 

[(V2 - V3)a' + (V3 - VI) P' + (VI- V2) r'] 

X{a{3'[(v2 - v3)a' + (V3 - VI) P' 
+ (VI - V2) r'] - [(V2 - V3)a + (V3 - VI ){3'] 

X [a{3 + {3'(a + a') )}=O. 

This expression factorizes, so there are two possibili
ties: 

Case IVAa: 

(V2 - V3) a' + (V3 - VI) P' + (V\ - V2) r' =0, 

Case IVAb: 

a{3' [ (V2 - V3) a' + (V3 - VI) P' + (VI - V2) r '] 
- (a{3 + a{3' + a'{3') [a(V2 - V3) + {3' (V3 - VI)] =0. 

We next consider case IVB where we must impose 

r+ r'>0. (A48) 

By (A37c) and (A45), 

P. Osland and T. T. Wu 3024 



                                                                                                                                    

=-
From Appendix C, it follows that [see Eq. (C14)] a(B - v2A ) - f3'(B - vIA) 

RI =R2=R3=O, which is a constant. Therefore, 

and there are only two nontrivial consistency conditions 111 =0, 112=0, 113=a3' 
left. Because of (A48), Eq. (A43b) yields The solutions belong to class Al [cf. Eq. (Al)]. 

(A49) 

The remaining consistency condition, (A43c), then factor
izes, 

[(a + a')y + a'y'][(f3 + f3')y' + f3y] = o. 
We here distinguish two further subcases: 

Case IVBa: 

ay + a'y + a'r' = 0, with Y + r'>0. 

(i) a = a' = 0, 

(ii) a' = y = O. 

Case IVBb: 

f3y + f3r' + f3'y' = 0, with Y + r' > O. 

(i) f3 = f3' = 0, 

(ii) f3 = r' = o. 

(ASO) 

(AS1) 

For case IV, the g; are given by Eqs. (ClO) and (C1l) as 

gl =F21a3, g2= - Flla3' g3=a~(x,t), 

and the three auxiliary functions F; are given by Eqs. (A6) 
and (A37) as: 

FI = [(p + vlq - a')Do + (B - vIA)Do]ePt+qx, 

F2= [(p + V2Q - # ')Do + (B - v2A)Do]ePt+qX, 

F3=(p+V2Q- Y')DoePt+qx. 

It follows that 

p+vlq-a' 
12(x,t) = - ---

a3 

go(s) 
13(x,t) =a3 Do(s) . 

Case IVA: 

y= r' =0. 

By Eqs. (A44) and (C13), 

Qi=O. 

B - vIA Do(s) 
a3 Do(s) , 

(AS2) 

Equation (AI4) yields no equation for go(s). However, 
Do(s) satisfies 

Do(s) T3 
Do(s) = S3 
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Case IVB: 

By Eq. (C14): 

QI= -a3r', 

RI=O, 

S - (B A) p + v2q - #' + f3 
1- -VI , 

a3 

(A4S') 

_ p + v2q - #' P + vlq - a' 
TI = (p + vlq + a) + f3 , 

a3 a3 

and 

go(s) 1 [ - Do(s) 
Do(s) = a~y' (B - vIA) (p + v2q - f3' + (3) Do(s) 

+ (p+vIQ+ a)(p+v2q- #') 

+ f3(p + vlq - a') ]. 

Substituting into Eq. (AS2), and using also Eq. (A49), we 
obtain 

111 =0, 

113 = - (V2 - VI) [f3' I (y + r') ], 
i.e., the solutions belong to class A2. 

If, in this case IVB, a = a' = 0, two distribution func
tions are proportional, 

13(s) = [f3'/(y + y') ]/2(s)· 

Similarly, if f3 = r' = 0, 

13(s) = (f3'ly)/2(s)· 

For cases I-IV of this Appendix, Eq. (2.1) is "trivial" 
in the sense that the left-hand side vanishes, either because 
Ii = const., or because at + vPx = (B - v;A)as with B 
- v;A = o. 

APPENDIX B: MODELS WITH INITIAL DATA GIVEN 
BY TWO ARBITRARY FUNCTIONS 

In model I, discussed in Appendix A, the initial con
ditions are given in terms of one arbitrary function. In this 
appendix we shall discuss another possibility, namely when 
all coefficients of the differential equations (A 14) vanish, 

(B1a) 

(BIb) 
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R, =R2=R3=0, 

S, =S2=S3=0, 

T,=T2=T3=0. 

(BIc) 

(BId) 

(BIe) 

There is then no relation between go and Do, and the initial 
(t=0) condition can be given in terms of two arbitrary 
functions. In order to satisfy Eq. (BIa) without having all 
three velocities the same, at least one of the a; must vanish. 
Accordingly, we distinguish two cases, depending on 
whether one or two of the a/s vanish. 

1. Case V, a1 = 0, a2::;60, a3::;60 

We here consider the case 

a,=O, a2::;60, a3::;60. 

By Eq. (BIa) and (AI2a), 

B - V2A=B - v~=O. 

Therefore, 

v,::;6v2=v3' 

(B2) 

(B3) 

For the remaining conditions (BIb)-(BIe), we consider 
those with i=2 and 3. Because of Eq. (B3), (BIc) is au
tomatically satisfied, and the conditions on the Q; and the 
S; are: 

Q2=0: a2(p + V2q + fi) =a3Y, 

Q3=0: a3(p + V2q + r) =a-J3', 

S2=0: a2(p + V2q + fi) = - a3Y, 

S3=0: a3(p + V2Q + r) = - a-J3', 

where we have also used (B3). It follows that 

P + v2Q + fi =P + v2Q + r =0, 

(3' = Y= 0. 

(B4) 

(B5) 

Substituting these results (B4) and (B5) into Eq. (5.8), 
invoking also (2.11), we find 

(B6) 

We next make use of the results (B4) and (B5) in the 
conditions T2 = T3 = 0: 

T2=0: a'(a-J3 - a3y') =0, 

T3=0: a(a-J3 - a3Y') =0. 

Because of (B6) and the requirement thatl,(x,t)::;60 [see 
Eq. (B9»), there is only one solution, 

a=a'=O. 

The g; are given by Eqs. (C3) and (C4) as 

g,=~ (F2 _ F3) , 
2 a3 a2 

g2= - F,/2a3 + a~(x,t), 
g3=F,/2a2 + a~(x,t), 
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(B7) 

(B8) 

and the auxiliary functions F; are given by Eqs. (A6), 
(B2), (B4), and (B5) as: 

F, = [ (p + v,Q - 7i' )Do + (B - viA )D~) ePt+ qx, 

F2= - {3DoePt + qx, 

F3= - y'DoePt + qx. 

It follows from Eqs. (2.6), (B8) and (B7) that 

I, (x,t) = _ -2
1 

({3 _ y') , 
a3 a2 

_~ [ _ P + v,Q + 7i _ B - viA D~(s)] 
12(x,t)-2 a3 a3 Do(S) 

go(S) 
+ a2 Do(S) , 

_~ [P + v,Q + 7i B - viA D~(s) ] 
13(x,t)-2 a2 + a2 Do(S) 

go(S) 
+ a3 Do(S) . 

(B9) 

Therefore, the distribution functions depend on two "arbi
trary" functions tfJ(s) and tfJ(S) as follows: 

I;(x,t) =1 lJ + TJIP(S) + u;tfJ(S), 

i.e., the solutions belong to the class A2 of Eq. (A2). 
Using (B6), we obtain from (B9), 

1 {3 Y' 
110= - -- (a-J3 - a3Y') = - -=-, 

2a2a3 a3 a2 

120= - (1/2a3) (p + v,Q + 7i), 

130= (1/2a2) (p + v,Q + 7i), 

TJI=O, 

TJ2= - (B - V,A)12a3, 

TJ3= (B - v,A)/2a2' 

These only give a nontrivial solution when 

{3::;60, y'::;60, a2>0, a3<0, a-J3= -a3y'. 

2. Case VI, a1 =a2=0, a3::;60 

We next consider 

al =a2=0, a3::;60. 

The conditions (cf. Appendix C) 

R,=R2=0, 

then require 

B-V2A=0. (BlO) 

By a choice of labeling, we take B - vIA::;60, i.e., 
VI::;6V2' It also follows from (C8) that B - v~ = 0. Thus, 
like for case V, 
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V,=F:V2=V3' 

Next, we note that Ql = Q2 = 0 require 

r r'=O. 

Furthermore, invoking (B 10), S2 = S 3 = 0 require 

p+ V2q+ P=O, 

(3' =0. 

Incidentally, we also have Q3 = 0, i.e., 

P+V2q+ r=O. 

Hence 

p = y. 
Finally, the requirements T2 = T3 = o imply 

a'(p + vzq - P') =0, a(p + vzq P') =0. 

Taken together with (BI2) and (B13), these imply 

a'{3 = a{3 = O. 

There are two solutions: 

(i) a =a' =0, 

(ii) (3=0. 

Here, the gi are given by 

g, =F2/a3' g2= - F I/a3' g3=a~(x,t). 

By (B3), and (B1O)-(B14), 

FI [(p + vlq - a')Do + (B - vIA)Do]e"t+qx, 

F2= - (3Doe"t+ qx, 

B- VIA Do(s) 
a3 Do(S) , 

13 (X,t) =a3[go(s)/Do(s)]. 

(Btl) 

(B12) 

(B13) 

(B14) 

(BlS) 

i.e., the solutions are again of class A2. The second solu
tion of Eq. (BlS) is not allowed, as it would lead to 
II (x,t) =0. 

For both these cases V and VI of this appendix, Eq. 
(2.1) is "trivial" in the sense that the left-hand side van
ishes, either because Ii = const, or because at + vPx 
= (B v;A las with B - v;A = O. 

APPENDIX C: SPECIAL CASES OF EQS. (A11) 

1. a1=0, a2=F:0, a3'*0 

When al = 0, one has 

A=az+a3, B=aZv2+a3v3, C=a2P'+a3Y', 

and Eq. (AS) takes the form 

a2F2 + a3F3 =0. 
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(Cl) 

(C2) 

Now, Eq. (A7) is solved by 

g2=g20 + azg(x,t) , 

g3=g30 + a~(x,t), 
with 

glO=~ (:: - ::) • 

I FI 
g20= - 2 a3' 

IFI 
g3Q=--' 

2 az 

(C3) 

(C4) 

We note that the latter can be formally obtained from 
(A8) by the substitutions 

(CS) 

We can then obtain the coefficients of Eq. (All) from 
Eqs. (A12a)-(A12e) and cyclic permutations thereof, ap
plying the substitution (CS) to those factors that originate 
from the gif). The result is as follows: 

P,=O, 

P2=a2(B vzA) = a2a3(v2 - V3), 

P3=a3(B v~)=a2a3(v2 - V3), 

QI = - az!3 - a3y', 

Q2=aZ(p + v2q + P) - a3r, 

Q3=a3(p + v3q + Y) - az!3', 

SI=~[(B-VIA) 

X (P + V2q - P' + (3 _ p + v3q - Y' + r') 
a3 az 

Sz=~ [ (B - VIA) ( 

a/] 
v~)- , 

az 
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Some of the cases discussed in Appendices A and B 
require B - v2A = B - vy4 = o. 

The above expressions then simplify further: 

_ P + V2Q - y' + y,) , 
a2 
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(C7) 

- P + V~2 - Y ') - (3'( - P + V:3 - (i,) ]. 

2. a1= a2=0, a3*0 

When at = a2 = 0, one has 

A =a3, B=a3v3, C=a3 y', 

and Eq. (A5) reduces to 

a3F3=0. 

Furthermore, Eq. (A7) is solved by 

gt =glO, g2=g20, g3=g30 + a~(x,t), 
with 

(C8) 

(C9) 

(ClO) 

glO=F2/a3' g2o=-Ft/a3' g30=O. (CIl) 

These latter relations can be formally obtained from (A8) 
by the substitutions 

and we obtain 

Q3=a3(p+V3Q+ y)=a3(Y+r'), 

R t = (B - vtA) [(B - v2A)/a3]' 

R2= - (B- vtA )[(B- v2A )/a3], 

R 3=0, 

St=(B-vtA/+V2Q- "b'+{3 
a3 
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- P+Vtq- a' P+V2q- P' 
T 2= - (p + v2q + (3) - a ' , 

a3 a3 

P + V2q - p' P + Vlq - a' 
T3= - a - f3' -----

a3 a3 

Some of the cases of Appendices A and B require 
B - V2A = 0. The above quantities then simplify further: 

PI =P2=P3=O, 

QI= -a3i, 

Q3=a3(p+V3q+ r)=a3(Y+Y'), 

R 1=R2=R3=O, 

S - (B A) P + V2Q - p' + f3 
1- -VI , 

a3 
(C14) 

S3= (B - vIA)({3'/a3), 

P + v2Q - p' P + VIQ - a' 
T1=(p+ Vtq+ a) +f3'-----

a3 a3 

APPENDIX D: ASYMPTOTIC BEHAVIOR OF H("t) 

Starting with the (matrix) retarded Green's function 
G(x,t) defined by (7.10)-(7.12), we have identified and 
separated out the a-function parts, as given by (7.46). Af
ter removing the a-function parts, the remainder, called 
H(x,t}, still contains finite discontinuities. For the pur
poses of the numerical computation, it is essential to know 
what these finite discontinuities are. It is the purpose of this 
appendix to provide this information. 

It is seen from (7.32), (7.34), and (7.36)-(7.38) that 
these discontinuities occur only in the off-diagonal ele
ments of H(x,t). It is therefore sufficient to give the leading 
~-l terms for these elements of H(~,t). They are 
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- e- (iV:!~+P+/f)t], 

H23(~,t) _i~-l [Y/(V2 - V3) J[e- (iV:!~ +P+/f)1 

H21(~,t)-i~-I[a'/(Vl - V2)] [e- (ivl~+a+a')l 

- e (iV:!~+P+/f)/], 

H32(~,t) -i~-I [f3'/(V2 - V3)J [e- (iV:!~+P+/f)t 

_ e- (ivl~+a+a')/]. 

(D1) 

The leading terms of the diagonal elements H jj(~,t) are all 
of order ~ - 2 for large ~. 
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Equilibrium properties of the following model are studied: A system is formed of urns (or 
droplets, or clusters), each containing a number of atoms. That number is governed by an 
occupation-dependent energy and a chemical potential per atom. An effective interaction 
between clusters arises from a global constraint on total cluster number and occupation. The 
system phase diagram exhibits various kinds of transitions. The microscopic structure of the 
thermodynamic state is also examined (cluster occupation probabilities, etc.) and surprising 
simplifications relating it to the single-urn model are found. In general, the system is 
intermediate in its complexity between the single-urn model and the Fisher-Felderhof droplet 
model. The ultimate purpose in defining this model is to study its dynamical properties and, in 
particular, its metastable phases. The cluster size distributions are anticipated to be of 
particular importance for this issue. 

I. INTRODUCTION 

The goal of this article is to develop a model on which to 
study nonequilibrium behavior. Such an objective has im
plicit conflicts. On the one hand, solvability of the dynamics 
imposes severe constraints of simplicity while yielding to 
these constraints results in models that fail to capture fea
tures of realistic systems. The model we shall propose is a 
version of the Fisher-Felderhof dropletl,2 model, but a ver
sion that has been significantly simplified to allow us to gain 
dynamical information. 

In the Fisher-Felderhof model, one has droplets mov
ing about and able to combine or break up through contact 
interactions; other interdroplet forces are absent. Although 
the latter feature is a significant departure from reality, the 
model still has physical structure and, in particular, retains 
space-time translation degrees of freedom for the droplets. 
In our model, we retain some hints of that space-time struc
ture. The model consists of a collection of urns (or "clus
ters" or "droplets;" the terms will be used interchangably) 
of the sort that we have previously used in the study of me
tastability.3.4 However, that earlier model-which was dy
namically tractable-is now enriched by allowing a large 
number of them. The clusters interact by means of a con
straint that is analogous to that used in the spherical model, 
and the spatial structure manifests itself by our allowing an 
empty site for each cluster ·and a reservoir. 

In the second section we define the model and the parti
tion function. The thermodynamic properties and the phase 
diagrams are developed in Secs. III and IV. In order to study 
nonthermodynamic properties, we need a rather precise esti
mate of the partition function. The necessary mathematical 
tools are given in Secs. V and VI; and are applied in Secs. VII 
to X. With them we compute the average number of clusters 
of a given size, the average number of particles in the reser
voir, the total number of clusters, the length of a cluster, and 

other properties. We see, in particular, that in the condensed 
phase there is basically only one cluster. Section XI discusses 
the meaning of the equation of state in the gaseous phase and 
gives an alternative (although nonrigorous) derivation of 
the equation of state using a mean field type argument. 

II. PARTITION FUNCTION 

The system has total size L, which consists of a reservoir 
and clusters. A configuration is determined by the set of 
numbersNn of clusters of size n (= 1,2, ... ) andbythenum
ber Pofparticles in the reservoir. These quantities satisfy the 
constraint 

(2.1 ) 
n n 

The second. sum corresponds to having one "vacuum" site 
per cluster in the total "geometry" L. 

One can think of our system and the constrai~t (2.1) as 
a kind of mean field or spherical model of a one-dimensional 
lattice droplet model. Imagine L sites, which may be occu
pied or unoccupied, with occupied contiguous sites forming 
clusters (or droplets). A state of such a system would be 
characterized by the sequence of cluster sizes as well as the 
sizes of the gaps between clusters. Our model represents a 
simplification of that system in the following way: The distri
bution of gap sizes is ignored so long as any pair of clusters is 
separated by at least one space [these spaces are what give 
rise to ~nNn in Eq. (2.1)]. The energy of a configuration 
{Nn ,p} does not depend on the order of the {Nn } although 
distinct sequences are counted separately. For example, the 
specification N\ = 1, N3 = 1, Ns = 1, others zero, corre
sponds to several possible states: A cluster of size 5, followed 
by a 3, followed by a 1; or (1,3,5) or (1,5,3) or (5,1,3) or 
(3,1,5) or (3,5,1). However, N\ = 2 (others zero) repre
sents only a single possibility: (1,1). Thus our atoms or balls 
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are not distinguishable. This picture will be further elaborat
ed in our intended future publication when we will select our 
dynamical rules for the clusters by working up from simpler 
dynamical rules for the balls, together with the indistingui
shability of the balls. 

We assign an energy E(n) to a cluster of size n, for 
example, the droplet model expression: l

-4 

E(n) = log n -pn 

and a chemical potential v per particle in the reservoir. The 
partition function is therefore 

ZL = L ' (~nNn:! (IIe-PE(n'Nn)e-pvp, (2.2) 
{Nn.P} IInNn· n 

where the prime on the summation symbol indicates that 
only sets {Nn ,p} satisfying Eq. (2.1) are used. Then we ob
tain the following generating function: 

L XLZL = (l-e- PVX)-1(1-X i: 1pefll'nxn)-I. 
L>O n= 1 n 

(2.3) 

For now we take v#O, so as to compute various quantities, 
but at a later stage we will set v = O. We also define 

tPP.1' (x) = i: 1p efll'nxn (urn partition function). 
n=ln 

(2.4) 

III. THERMODYNAMICS 

The thermodynamics of this model is controlled by the 
large L behavior of 

log ZLIL = 10g(Z yL), 

which is precisely the logarithm of the inverse of the radius 
of convergence of the generating function (2.3). If we set 
v = 0 in (2.3), then the first singularity of (2.3) inx is, apart 
from x = 1, (i) either the singularity of tPP.1' (x) or (ii) the 
zero of 1 - xtPP.1' (x) = O. 

1 

I 
e-P14 

1 x 

FIG. 1. The "urn partition function," t/JP." (x} for the case/1 < 1. As xte- P", 
/1-- 00 so that t/J{3." (x) meets the curve l/x to the left of e-Pp., which for 
/1- > 0 is less than 1. 
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A. (3..;1 (gas phase) 

The function tPp,1' (x) has an infinity at x = e - PI' which 
for p > 0 is less than 1. Then the root of the equation 

l/x = tPp,1' (x) (3.1) 

is a certain point x o, the intersection of l/x with tPP.1' (x), 
which is less than e - PI' (see Fig. 1). This intersection always 
exists for {3..; 1 and depends smoothly on everything. Think
ing of our model as a gas of clusters we define the pressure to 
be 

p=~ lim ~logZL = -~logxo. 
{3 L-oo L {3 

(3.2) 

Since tPP.1' (xo ) < 00, we have 

L 1p (efll'xo ) n < 00, 

n>l n 
so that efll'xo < 1. This implies that if p --+ + 00, Xo --+ 0 + , and 
when P--+ - 00, Xo --+ + 00. 

B. (3) 1 (condensed phase or gas phase, depending on 
....) 

For {3> 1, tPP.1' (x) becomes singular but stays finite and 
equal to ~(llnP) for x = e - PI'. We define Pc ({3) by the 
equation 

~l'c(fJ) = L ~ (3.3) 
n>l n 

and we have the following three cases. 
(a) Gas phase 0 <p <Pc ({3). 
In this case the curve tP P.I' (x) cuts the line x = e - PI' at 

~n> 1 (l/nP) > efll', so that the two curves l/x and tPP.1' (x) 
intersect each other at a point Xo < e - I'P as in Fig. 2. Then 

{3p = lim (log ZLIL) = -log Xo 

and {3p depends smoothly on everything in this domain. 

1 

FIG. 2. When/1> 1 and /1- </1-c(/1), t/Jp,,, (x) remains finite for xte-Pp.. 
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1 

FIG. 3. For/3> 1 and #>#c (/3)thecurves r/Jp.I' (x) and lIx do not intersect 
and the singularity in x occurs at e - PI'. As a consequence, P # and p = l. 

and /3p depends smoothly on everything in this domain. 
(b) Condensed phase It> Itc (/3) 
In this case 4> P,I'- (x) cuts the line x e - PI'- at 

.I( lInP) < ePl'-, so that the two curves lIx and4>p,1'- (x) donot 
intersect (see Fig. 3), The singularity of .IxLZL is then at 
Xo = e - PI'- and the pressure is 

p = - (lI/3)log Xo = It. (3.4 ) 

The density is p = apl alt = 1, so that we are in a condensed 
phase. 

(c) Intermediate case It = Itc (/3) 
In this case 4>I'-,P and lIx intersect at .In>1 (llnP) for 

Xo = e-PI'-, as in Fig. 4. 

IV. PHASE DIAGRAMS 

In the noncondensed or gas phase 

1 (ePl'-)nx~ 
-= L P • 
Xo n>1 n 

(4.1 ) 

It follows that the density is 

1 

FIG. 4. Intermediate case, # = #c (/3). The singularities coincide. 
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(b) p 

(c) p 

FIG. 5. Pressure (p) and density (p) variation for various ranges of /3. (a) 
/3<1. Jp/J# < 1 for al1#. (b) 1 </3<2. Slope is continuous, next derivative 
is not. (c) /3 > 2. Slope is discontinuous. 

ap 1 alogxo 
p=-= --

alt /3 alt 

.I( ePl'-) n(nx~/nP) 
=------~~~--~ 

lIxo + .I(ePl'-)n(nx~/nP) (4.2) 

This equation is obtained by computing the denvative with 
respect to It of Eq. (4.1) and it is thus obvious that p < 1. In 
Eq. (4.2) we let It -> Itc- and because Xo = e - I'-Pc at It = Itc 
we obtain 

ap I .I (lInP- 1
) 

alt I'-c- = .I(lInP) + .IOlnP-I) . 
(4.3) 

Now if 1</3<2, this is 1 because .I(1lnP- 1
) 00 for 

1 </3<2; if /3> 2, this is a certain fixed finite number 
(smaller than 1). If It -> + 00 and /3< 1, then, p -> 1 because 
Xo ePl'- < 1, so that Xo < e - PI'- -> O. Moreover from (4.1), be
cause lIxo -> 00, .I [(ePl'-xo )nlnP] - 00 so that ePl'-xo-1. 
Then 

.I (ePl'-xo )n(nlnP) 

p = .I (ePl'-xo )n( lInP) + .I (ePl'-xo )n(nlnP) -> 1. 

The curves p = p(It,/3) and p = p(It,/3) are shown in Figs. 
5(a)-(c) (/3<1, 1 </3<2 and /3> 2, respectively). 

The curves p = pep) give the diagrams in Fig. 6(a)
(c). 
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(b) (c) 
p p 

FIG. 6. Plot of p vsp for various ranges of.8: (a) .8<1; (b) 1 <.8<2; (c) 
.8>2. 

V. MATHEMATICAL PRELIMINARIES IN THE 
CONDENSED PHASE 

Our goal in the next several sections is to compute ex
pected cluster numbers in the various phases. In this and the 
next section we lay the groundwork for the later calcula
tions. 

(a) Nonthermodynamic quantities. To compute nonth
ermodynamic quantities, we need to express Z L and its 
asymptotics in a precise way. To do this, we have by (2.3) 

1 1 
:LrZL=-- , 
L>O 1 - Z <l>p.1' (z) 

(5.1) 

where 

<l>p.1' (z) == 1 - z¢JP.1' (z). 

First we consider the case P > Pc (/3). We can compute 

1 i (l:L>OrZL ) 
ZL =-.- -----dz. 

2l1T Circle of convergence r + 1 

But in this domain the circle of convergence is z = ei9 e - PI', 
so that 

On this circle of convergence, the singularity of the function 
that we integrate is not a pole but the singularity of lief> P.I' 
which is the same as that of ¢JP.I' • 

(b) Singularity of ¢JP.I' (1 </3 < 2). We start with 

(00 e-k'tP-Idt= r(/3) 1 k{3 , 

so that 

(5.3 ) 

We study the singularity in (J ofthis function for z = e - .{3l'ei9• 

Substituting this value of z in (5.3) it is clear that the only 
singularity occurs at (J = 0 (recall that /3 > 1). Define 

1 + X = ei9 (x small), 

100 e - 't P- 1 dt 
f/!{3 (x) = 

o 1 - e - , - e - 'x 

100 e-'tP-I 
+x dt. 

o 1 - e - , - xe - , 

(5.4) 

(5.5) 

Then we see that only the first term can fail to be smooth for 
X = O. Define - 100 _, tP-Idt 

f/!{3(X) = e . 
o 1 - e - , - e - 'x 

(5.6) 

Let x = ei9 - 1- ix' with x' real for (J small. Then 

;Pp(x)-;Pp(O)= (00 e-'tP-1( _1. __ 1 _ )dt 
Jo 1 - e 'IX' e' 1 - e ' 

1
00 tP-l 

. , dt = IX --------
o (e' - l)(e' - 1 - ix') . , 100 tP-I(e' - 1 + ix') = lX 0 ----=----'-:----=--:-- dt 

(e' - 1)( (e' - 1)2 + X,2) 

= ix' ------dt - X,2 100 tP-I 100 t P- I dt 

o (e' - 1) 2 + X'2 0 (e' - 1) ( (e' - 1) 2 + X'2» 

We continue with a change ofthe variable t = x'u (x' > 0) 

= ix,{3- 1 U U _ x'P- I 1
00 {3- I d 

o [(e"u - 1)/x'p + 1 

100 U{3-1 du 
X . . 

o [(e"U-l)/x']{[(e'"-I)/x'P+ 1} 

If x' .... 0, (e:'" - 1 )/x' !u, and thus for x' > 0: For x' <0, we define x' = -lx'l, t = Ix'iu and find 
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ipp (x) - ipp (0) 

I 'IP-,{ '1"" u
P

-
I 
du l"" u

P
-

I 
du } 

- x - I 0 u2 + 1 - 0 u (u 2 + 1) . 
(5.8) 

Define 

'l""uP-'du 1"" uP-'du Cp = I -
o u2 + lou (u2 + 1) 

and assume 1 <f3<.2. Then from (5.3) to (5.6) 

tPp.p(e PI'eifJ) = [lIr(f3)]ipp(x) + O(x), 

x' -B (eifJ - l-ix'), 

tP (e PI'eifJ ) - '" (e PI') P,I' If' P,I' 

{ 
[ 1Ir(f3) ] CpB P - I 

- [1Ir(f3) ]CplB 11'- I 

1 1 1 

(5.9) 

where AI' and Bp are universal functions of f3, namely, basi
cally the HOlder modulus of continuity of tPP,I' (e - PI'eifJ ) for 
B-O+ or B-O-. Then using (5.2) and (5.10) we see that 
for L ..... 00 

where Kp is a universal function of f3 depending only on the 
Holder modulus of continuity of tPP'I' (e - PI'( eifJ ) for small B. 

(d) The case 2 <f3 < 3. In this case, <1>1'.1' (e-Pl-'eifJ) has a 
derivative everywhere but only the first derivative has a sin
gularity at B = O. More precisely 

~ (<I> I (e - PI'eifJ» 
dB 1'.1-' 

1 (5.12) 

and 

~ <I>{3 (e-PI'eifJ ) = ~ {I - e-Pl-'eifJ I e
infJ

} 
dB ,I-' dB II> I nP 

= - e - Pl-'ieifJ tP P,I' (e - Pl-'ei8) 

e - Pl-'ei8i'" (e - PI'ei8 ) 
If'P - 1,1' ' 

(5.13 ) 
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(c) Fourier coefficient of tPP,I" 1 <f3 < 2. Let us start 
with a C "" functionj of BE [ - 'IT, + 'IT] except at 0 where it 
is only Holder continuous with 

j( B) _ {ABP- I, B> 0, 
BIBIP - ' , B<O. 

Its Fourier coefficient 

fen) = f + 1T e - in'l(B) dB 
- 1T 2'IT 

has its growth controlled only by the behavior of j( B) for 
B-O. From Erdelyi5 (p. 48) we deduce 

fen) - [r(f3)/2'ITnP]{ - Ae - i1T(P- 2)/2 + Bei1TP/2} 

(5.10) 

From (5.2), it follows that we must check the behavior 
at B = 0 ofthe integrand 

so that <I> p,,. is C "" everywhere except at 0 and at 0 it is of 
class cfJ- 2, (It has a first derivative at 0 which is Holder 
continuous of order f3 - 2.) 

To treat (5.2) we write eiL8 = (lILi)(d IdB)(e - iLfJ) 
and integrate by parts 

Xe- iLfJ dB. 

Then the behavior for large L is controlled by the Holder 
continuity at 0 of this derivative. Looking at (5.12) and 
(5.13) we see that the singular part of this derivative is 

e·. 1 -----4> (e- PI'e,8) ---
(<I>fJ,I'(e-fJl-'»2 P-l,1-' l-e fJl-' 

But this function is Holder continuous at B = 0 for order 
f3 - 2, and thus 

ePI'L e-. 
Z -- K (5.14) 

L LfJ (1- e-PI-'){<I> (e-.»2 fJ-l' fJ,I' 
where KfJ _ I depends only on the modulus of continuity at 0 
of tPfJ-I.,. (e-fJI'). 
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VI. MATHEMATICAL PRELIMINARIES IN THE 
NONCONDENSEDPHASE 

(a) In the noncondensed phase ({3 < 1 or P <Pc) the 
function 1: L>OrZ L has a simple pole on the circle of conver
gence because this is 1/( 1 - z) [1/~p,1' (z)] and ~P'I' (z) 
goes linearly to 0 for z-+xo where Xo is the root of 

1/xo = t/Jp,1' (xo)· 

In this case we cannot apply (5.2) directly. Let us consider 

Gp(x), (6.1) 

which has logarithmic behavior for x = xo, namely, 

1 1 
Gp(x)--- log(x-xo )' (6.2) 

1 - Xo ~P'I' (xo ) 

Then 

__ L_ = 0 G (x ei8 )ei(L + 1)8 dO. 
Z X-(L+I) L21T 

L + 1 21T 0 P 0 
(6.3) 

(b) One must be careful about the determination of 
log(x - xo ) for x = xoei8

• The correct branch is 

log(xoei8 - xo) -loglO I + ;(sgn 0)( 1T/2) + regular term 

and thus if h (0) is a C 00 function of 0 which is 1 at 0 = 0: 

f + 1T e- in8(loglO I + i(sgn 0) .!!...) h(O)dO- 21T , 
-1T 2 n 

for large n. (This is proved in the Appendix.) In particular 
coming back to (6.3), we obtain 

ZL -xo- (L + I) I[ (1 - Xo )~P'I' (xo)] (6.4) 

[xo is the root of 1/xo = t/Jp,1' (xo ) ]. 

VII. COMPUTATION OF THE NUMBERS OF CLUSTERS 

A. Notation 

We denote by ( ... ) L the thermodynamic average of the 
quantity" . and by [ ... h = ZL ( ... ) L the non-normal
ized average of this quantity. It is usually simpler to compute 
["'h and to obtain ("')L as ["'h/ZL' 

B. Computation of [Nn]L and [P]L: Generating 
functions 

Introduce for each n a chemical potential Pn so that 
E(n) = log n - Pnn and thus 

[Nn h = L ' N n (1:Nn )! II e -PE(n)Nne-pvP I _ 
{Nn,P} fiNn n I'n-I' 

1 aZL I 
= + n{3 apn I'n=/ 

with the prime as in Eq. (2.2). Using Eq. (2.3) we therefore 
have 

L XL [Nn]L =-=-.!.~ (LXLZL) I 
L>O n{3 ap n I'n = I' 

_1 ___ 1_ 1 xn+ le- PE(n){3n 
n{3 1 - x ~P'I' (X)2 

or 
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L xL[Nnh =_1_ 1 2 xn+1e-PE(n). (7.1) 
L>O 1 - X ~P'I' (x) 

Also 

-1 a 
[Ph=7J a'll (Zdlv=o 

and using (2.3) 

L xL[Ph = 1 __ x __ =_x_ L XLZL 
L>O ~P'I' (x) (1 - X)2 1 - X L>O . 

(7.2) 

C. First case: Noncondensed phase (P<1 or J.L<J.Lc) 

In this case we evaluate [Nn ] L by integrating on the 
circle of convergence of radius xO' But (7.1) has a double 
pole on the circle of convergence at z = Xo so that we must 
integrate twice 

XL+2 

&0(L+l)(L+2) [Nnh 

(L

X LX' I IIn+l) = dx' dx" ___ x e-PE(n). 
o 0 I-x" ~P'I'(X")2 

But ~P'I' (x") -~P'I' (xo ) (x" - xo ), and thus at Xo the sin
gularity of the function on the right-hand side is 

- e-PE(n) [x~+ 1/(1- xo )] 

X (~P'I' (xo» - 210g (x" - xo ) 

around Xo and 

[Nnh 

The number of clusters per unit volume is thus 

L ~P'I' (xo ) 
(7.3) 

Remark 1. A check: The quantity 1:n (Nn) LI L should 
be the density and by Eq. (7.2) it is equal to 

I x~ePl'n 
-~-,-(x-) L n -n-P -. 

P,I' 0 

But 

B. Gaveau and L. S. Schulman 3035 



                                                                                                                                    

[because lIxo = tPP.Il (xo ) by definition of xo ] so that 

(Nn ) L l:nx~ (e/31ln InP) 

2: n -L- = lIxo + l:nx~ (e/31lnlnP) 

which checks correctly with (4.2). 
Remark 2. We see also from (7.2) that the ratio of clus

ter size expectations is given by 

(Nn)L e-PE(n)x~ (lInP)e(IJ!l+IOgXo)n (7.4) 

(N m ) L e -PE(m)x;;' (1lmP)e(Pil + log Xo)m . 

This means that from the standpoint of statistics the multi
urn problem can be thought of as an effective single-urn 
model at a temperature /3 - I with an effective chemical po
tential 

J-Leff = J-L + log xol/3 

(recalIthatxo < 1, so log Xo <0). Moreover, sincexo <e -Pil 

(see Fig. 1) it follows that J-Leff < O. Returning to (7.2) we 
also see that 

(7.5) 

which means that at thermal equilibrium there is only a finite 
number of particles in the reservior (an absolute finite num
ber when L -+ 00, that is, this number does not increase with 
increasing L) . 

D. Second case: Condensed phase (1 <13<2 and j.L>j.Lc) 

In this case the radii of circles of convergence for the 
series (7.1) and (7.2) are given by r Pil. From (7.1) we 
obtain 

1 - e-PIleifJ ~ (e- PIl )4 P.Il 

X [~ (e- PIl ) -~ (e-PIleifJ )] P.Il P.Il 

X[~ (e-PIl)+~ (e-PIleifJ )] P.Il P.Il 
e-PIl(n+ I) 2 

so that 

e - PIl(n + I )2e - Pil 
X K e-PE(n) 

(1- e-PIl)~p.Il (e- PIl )3 P , 

with the same Kp as in (5.11) so that 
2e - PIl(n + I) 

(N) _ e-PE(n) 
n L ~ (e- PIl ) 

P.Il 

for fixed n which is also 
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(N) _2e-PIl~ 1 
n L P if>. (- 1J!l) 

n ""P.Il e 
(7.6) 

This is an absolute number when L ..... 00. We also need [P ] L 

and (P) L from (7.2); we obtain immediately 

(P)L -e-PIlI(l- e- PIl ) (7.7) 

E. Third case: Condensed phase 2<13<3 and j.L>j.Lc 

We need again the singularity of the right member of 
(7.1) and use an integration by parts; the main singularity 
will come from the derivative of lI~~.Il and will give 

2e-Pil . e-lJ!l(n+ I) 

----- tP (e -PIle,fJ) ----
~" (e-PIl)3 P-I.Il 1 _ e-Pil 

.... Il 

and finally this will give us the same answer for (Nn ) L as in 
the case 1 </3 < 2: 

(Nn) L - 2e -PIl( lInP) [lI~P.Il (e -PIl) ] (7.8) 

and also 

(7.9) 

VIII. TOTAL NUMBER OF CLUSTERS IN THE 
CONDENSED PHASE 

A. Let us define 
1T n (L) = unnormalized probability that l:k;;.1 Nk = n. 
To compute this quantity, we remark that 1T'p (L) is the 

constrained partition function 

(l: N )1 
1T (L) = 2: n n . II e-PE(n)Nne-pvP 

P {Nn.P} llnNn! n 
~Nn=P 

so that necessarily L>p and 

= xP 2: ~ II (e-PE(n)xn)Nn(e-pvx)p 
{Nn.P} llNn! n 

= x
P (2: e-PE(n)xn)P. 

1 - e-Pvx n 

Summarizing 

2: XL1T (L) = [XtPP.Il(X)Y (8.1) 
L;;.p P 1 - e-Pvx 

From this, we deduce as usual, in the condensed phase 

1Tp (L) 

= e/3,.L 12fT (e-lJ!leifJ)P[ tPP.Il (e-~eifJ) Ye-
iLfJ dO. 

21T 0 1 - e-lJ!le,fJ 

Again, we suppose 1 </3 < 2. Then the singularity of the 
function that we integrate is the singularity of ¢P.Il (e -PIleifJ ) 
at 0 = 0 and this is controlled by 

[e- PPIlI(1- e- PIl ») [,I, (e-PIleifJ)p _,I, (e-PIl)p] 
'I' P.Il 'I' P.Il ' 

which is controlled finally by 
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[e-PllJtI(l - e-Pl') ]P(~IJ,I' (e-Pp»p-t 

x I~IJ,I' (e-ppei6
) - ~IJ,I' (e- IJI')!, 

Therefore, for L .... 00 

ePl'(L-Pl 
1Tp (L)- 13 

(L-p) 

where the KIJ is the same as in (5.11). Then the normalized 
probability is 

1Tp (L)/ZL _e-IJI'(P-1)p(~IJ,1' (e- IJI'»p-t 

Now we compute 

L lim 1Tp(L) 

P L-oo ZL 

X (<1>13,1' (e - 131'»2. 

= [~P[ e IJI'~IJ,I' (ePl') y-I ]<1>13,1' (e-IJI')2. 

But 

so that by definition of <1>13>1' (e -131'), we obtain 1. 
B. The average number of clusters is 

" 1Tp (L) ,kP--
P"'O ZL 

_ [~p2[ ~P.I' (e -1J1')e-PPY- 1 ]<I>p>I' (e-pp)2. 

But 

LP(p _1)$'P-I + LP$'P-! 

= ~ + 1 = 1+$' 
(1 - $')3 (1 - $')2 (l - $')3 

C. Now let us look at 

(8.2) 

which is the average number of clusters of finite size. By (7.8) 
this is 

(8.4) 

Then we see that 

LP 1Tp(L) _ L (Nn>L = l-e 1J1'~1J'I'(e-lJl') = 1, 
P"'O ZL n <1>13.1' (e -131') 

(8.5) 

which means that on the average there is one cluster of infi-
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nite size and a certain total number (finite and independent 
of L) of clusters of finite size. 

Remark: Looking at the expression (8.4) for the aver
age number of clusters of finite size, we see that this number 
tends to 0 like e -131' if /-L -+ + 00. 

IX. THE AVERAGE NUMBER OF PARTICLES PER 
CLUSTER 

There are ~nNn particles in a configuration, and also 
~Nn clusters. The average cluster ofthe configuration has a 
size I 

(average size of a cluster of a given configuration) 

(9.1) 

and the unnormalized thermal average is thus 

= L 
{N.} 

~nNn+~Nn<.L 

We can now write a generating function (which is not 
the same as the true cluster size generating function) 

"L " " (~Nk - 1)! ,kx [lh=,k,k n-------
L",O n N.",o Ilk #nNk!(Nn - I)! 

Nn",! 

]>;>0 

xII (e- IJE(k)xk+ I)Nk(e- lJvx)P. 
k 

As usual we set v = 0, and perform the sum over P;pO which 
gives 1/(1 - x). Then we sum over n first to get by slight 
rearrangement 

ne- IJE(nlX n+ I (~Nk -1)! 

=~ I-x N~olIk#nNk!(Nn-I)! 
Nn",1 

X II (e- IJE(klx k+ I)Nk(e-PE(nlxn+ I)Nn-l. 

k#n 

But then we see that multiplying the term ne-PE(n)xn+ 1 

there appears exactly the quantity 

L (~Nk )! II (e-PE(klxk+ I)Nk = ___ 1 __ _ 
N.",O lINk! k I - x~P,1' (x) 

so that 

L xL[lh = 1 
L",O (l - x)(1 - x~P.1' (x» 

XL ne-PE(nlxn+ I 

(l 
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Now, if we assume that we are in the noncondensed 
phase [sothat.8 < 1 or.8> 1 and J-t <J-tc(.8)], we can immedi
ately adapt the computation of Sec. IV to obtain the normal
ized thermal average of I: 

(l)L-X~ -.!!......tPP!' 1,,="'0 = I ne-PE(n)x~+I. (9.2) 
dx n>l 

On the other hand, we can compute 

In(Nn)L (I (Nn)L)-1 

But by (7.4) 

(Nn) LI(Nm) L _e-PE(n)x~/e -PE(m)x;;', 

so that 

~n(Nn)L ~ne-PE(n)x~ 

~(Nm)L ~e-PE(n)x~ 
(9.3 ) 

But 1/xo = ~e - PE(n)x~ (by the definition of xo), so that 

Comparing (9.2) and (9.3) we find 

(I) _ (~nNn) ~n(Nn)L " -pE(n) n+l 
L - -- - - £.. ne Xo' 

~Nn L ~(Nnh n 
(9.4) 

This result is remarkable because it states that in the thermo
dynamic limit, if we compute the thermal average of the size 
of the average cluster «I) L)' then it is exactly the thermal 
average of the size of the effective urn with an effective chem
ical potential J-teff = J-t + (1/.8) log Xo' It is also remarkable 
that for large L 

/~nNn) 
\ ~Nn L 

X. DISTRIBUTION OF PARTICLES IN THE RESERVOIR 

In this section we compute the probability distribution 
ofthe number of particles in the reservoir. We define 

Rk = lim (8(P-k»L' (10.1) 
L-oo 

where Pis the number of particles in the reservoir. Thus Rk 
is the probability that the reservoir contains k particles. It is 
clear that 

Rk = lim ZLkIZL' 
L- 00 • 

where ZL is the usual partition function and ZL,k is the con
strained partition function, summing only over configura
tions such that the reservoir contains exactly P = k particles. 
It follows, as in Sec. I, that 

L Xk I X ZLk =-----
L>k ' 1 - xtPp,!, (x) 

(10.2) 

We thus see that the difference between the generating 
function of ZL given by (2.3) and the generating function of 
ZL,k given by (10.2) is the presence of (1 - x) - 1 in (2.3) 
and of Xk in ( to.2) . From this, and the fact that the singulari-
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ties of the generating function of Z Land Z L,k are the same, 
we can infer immediately that 

(10.3) 

both in the gaseous and condensed phases (in the latter case, 
p is simply J-t). 

XI. THE MEANING OF THE EQUATION OF STATE 
IN THE GAS PHASE 

We now want to give a self-consistent interpretation of 
the thermodynamic state. Let us recall that for J-t <J-tc (,8), 
we have defined 

1 - = tPp,!, (xo) = Ie -Plog n + P!,nx~. (11.1) 
Xo 

On the other hand, we know [see formula (3.2)] 

- log Xo = lim (1/ L )log Z L (11.2) 
L-oo 

so that + log Xo 1.8 is the free energy per unit length of our 
system of clusters. 

CalIf = log xol.8. Equation (11.1) can be rewritten as 
follows: 

~ e - tJ{log n - (!' + j)n) 
1 = _n ______ _ 

e- Pf 
(11.3 ) 

Equation (11.3) is a normalization equation that can be in
terpreted as follows: The initial system of clusters is equiva
lent to a unique urn with chemical potentialJ-t + f, wherefis 
chosen so that the partition function of this effective urn is 
precisely e - Pf. We have a unique urn with chemical potential 
J-t + fwithfprecisely the free energy of this unique urn: This 
condition is self-consistent with respect to! Moreover, this 
condition also describes the complicated model of clusters 
withf free energy per unit length. 

In fact,fis - p where p is the pressure. This is because 
we are working in the grand canonical ensemble for the com
plicated model of clusters. Then the energy of an effective 
urn of size n is exactly the energy E(n) = log n - J-tn of a 
cluster of size n minus n times the free energy f per unit 
length, or the energy of an effective urn of size n is exactly the 
energy E(n) = log n - J-tn of a cluster of size n plus n times 
the pressure (pressure that this urn would get from its envi
ronment if it were embedded in the complicated model of 
clusters). 

This discussion points to the following fact: After all, we 
can forget completely the complicated model of clusters, 
start with a bare urn E(n) = log n - J-tn and change its 
chemical potential J-t to J-t + f so that f is precisely the free 
energy of this new urn. This is always possible if either.8 < 1 
or.8 > 1 and J-t < J-tc (.8). We also know from Sec. II and Figs. 
1 and 2, that Xo e"P < 1 but Xo = ePf so f + J-t < 0 and our new 
effective urn has its new chemical potential J-t + f < 0, so it is 
stable and its partition function is normalizable (which we 
already know because this partition function is e - Pf). 

We now want to justify in physical terms the equation of 
state (11.3). First we consider a single urn: If it were com
pletely isolated it would have the energy 

E(n) = log n - J-tn 
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if it had size n. But it is not isolated; in particular it lives with 
other competing urns. We call these other urns the bath. 
(This "bath'~ is actually a particle reservoir, but we use the 
term "bath" to avoid confusion with the distinguished reser
voir cluster defined earlier whose occupation number is P.) 
The bath induces a pressure p on the urn, so that each parti
cle inside the urn has the extra energy p. There is thus a new 
energy of the urn in presence of the bath 

E'(n) = log n -1.Ln + pn. 

The correct partition function for the urn in contact with the 
bath will then be ~ne-PE'(n), 

On the other hand, we now have an observer who can 
act on the urn by adding or taking away a particle. But the 
observer does not know what microscopic mechanism with
in the urn gives rise to log n - 1.Ln. All that he knows is that 
the exterior, or the bath, gives a pressure p for each particle 
in the urn. He can get this by macroscopic or thermodynam
ic experiments; he cannot really look inside the urn to get 
log n - f.ln. So, from the point of view of the observer, con
sidering the urn as a whole, the partition function should be 
e + pp. (We take the plus sign because this is the energy that 
the observer has to give to a particle in the urn to let it go out 
to the bath.) So ePP represents the macroscopic point of view 
of the observer making experiments on the urn as a whole 
and ~e-PE'(n) is the microscopic point of view of the urn in 
contact with its bath: The two expressions have to be equal, so 
ePP = ~ne - PE'(n>, which is Eq. (J 1.3). In effect we have re
normalized our urn. 

Remark: This kind of reasoning appears in Landau and 
Lifshitz6 when they argue that a thermodynamic system 
(here the urn) cannot distinguish between a fluctuation due 
to the thermal reservoir and a fluctuation due to the action of 
an observer. (This consideration underlies fluctuation-dissi
pation theorem as presented in that reference.) Here we have 
applied the same kind of reasoning to express the partition 
function in two different ways and to recover Eq. (11.3). 

Remark: Let us now look at the case /3> 1, f.l >f.lc (/3), 
which corresponds to the condensed phase in the model of 
clusters. Then Eq. (11.3) has no real solution! In fact, we 
know from Sec. II that the pressure p (which is also - f) is 
P = f.l but f = f.l is clearly not a solution of ( 11.3) except 
for the limiting case f.l = f.lc (/3) [because f.lc (/3)] is 

~l-'c(P) = 2: 1-
nP 

[formula (3.3)]. This means that the preceding reasoning 
for the noncondensed phase cannot be applied to the con
densed phase, because in the condensed phase the system of 
clusters is filled just with one urn of size - L - € plus a few 
urns of microscopic size and thus, there is not really any 
effective urn per unit length, so that this mean field type of 
reasoning does not make sense at all. 

XII. DISCUSSION AND SUMMARY 

Our model is intermediate in its complexity between the 
simple, single urn or cluster modep.4 and the Fisher-Felder
hof droplet model. 1.2 We allow an arbitrary number of grow
ing and shrinking clusters but they live under an overall con-
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PHASE 

CONDENSED PHASE 

2 3 

FIG. 7. Phase diagram in the /3-p plane. The phase transition curve is 
Pc (/3), given in Eq. (3.3). For I </3<2 the density p is continuous across 
the transition, but ap/ ap is not. For 2 < /3. p is discontinuous. 

straint (analogous to that imposed in the spherical model) 
that effectively couples them. The constraint is Eq. (2.1), 
which states that the total of cluster occupations, spaces 
"between" them and reservoir occupation is fixed. The ther
modynamics of this system is similar to that of the single urn 
with an effective chemical potential shifted by the pressure 
[which at that point equals f.lc (/3) with f.lc (/3) = /3 - 1 

X log~: = 1 n - P]. The phase diagram is shown in Fig. 7. 
We then examine cluster size distribution in each of the 

phases. In the noncondensed phase the number of clusters of 
any given size is proportional to L, an appropriate thermo
dynamic scaling for a "gas" of clusters. In the condensed 
phase there are still some finite clusters, but only a limited 
number of them (that is, this number is finitely bounded as 
L -+ 00 ). All remaining balls or atoms are part of a single 
O(L) cluster. In both cases, the reservoir is finitely (i.e., 
independent of L) occupied. Finally, we have given a mean 
field type argument to justify the equation of state. 

As indicated in the Introduction, we intend to study a 
dynamical model whose equilibrium is that described in the 
present paper. As such, the properties we have here estab
lished will be features that must emerge in our dynamical 
model. Also, because of our interest in the metastable fea
tures of that dynamical model, the material developed here 
will be extended to exatpine the extent to which analytic 
continuation is a useful guide to metastable behavior. 
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APPENDIX: EVALUATION OF THE INTEGRAL 
I!:.: e'n6 logI81h(8) d8IN THE LIMIT OF LARGE n 

If (J > 0 and h «(J) is the C co function, which is 1 at (J = 0, 
we can say that 
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_ foo log u elxu du = Loo 10g(i0')e- XUi dO' 

= i L" (log 0' + i ; )e- xu dO' 

= ---1--+ - logue du, ff • log x i 1'" -u 

2x x x 0 

[". ein8 10gl0 Ih(O)dO 

--f'" loge - 0)eIx8 dO 

_ - i L'" 10g( - iO')e - xu dO' 

ff . log x i foe 1 - U d - --+1---- ogue u, 
2x x x x 
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A method is presented for constructing the general solution to higher Hamiltonians 
(nonquadratic in the momenta) ofthe Toda hierarchies of integrable models associated with a 
simple Lie group G. The method is representation independent and is based on a modified 
version ofthe Lax operator. It constitutes a generalization ofthe method used to construct the 
solutions of the Toda molecule models. The SL ( 3) and SL ( 4) cases are discussed in detail. 

I. INTRODUCTION 

Nonlinear systems in one and two space-time dimen
sions have been the object of a great interest in physics and 
mathematics. Their structures are, in general, very rich and 
very useful in the understanding of nonlinear properties of 
physicaltheories. The Todamolecule model 1 (TM) is one of 
these systems that has been studied quite extensively using 
several different approaches. The equations of motion for its 
one-dimensional version are given by 

(1.1 ) 

For the case where the square, nonsingular matrix K is the 
Cartan matrix of a simple Lie group G, of rank r, these equa
tions are completely integrable.2

,3 Their solutions have al
ready been constructed.4-6 

The Lie group G plays an important role in the study of 
the integrability properties of the TM equations. The solu
tions of Eqs. (1.1) can be viewed as some special geodesic 
motion on the symmetric space G N I K, where G N is the nor
mal real form of G and K is its maximal compact sub
group. 5,7 When G N I K is parametrized by the horospherical 
coordinates, 5, 

7 Eqs. (1.1) correspond, by a reduction proce
dure, to the radial part of the equations for the free motion on 
G N I K. Although the TM equations are not invariant under 
continuous transformations associated with G, the invar
iance of the geodesic motion under left translations on 
G N I K by G N is, in some sense, hidden in (1.1). 

Perhaps the richest structures of the TM equations asso
ciated with this hidden symmetry are contained in the so
called fundamental Poisson bracket relation (FPR) or the 
classical Yang-Baxter equation, 8,2, 7,9,10 which relates two 
bracket structures. On one side is the Poisson bracket 
between the entries of a matrix operator A and on the other is 
the Lie bracket or commutator between A and a constant 
operator P. In a tensor product notation, the FPR for the 
TM reads2,7 

{A®A}PB= -[P,A®I+I®A]. ( 1.2) 

The operator A lives in the subspace ofthe Lie algebra of G N, 

which is the tangent space to G N I K at unity, and it is given 
by 

(1.3 ) 

where Pa [a = 1,2, ... ,r ( = rank G)] is the canonical mo
mentum conjugate to t/Ja; Ha are the Cartan subalgebra gen
erators in the Chevalley basis of the group G, whose Cartan 
matrix is K ab; E a (E _ a ) are the step operators for the simple 
roots (their negatives) of G; and gab 1 is the inverse of the 
matrix defined in (2.3a). 

The operator P lives in the tensor product space of two 
copies of the Lie algebra of G, and is given by2.

7 

(1.4) 

where the summation is over the positive roots a of G and Ea 
are the corresponding step operators. The structures of the 
classical Yang-Baxter equations, like ( 1.2), are intrinsically 
related to the algebraic and geometric properties of symmet
ric spaces. 11 

From (1.2) we obtain 

{A,(1IN)Tr A N}PB = [A,BN ], (1.5) 

where the operator B N is defined as 

B N =TrR [P(1®A N
-

1
)] = -TrL [P(A N

- 1 ®1)]. 
( 1.6) 

The subindices Rand L mean we are taking the trace of the 
right and left entries, respectively, of the tensor product. 

In the case where the Hamiltonian is Tr A N IN, the rela
tion (1.5) becomes a Lax pair equationY 

( 1.7) 

For N = 2, this is the Lax equation for the TM equation 
introduced in ( 1.1 ).2,3 In this sense, the classical Yang-Bax
ter equation (1.4) is more fundamental than the Lax equa
tion. 

From (1.5) it follows that the charges Tr A N are in in
volution, i.e., 

{Tr A N,Tr A M}PB = O. ( 1.8) 
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The number of these charges, which are functionally inde
pendent, is equal to the rank of G. 

In the cases where the HamiltoRian is one of those 
charges, the corresponding system is integrable, since Eq. 
(1.8) implies it has rank G independent conserved charges 
(including the Hamiltonian). Therefore, we have rank G 
integrable systems associated with each classical Yang-Bax
ter equation (1.2). These constitute the Toda models' hier
archies. 13 The Hamiltonian for the TM model (1.1) is 
Tr A 2/2. It is the simplest model of the hierarchy associated 
with a given group G. 

In this paper, we generalize the method of Refs. 4 and 5 
to construct the solutions to higher Hamiltonians in the 
Toda hierarchy, i.e., the Hamiltonians Tr A N IN (N) 2), 
which are not quadratic in the momenta. Although these 
Hamiltonians are representation dependent, our method 
works uniformly in any representation. The integration of 
the equations of motion is performed by making a suitable 
modification of the Lax operator A such that it becomes a 
polynomial in the momenta of the same degree as B N' In 
fact, in a given representation D '\ we take it to be the compo
nent ofthe matrix [D ,l(A)] N - 1 lying in the representation 
itself. 

In Sec. II we describe the construction of the solutions 
to the higher Hamiltonians using the zero curvature condi
tion (Lax equation) and the Iwasawa decomposition of the 
normal real form G N of G. In Sees. III and IV we apply such 
a method for the Toda hierarchies associated with the 
groups SL(3) and SL(4), respectively. 

II. THE CONSTRUCTION OF THE SOLUTIONS 

Olshanetsky and Perelomovs have constructed the solu
tions of the TM equations (1.1) by projecting, on the phase 
space of TM, some special geodesic flows on the symmetric 
phase G N I K. This space has some nice algebraic properties 
due to the Iwasawa decompositionl4 of G N

, the (noncom
pact) normal real form of the Lie group G, whose Cartan 
matrix appears in (1.1). According to that, the elements of 
the group G N decompose as 

g = nak, geG N, (2.1) 

where n is an element of the nilpotent subgroup G N genera
ted by the negative root step operators E _ a of G N, a is an 
element of the Abelian subgroup generated by the Cartan 
subalgebra generators Ha (a = 1,2, ... ,rank G N), and k be
longs to K, which is the maximal compact subgroup of G N 

and is generated by (Ea - E _ a ). These generators satisfy 
the commutation relations 

[ Ha ,Hb] = 0, a,b = 1 ,2, ... ,r = rank G N, 

[Ha,E±a] ±KaaE±a' 

{

NapEa + 13' if a + P is a root, 

[Ea,Ep] = 2a.H la2
, if a + P = 0, 

0, otherwise, 

(2.2a) 

(2.2b) 

(2.2c) 

where Kaa = 2a. aa I a;, aa are the simple roots of G N, and 
N a/3 are some structure constants that are not important in 
what follows. The Killing form of G N can be normalized as 
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Tr(HaHb) = 4(aa·abla;a~) =4gab , 

Tr(EaHa) = 0, 

Tr(Ea E _ 13) = (2/a2)ba/3' 

(2.3a) 

(2.3b) 

(2.3c) 

Due to the Iwasawa decomposition (2.1) of G N, the 
points of the symmetric space G N I K can be put into a one
to-one correspondence with the elements of the solvable sub
group na.7 This subgroup plays an important role in the con
struction of the solutions to the Hamiltonians in the Toda 
hierarchies, as we will now explain. 

Although we are dealing with a one-dimensional theory, 
i.e., which depends only on time, it is much easier to consider 
a zero curvature condition in two space-time dimensions 
where the "gauge" potentials, which we shall denote by Ax 
and AI' do not depend upon the extra space variable x, ie., 
(see comments at the end of this section), 15 

[at +Al'ax +Ax] =atAx - [Ax.Azl =0. (2.4) 

The potentials A x and A t will be chosen to be functions of the 
operators A andBN , defined in (1.3) and (1.6), respectively, 
such that the vanishing of (2.4) is a consequence ofthe Lax 
pair equation (1. 7), and therefore of the equations of mo
tion. 

It is highly desirable in our construction, the reason for 
which will become clear later on, to write, in the light cone 
variables u = (x + t)/2 and v = (x - t)/2, the component 
Au Ax - At as a "pure gauge" potential of the solvable 
subgroup na, i.e., 

b - 1 ab = _ b - 1 db = A ben (2.5) & ~ v' ~ 

where we have used the fact that the elements b of the sub
group na do not depend upon the x variable. Integrating 
(2.5), one obtains b(t) as a path ordered integral 

b(t)=b(O)pexp[L-VAvdvl (2.6) 

Due to (2.4), the integration above is path independent and 
therefore we can first integrate in x from 0 to - t and then in 
t from 0 to t. We getl5 

b(t) = b(O) exp( - tAx (O»U(1), (2.7) 

where 

U(t) = P exp[L At dt l (2.8) 

So, the unknown time dependence of b is contained in the 
operator U(t). 

We now have to express the potentials A x and A t in 
terms of the operators A and B N such that Au is an element of 
the Lie algebra ofna. Using (1.4) and (1.6), we find thatBN 
is a linear combination of the positive and negative step oper
ators 

2 

BN = L ~{Tr(E_aAN-l)Ea -Tr(EaAN-J)E_ a}. 
a>O 2 

(2.9) 

For N = 2, we find using (2.3) and (1.3), that the coef
ficients of Ea and E _ a vanish for a nonsimple, and are the 
same as the coefficients of (Ea + E _ a ) in ( 1.3). Therefore, 
taking A x = A and A I = B2, we find that Au is an element of 
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the algebra of the solvable subgroup na. This is in fact the 
"pure gauge" potential used in the construction of the solu
tions of the TM equations.4

•s,ls 

For N> 2, the situation is more delicate, in part because 
it involves traces of more than two generators. Since B N is a 
polynomial in the momenta of degree N - I, we need a po
tential of the same form to cancel the term proportional to 
Ea in (2.9) and get a potential in the Lie algebra of na. 

In any highest weight finite-dimensional representation 
D A of the Lie algebra !fV of G N, the generators Ha and Ea 
satisfy the Hermiticity property 

DA(Ha) + = DA(Ha), DA(Ea) + = DA(E -a)' (2.10) 

It then follows that the Lax operator A, defined in (1.3), is 
Hermitian: 

(2.11 ) 

Therefore, in any representation D A (of dimension m), the 
matrix [DA(A) ]N- I is Hermitian and consequently be
longs to the vector space V spanned by all m X m Hermitian 
matrices [i.e., the defining representation of the Lie algebra 
of V(m)]. We denote by D the subspace of V spanned by 
DA(Ha), DA(Ea +E_ a ), and iDA(Ea -E_a)' Since V 
is a Euclidean vector space, we define M to be the orthogonal 
complement of D in V. Then 

Tr(MD) =0. (2.12) 

Using the fact that D is a subalgebra of Vunder the commu
tator, and the cyclic property of the trace, 

Tr([M,D JD) = Tr(M [D,D 1) =0. 

Therefore, 

[M,D] eM. (2.13 ) 

The matrix [D A (A) ] N - I can be written as a real linear com
bination of the basis of D plus some matrix M'1, which be
longs to M. Then, using (2.3) and (2.12), 

dA{[DA(A) ]N-I _ M'1} 

= ! Dab I Tr[DA(HbA N-I)]DA(Ha) 
a,b 

2 

+ I a {Tr[ DA(E_aA N-I)]DA(Ea) 
a>O 2 

+ Tr[DA(EaA N-I) ]DA(E_ a )}, (2.14) 

where d A is the Dynkin indexl6 of the representation DA 
[the bilinear trace form in D A is d A times the Killing form 
(2.3) ]. 

If the Hamiltonian :Jr is taken to be a function of the 
charges 

1'1 = (lIN)Tr[DA(A)]N, (2.15 ) 

then the time evolution of any function f of the canonical 
variables is given by 

ddlf = {f,:Jr}PB = I aa~ {f,I'1}PB' (2.16) 
t N '1 N 

where the summation is over the charges I '1, which are func
tionally independent. As a consequence of ( 1.8), the charges 
1'1 are conserved and the Hamiltonian :Jr is integrable. 
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From (1.5) and (2.13), we find that the potentials 

A A (:Jr) = d A"\.' a:Jr {[DA(A) ]N-I _ MA} (2.17a) 
x ~ aI'1 N , 

A A(:Jr) = "" a:Jr DA(B ) 
I ~ JI'1 N 

satisfy the Lax pair equation 

dA A (:Jr) 
X

dt 
= [A ~ (:Jr),A :(:Jr)] 

and, in addition, the matrix M'1 has to satisfy 

dM'1 A A 
---;j( - [M N,A t ] = O. 

(2.17b) 

(2.18 ) 

(2.19) 

Therefore, traces of powers of M '1 are constants of motion. 
The advantages of the Lax equation (2.18) are that the 

potentials A ~ and A : are both polynomials in the momenta 
of the same degree and, most important, that the potential 
A ~ = A ~ - A : is an element of the Lie algebra of the sub
group na. Therefore, we can take the potentials appearing in 
(2.4) to be those given by (2.17). From (2.16) and (1.3), we 
have 

df/Ja =~"" a:Jr""g-lTr[DA(H AN-I)]. 
dt 2 ~ JI'11: ab b 

(2.20) 

Then, using, (2.5), (2.17), (2.14), and (2.9), we have (with 
b evaluated in the representation D A) 

A A(:Jr) = _ b - I db 
v dt 

=~ I df/Ja DA(Ha) +2 I a~ 
2 a dt N aI N 

2 

X I ~Tr[DA(EaAN-I)]DA(E_a). (2.21) 
a>O 2 

Therefore, the coefficients of the Cartan subalgebra genera
tors in A ~ are just the velocities. This fact makes the integra
tion of the equations of motion easier. Indeed, since b = na, 
we have 

b - I db I da + _ I I dn - =a - a n -a. 
dt dt dt 

(2.22) 

The first term on the rhs is a linear combination of the Car
tan subalgebra generators, and the second term is a linear 
combination of negative step operators. Therefore, compar
ing (2.21) with (2.22), we get 

a-I da = _ ~I df/Ja DA(Ha) (2.23) 
dt 2 a dt 

and, consequently, 

a = exp( - ! f/JA(t)), 

where we have defined 

a 

Using (2.10) and (2.11), we have 
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Tr DA(HaA N-I)* = Tr DA(HaA N-I), 

Tr DA(EaA N-I)* = Tr D\E _aA N-I). 
(2.26) 

From (2.9), we then see that the operator BN is anti-Hermi
tian, and therefore the potentials introduced in (2.17) satisfy 

[A~(Jf'>] + =A~(Jf'), [A:(Jf')] + = -A:(Jf'). 
(2.27) 

Working with these potentials, we find that the operator 
U(t), defined in (2.8), is unitary and consequently we have, 
from (2.7), 

b(t)b(t) + = b(O) exp{ - 2tA ~ (Jf') II=o}b(O) +. 
(2.28) 

Using (2.24) and the fact that ,pA(t) is Hermitian, we get 

xexp{ - 2tA ~ (Jf') 11=0} 

X e - ¢A(0)/2n (0) + [n(t) + ] - I. (2.29) 

Therefore, the unknown time dependence of the coordinates 
,pa is contained in the elements of the nilpotent subgroup n, 
whose generators are the negative step operators. However, 
by taking the expectation value of the expression (2.29) in 
the highest weight state IA) of the representation D A, we 
eliminate this unknown time dependence. Indeed, the state 
IA ) is annihilated by all positive step operators, and conse
quently 

(2.30) 

The fundamental weights Aa (a = 1,2, ... ,rank G N) satisfy 

2aa.Ab/a~ = Dab' (2.31) 

Therefore, working with the rank G N fundamental represen
tations of G N, we get 

DAa(Hb)IAa) = DabIAa)· (2.32) 

Consequently, from (2.29) and (2.30), it follows that 

e - ¢a(t) = e - ¢a(O) (Aa lexp [ - 2tA :a(Jf') II = 0] IAa). (2.33) 

This is the general solution of the equations of motion 
for a model described by any Hamiltonian Jf', which is a 
function ofthe charges Tr A N. We notice that the solutions 
have the same formal expression for any Jf', including the 
solutions to the Toda molecule models4

•
s corresponding to 

Jf' = (l/2)Tr A 2. The actual different time evolutions are 

encoded into the operator A :a(Jf') 11=0 containing the ini
tial values of coordinates and momenta. 

The introduction of the extra space varaiable x is an 
artifice of the construction. It enables us to treat the Lax 
operators as the components of a "gauge potential" in two 
dimensions. Then we can play with the path-independent 
integration of (2.5) to select a component of the gauge po
tential, which points to a suitable direction in the algebra~. 
In fact, the choice of A ~ is made in such a way that A ~ lies in 
the subalgebra na. This choice implies, in addition, that the 
coefficients of the Cartan subalgebra generators in A ~ are 
just the velocities. This makes the integration possible. We 
point out, however, that the physics of the problem is un
changed by the introduction of the extra space variable x 
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since the gauge potentials are x independent. 
In the next two sections, we show how to use the proce

dure described above to find the general solutions to the 
Hamiltonians in the hierarchies ofthe Toda models associat
ed with the groups SL (3) and SL ( 4). 

III. THE SL(3) TODA HIERARCHY 

For the case ofSL(3), there are only two charges Tr AN 
that are functionally independent, namely, Tr A 2 and Tr A 3. 
In the case where the Hamiltonian is Tr A 2, we get the Toda 
molecule equations for SL(3), whose solutions are 
known.4

•
s We now want to discuss the model defined by the 

Hamiltonian Tr A 3. 

The equations become simpler if we perform the canoni
cal transformation 

(3.1a) 

1 ",,-I 'TTa = - £.,6ab Pb' 
2 b 

(3.1b) 

The Lax operator A, defined in (1.3), then becomes 

1 (a~) A=I'TTaHa+-Iexp Pa- (Ea+E_ a)· 
a 2 a 2 

(3.2) 

All roots of SL( 3) have the same length and so we can 
set a~ = 2. We shall denote by A I and A2 the fundamental 
weights of SL (3), which are associated to the triplet and 
antitriplet representations, respectively. By taking the Ham
iltonian Jf' of our system to be Tr A 3/3, evaluated in the 
triplet representation, we get 

Jf' = ! Tr[DA'(A) P 
= 'TTI 'TT2 ( 'TTl - 'TT2 ) + 1 ['TT2e2p, - 'TTle2p,]. (3.3) 

When evaluated in the antitriplet representation, the quanti
ty Tr A 3 gets a factor ( - 1) with respect to its value in the 
triplet representation. So we have 

Jf' = -! Tr[DA2(A) p, (3.4) 

This Hamiltonian is not positive definite and it is singu
lar whenever 

(3.5) 

However, it describes an integrable system since, from ( 1. 8), 
we get that the quantity 

12 =! Tr[DA'(A) P 
=! Tr[DA2(A) P 

= tri + tG - 'TTI 'TT2 + 1 [e2p, + e2P2 ] (3.6) 

is conserved. 
The Hamilton's equations of motion for such systems 

are given by 

PI = 'TT2 (2'TTI - 'TT2 ) -1 ~P2, 
P2 = - 'TTl (2'TT2 - 'TTl) + 1 e2p" 

iTl = -! 'TT2e2p" 

iT2 =! 'TTle2P2. 
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Notice that if the momenta vanish at a given time, then 
they will vanish for all times. In this case the energy of the 
system is zero. According to (3.5) this corresponds to a sin
gular point of the Hamiltonian. The dynamics of the system 
at this singular point become very simple since Eqs. (3.7) 
reduce to 

p_ =0, (3.8a) 

(3.8b) 

where P ± = PI ± P2' Therefore, in this case the system is 
composed of a particle satisfying the Liouville equation plus 
a free particle. However, due to the conservation of 12, they 
are subjected to the constraint 

I p'2 _lp'2 +le2p+ (3.9) 2: - -2 + l! . 

The equations of motion (3.7) can be written in a more 
interesting form by eliminating the momenta using the con
served quantity 12, From (3.7) we have 

2pI + P2 = - (~ + 11'111'2 + !e2P' - ~Pl)e2P', (3.lOa) 

2pz + PI = - (ni + 'TT I 'TT2 + !e2p , + !i>z)e2p,. (3. lOb ) 

Using (3.1), (3.6), (3.7a), (3.7b), and the fact that, for 
SL(3), KII = Kn = 2, K12 = K21 = - 1, we can write 
(3.10) as 

•• • K <P 
<Pa = [!Eac<Pc -iI2]e ab., a= 1,2, (3.11) 

where Ell = E22 0, EI2 = - E21 1. 
We now construct the solutions to this equation using 

the procedure of Sec. II. In the I-dimensional fundamental 
representations of SL(l), the matrix M ~ is proportional to 
the I X I unity matrix. The reason is that any I X I real matrix 
can be written as a linear combination of the matrices repre
senting the (/2 1) generators ofSL(I), in one of these rep
resentations, and the unity matrix. The trace of a generator 
of a semisimple Lie algebra vanishes in any finite-climension
al representation. Then, by taking the trace on both sides of 
(2.14) and using (3.6), we get 

M~' = M~' iI213x3, 

which obviously satisfies (2.19). 

(3.12) 

Therefore, the potentials (2.17), in the triplet represen
tation, are given by 

A~' = [DA'(A) P - F213x3' 

A;' = D A '(B3 ), 

and in the antitriplet representation by 

A ~2 = - [DA'(A) f + ~Iz13x3' 
A;' = - DA'(B3 ), 

where we have used the fact that d A, = d A, = 1. 

(3.13a) 

(3.13b) 

(3.14a) 

(3.14b) 

Since A I and ..1.2 are the fundamental weights of SL (3), 
the expression for the solutions <PI (t) and <P2 (t) are given by 
(2.33) for the potentials (3.13a) and (3.l4a), respectively. 

IV. THE SL(4) TODA HIERARCHY 

We will denote by AI' ..1.2, and ..1.3 the fundamental 
weights ofSL( 4). They are, respectively, the highest weights 
of the 4, 6, and 4 fundamental representations of SL( 4). In 
this case there are three charges Tr A N that are functionally 
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independent. Using the notation introduced in (2.t5), we 
find that in the D A, fundamental representation these three 
charges are 

I~' = ni + ~ + ni - 'TT1'TT2 - 'TT2'TT3 + !(e2P' + e2p, + e2p,), 
( 4.la) 

I~' = 'TT111'2(11'1 -11'2) + 11'2'TT3(11'2 - 'TT3 ) 

+ H'TT2e
2p, + ('TT3 - 'TTl )e2P' 'TT2e2p,], (4.tb) 

I*'=H'TTi +'TTi +'TT; -211'2(~ +~) +3~(ni +ni) 

- 2~ ('TTl + 'TT3 ) + ~(ni - 'TT1'TT2 + ~ )~, 

+ ~(ni - 'TT211'3 + ~ )~, 
+ H ni + ~ + ni -'TT2( 'TTl + 'TT3 ) - 'TT1'TT3 ]e2P, 

+ -h (e4p, + e4p, + e4p, + 2e2(p, +p,) + 2e2(p, +p,)}, 

(4.1c) 

where we have used the canonical variables introduced in 
(3.1 ). 

In the D A, fundamental representation we have 

1 ,1.· 
4 . (4.2) 

In the D A, fundamental representation the charges I~' and 
I;' vanish. Then the functionally independent charges in 
this representation are 

Ii' = 2Ii', (4.3a) 

1*' = 3(l~,)2 - 41*', (4.3b) 

I~' = lj(li,)3 8Ii'I~' + (l~,)2. (4.3c) 

The relations (4.1 )-( 4.3) can be easily checked using a RE

DUCE program. 
The solutions to any Hamiltonian that is a function of 

the charges Tr A N can be written in terms of the solutions of 
three Hamiltonians that are independent functions of these 
charges. The SL{ 4) Toda molecule model itself is described 
by the Hamiltonian I~'. Therefore, we will take the Hamilto
nians of the other two models in this hierarchy to be 

K4=I~', 

K6=I~2. 

We have 

M A,-IIA'l 
3 - 2: 2 4x4, 

(4.4 ) 

(4.5) 

(4.7) 

M~3=0, M~'=¥i'14X4' M*'=in'14x4' (4.8) 

Equations (4.6) and (4.8) are obtained using the same argu
ments leading to (3.12). Equation (4.7) can be checked us
ing a REDUCE program. The Dynkin indices for the funda
mental representations of SL( 4) are d A, = d A, = 1 and 
d A

, = 2. Therefore, from (2.17), (4.2), and (4.3), we find 
that the Lax pair operators for the Hamiltonian K 4, in the 
fundamental representations, are 

A ~'(K4) = 6Ii'DA'(A) - 4{[DA'(A) P - in'14x4 }, 

(4.9a) 

A ;'(K4 ) = 6Ii'DA'(B2) - 4DA'(B4), 

A ~'(K4) = 2[DA'(A) p, 
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(4. lOb) 

A ~'(Jf'4) = 6I~'DA.'(A) - 4{[DA.'(A) P - ~I~'14x4}' 
(4.11a) 

A ;'(Jf'4) = 6I~'DA.'(B2) - 4DA.'(B4). (4.11b) 

Analogously, the Lax pair operators for the Hamilto
nian Jf'6 in the fundamental representations are 

A ~'(Jf'6) = [l4(/~,)2 - 8I:']DA.'(A) 

+ 2I~'{[DA.'(A) P - !I~'14x4} 

- 8I~'{[DA.'(A) P - ~I~'14x4}' (4.12a) 

A ;'(Jf'6) = [14(/~,)2 - 8I:']DA.'(B2) 

+ 2I~'DA.'(B3) - 8I~'DA.'(B4)' (4.12b) 

A ~'(Jf'6) = 2[DA.'(A) p, (4.13a) 

A ;'(Jf'6) = DA.'(B6 ), (4.13b) 

A ~'(Jf'6) = [14(/~'f - 8I:']DA.'(A) 

+ 2I~'{[DA.'(A) P - !I~'14x4} 

- 8I~'{[DA.'(A) P - iI:'14x4}, (4.14a) 

A ;'(Jf'6) = [l4(/~,)2 - 81:' ]DA.'(B2) 

+ 2I~'DA.'(B3) - 8I~'DA.'(B4)' (4.14b) 

The general solutions to the Hamiltonians Jf'4 and Jf'6 
are obtained from (2.33) using the "gauge potentials" given 
above. 

v. CONCLUSIONS 

We have presented a method for constructing the gen
eral solution to higher Hamiltonians in the Toda hierarchies 
associated to any simple Lie group G. The method is repre
sentation independent and it is a generalization of the work 
ofOlshanetsky and Perelomov,5 and Leznov and Saveliev.4 

The key point of the construction is the modification of the 
Lax operator. For the Toda molecule models the operators A 
and B2, defined in (1.3) and (1.6), respectively, are such 
that their difference is an element ofthe solvable subalgebra 
na. This fact plays an important role in the construction of 
the solutions of the TM4

,5 since it makes the connection with 
the geodesics on the symmetric space G N IK. 5

•
7 For the 

higher Hamiltonians, Tr AN (N) 2), in the hierarchies the 
operator B N depends upon the momenta and, unlike A, it 
contains nonsimple root step operators. The operator A is 
Hermitian in any representation D \ and therefore powers of 
the matrix DA.(A) (of dimension m) belong to the vector 
space of the m X m Hermitian matrices. Since this is a Eu-
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clidean space, the matrices belonging to the representation 
DA. can be split from the rest in a way that relations (2.12) 
and (2.13) hold. Then, by replacing the operator A by the 
component of the matrix [D A.(A)] N - 1 lying in the repre
sentation DA., we obtain from (1.7) two decoupled Lax 
equations, namely (2.18) and (2.19). The first one leads us 
to the solution in a quite simple way. Analogously to the TM 
case, the difference between the new Lax operators (2.17) is 
an element of the subalgebra na. In addition, the integration 
is made easy by the fact the component of the Lax operator 
(2.21) lying in the Cartan subalgebra is linear in the veloc
ities. This is very similar to what happens in Refs. 4 and 5. 

It would be very interesting to investigate further the 
possibility of understanding this construction in terms of the 
universal enveloping algebra of G N. We believe that such an 
investigation could shed some light on the quantum integra
bility properties of these models and their relation with 
quantum groups. Natural extensions of our work would be 
the construction of the solutions of the two-dimensional ver
sion of these higher Hamiltonians. One could also try to 
make a connection between the solution presented here and 
special motions on the symmetric spaces G N I K. 
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It is essentially known that useful gauge field Lagrangians arise as Weil polynomials ofthe 
curvature of the gauge connection. The deeper implications and details of this fact are worked 
out in two widely differing cases. The Glashow-Weinberg-Salam gauge field Lagrangian for 
electroweak theory and the Townsend-Zardecki action for gravitation are obtained from the 
same type of "Yang-Mills" Weil form on a principal fiber bundle over space-time, with 
symmetry group U(2) and SO(2,3), respectively. The unified geometrical approach given here 
shows that fiber bundle reduction and symmetry breaking are essential not only in electroweak 
theory but also in the SO(2,3) gauge theory for gravitation. In fact, the process of symmetry 
breaking in electroweak theory and the soldering of the anti-de Sitter bundle, essential in the 
interpretation of SO(2,3) gauge theory as a theory for gravitation, are corresponding 
geometrical concepts. 

I. INTRODUCTION 

It has been long known that from the unifying point of 
view of fiber bundles, the kinematics of gauge theories and 
general relativity are the same. 1 However, the gauge scheme 
itself fails to determine directly the dynamics of the theory, 
i.e., a form of Lagrangian. Euler-Lagrange equations are 
obtained after a Lagrangian has been defined. For example, 
in a Yang-Mills theory with a Lie group G, the gauge field 
Lagrangian is defined as 

I F A FBI-'v 
AB I-'V , (1.1 ) 

where FAI-'v are the components ofthe curvature tensor FI-'V 

of the gauge field relative to a basis of f§, the Lie algebra of 
G, and lAB is the metric tensor of the bilinear Killing form of 
G, A, B = 1, ... ,k, k the dimension of f§.2 

Within the fiber bundle formulation of gauge theories it 
is, however, more natural to define a Lagrangian form on the 
principal fiber bundle P(M,G) over space-time M. A most 
general gauge invariant Lagrangian form on P that projects 
uniquely to the base manifold can be defined using Weil 
forms3 constructed from Weil polynomials4 and f§ -valued 
tensorial two-forms on P. Recently, Weil polynomials were 
used by Kakazu and Matsumoto in the reconstruction of 
Einstein gravity (with torsion) and four-dimensional N = 1 
supergravity on a principal fiber bundle (PFB). 5 It was also 
possible to reconstruct the Lovelock Lagrangian6 for higher 
dimensional gravity on the bundle of orthonormal frames 
over a space-time of arbitrary dimension D by using Weil 
polynomials on the Lie algebra so ( I,D - 1).3 

In this paper, we will emphasize the complete analogy 
between the derivation of the Glashow-Weinberg-Salam 
gauge field Lagrangian for electroweak theory and the 
Townsend-Zardecki type action for gravitation 7 from the 
same type of Weil form on a PFB with symmetry group 
U(2) and SO(2,3), respectively. Besides the Einstein action 
and a cosmological term, the Townsend-Zardecki action 
also contains curvature-squared and torsion-squared terms. 

However, for zero torsion and zero effective cosmological 
constant, the theory reduces essentially to Einstein's theory 
in vacuum.7 Both Townsend and Zardecki derive their La
grangian in the context of a SO ( 1,4) gauge theory. Here, we 
will consider as gauge group for gravitation the anti-de Sitter 
group SO(2,3). This choice is inspired by the proposal of 
Ward to use the real Lie algebra so* ( 14), as the basis for a 
unified gauge theory of elementary particles. S In fact, 

so(2,3) Ell su(3) Ell su(2) Ell u(1) C so* (6) 

Ell so*(8) Cso*( 14) Cso*( 16) ( 1.2) 

and so* ( 16) is a maximum subalgebra of a noncompact real 
form9 of the exceptional Lie algebra Es. Much of the formal
ism exposed in this paper can be useful in the construction of 
a gauge field Lagrangian for a unified theory of electroweak, 
strong, and gravitational interaction based on (1.2). 

The rest of the paper is organized as follows. In Sec. II 
we describe the reduction of a principal fiber bundle P to a 
subbundle Q, the splitting of a connection one-form on Pinto 
a reduced connection on Q and a tensorial one-form, and 
give the expressions for the reduced curvature on Q. The 
occurrence of reduction is closely related with the process of 
symmetry breaking. In the electroweak theory the remain
ing symmetry is that of the charge conservation group 
U c ( 1), while for gravitation we consider symmetry breaking 
from SO(2,3) to S0(1,3). In Sec. III we outline the con
struction of a gauge invariant Lagrangian form on the U (2) 
and the SO (2,3) principal fiber bundle, respectively, and 
determine the Weil polynomials needed in the construction 
of these Lagrangian forms. With the theory thus developed it 
is then straightforward to determine the electroweak and 
gravitational gauge field Lagrangian in Secs. IV and V. Al
though the derivation of the gravitational gauge field La
grangian is, except for the gauge group, not essentially differ
ent from that given by Zardecki,7 our unified geometrical 
approach, however, will make it possible to identify corre
sponding fields and concepts in the electroweak and gravita
tional gauge theories. 
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II. FIBER BUNDLE REDUCTION 

Let P(M,G) be a PFB with base space M and structure 
group G. Ifp:G--+GL( V) is a representation of G in a finite
dimensional vector space V, then a pseudotensorial form of 
degree ron P of type (p, V) is an r-form tP:P--+ V, which is 
equivariant with respect to the action of G, i.e., 

(2.1) 

where Rg is the right action of gEG on P. Such a form tP is 
called a tensorial form if tP(XI , ... ,x,) = ° whenever at least 
one of the tangent vectors X; of P is tangent to a fiber. 4 In 
particular, a tensorial zero-form of type (p, V) is a function 
tP:P--+ V such that 

tP(ug) =p(g-I)·tP(U), for uEP, gEG. (2.2) 

Suppose that H is a closed subgroup of G. On the coset 
space G/ H, the Lie group G acts as a transitive Lie transfor
mation group, i.e., G I H is a homogeneous manifold of G. If 
G IHe V the vector space on which G acts throughp, then 
the coset space G I H can be thought of as the orbit space 
Vo =p(G)'vo withvoEGIH anH-fixedpointin V.Now,let 
E(M,G I H,G,P) be the vector bundle associated with P and 
with standard fiber G I H. Then one has the following resule 
The bundle P(M,G) has a reduction to a subbundle Q(M,H) 
iff E admits a global section. Moreover, there is a one-to-one 
correspondence between cross sections O':M --+ E and equi
variant mappings tP:P --+ G I H. Therefore, a necessary and 
sufficient condition for the occurrence of the reduction is the 
existence on P of a tensorial zero-form tP of type (p, V) with 
range tP(P) in the orbit space G IH (see also Ref. 10). There
by Q = tP - I (vo ), and Fulp and Norris in Ref. 11 refer to tP as 
a symmetry breaking Higgs field. 

If the symmetry G is a gauge symmetry associated with a 
Lagrangian field theoretical model, then the original sym
metry G is said to be broken spontaneously by the Higgs 
mechanism iff the self-interaction potential V(\II) ofa multi
plet \II of (possibly complex) scalar fields, which are de
scribed by a global section of a vector bundle Wassociated 
with P with fiber V::> G I H, is minimized by the manifold 
Vo = G IH. In that case, the global section \110 (x) = Vo is 
called the vacuum or ground state and the homogeneous 
space Vo, obtained by the action of p (G) on vo, the vacuum 
manifold. 

Let r:Q--+P be the imbedding of the reduced bundle 
Q(M,H) into its extension P(M,G), and set 

f1 = r. (JY') E!) 'tff, (2.3) 

where JY'is the Lie algebra of the subgroup Hand 'tff a vector 
subspace of f1 , the Lie algebra of G. If il is a connection form 
on P, then the restriction f1- of il to Q, i.e., f1- = r*il, splits 
naturally into 

(2.4 ) 

where /i) is JY'valued and cp is 'tff valued. We then have the 
theorem 12 that if the complement 'tff of JY' in f1 is Ad invar
iant by H or equivalently [r. JY', 'tff ] e 'tff if H is connected, 
then the restriction /i) of the JY' component of the connection 
one-form il on P is a connection one-form on Q while cp is a 
tensorial one-form of type (AdH, 'tff) on Q. Here, Ad always 
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denotes the adjoint representation of the symmetry group on 
its Lie algebra. 

The curvature two-form .6. on P is a tensorial two-form 
of type (Ad G, f1 ) defined as 

.6. = Dil = dil + Hil,il]' (2.5) 

with [,] denoting the exterior product offorms with values 
in a Lie algebra. The reduction A = r*.6. to Q of the curva
ture .6. calculated from il on P can be written5 

A = 0 + cP + ~, (2.6) 

where 

o = d/i) + H /i),/i) ], 
cP = dcp + [/i),cp] , 

~ = Hcp,cp]· 

From the Bianchi identity on P 

d.6. + [il,.6.] = 0, 

we find after reduction to the subbundle Q, 

DO = dO + [/i),O] = 0, 

ncp=dCP+ [/i),CP] = [O,cp]. 

III. A GAUGE INVARIANT LAGRANGIAN FORM 

(2.7) 

(2.8) 

(2.9) 

(2.10) 

(2.11 ) 

(2.12) 

In general, Ad(G)-invariant Weil polynomials4
•5•

13 of 
degree m on the Lie algebra f1 are defined as multilinear 
symmetric real-valued functions Lm such that 

Lm (g. TI , ... ,g' Tm) = Lm (TI , ... ,Tm), (3.1) 

for all geG, T;Ef1 and where g' T; = gT;g-l. The space of 
all Weil polynomials of degree m is denoted by S ~ ( f1 ). 

If ipl , ... ,ipm are f1-valued two-forms on P, then we de
fine for each LmES~(f1) a real-valued Weil form 
Lm (ipl , ... ,ipm) onPofdegree 2m = D the dimension of M, 
by 

Lm (ipl , .. ·,ipm) (XI , .. ·,xD) 

= (~) m ~D E(O')Lm(ipl (X"(I»Xu(2»' 

... , ipm (XU (D_I) ,xu(D»)' (3.2) 

for XI , ... ,xDETu (P) (tangent space of Pat u), where the 
summation is taken over all permutations O'of (1, ... ,D) and 
E( 0') is the sign of the permutation. If {TA } is a basis for f1 
such that ip; = ip1TA [ip1EA2(P,R) the space of real-valued 
two-forms on P], then one obtains from the multilinearity of 
Lm and the definition ofthe wedge product that 

Lm (ipl> ... ,ipm) = Lm ( TA, , ... , TAm) ip1' 1\ ... 1\ ip!m. (3.3) 

If the restrictions tP; = r*ip; are tensorial forms on Q, then 
the restriction of the Weil form itself, i.e., 

(3.4) 

will project to a unique D-form 5t' on M such that (Ref. 4, 
Chap. XII) 

Lm (tPl , ... ,tPm) = 1r*5t', (3.5) 

where 1r is the projection from the subbundle Q on the base 
manifoldM. 
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To determine the dynamics of a gauge theory, a gauge 
field Lagrangian must be defined. The gauge invariant La
grangian form on P(M,G), M the space-time manifold, giv
en by 

L2 (.3:,*.3:), (3.6) 

where .3: is the curvature two-form given in Eq. (2.5), * the 
Hodge duality transformation, and L2 the Weil polynomial 
formed by summation over algebraically independent ele
ments of S ~ U1 ), will lead to the electroweak gauge field 
Lagrangian if G = V (2), and to a gravitational gauge field 
Lagrangian if G = SO (2,3). 

The gauge invariance of (3.6), that is 
L2 [.3:(s*(ji),* .3:(s*(ji))] = L2 (.3: (,u),*.3:(,u» for each dif
feomorphism s:P-+P such that s(ug) = s(u)g and 
1T(U) = 1T(s(u» for each geG and uEP (Ref. 13), follows 
from the Ad ( G) -in variance of L2 and the fact that .3: (,u) is a 
tensorial two-form on p. 3

•
5 

In both cases, unitary and anti-de Sitter, the condition 
[ r * Jf"', Crf 1 c Crf is satisfied as we will see in the next sec
tions. Then A, n, CP, and ~ as given in Eqs. (2.6)-(2.9) are 
all tensorial two-forms on Q, i.e., 

L2 (A,*A) = r*L2 (.3:,*.3:) (3.7) 

projects to a unique four-form 5t' on M such that 

L 2(A,*A)=1T*5t'. (3.8) 

To determine Weil polynomials on an arbitrary Lie al
gebra f1 , use can be made of the isomorphism between the 
algebra SG (f1) of symmetric Ad( G)-invariant multilinear 
mappings on f1 and the algebra P G ( f1) of homogeneous 
Ad( G)-invariant polynomial functions on f1. The identify
ing isomorphism Y:P G ( f1 ) -+ S G ( f1) is determined by 14 

(Yj) (XI , ... ,Xk ) 

=ai, ... ikSi'(XI)· ... 'Sik(Xk ), X I, ... ,Xk Ef1, (3.9) 

where ai,,,.ikS i, •••• ·s ik is the unique expression for the pol
ynomial function of degree k in the basis {s ,} for f1* the 
dual space of f1 . 

Algebraically independent and generating Ad(U(n»
invariant polynomial functions on the Lie algebra u(n) are 
given by the characteristic coefficientsfk (X) in4 

n 

det(A./n +iX) = L (-l)%(X),1,n-\ for XEu(n). 
k~O 

(3.10) 

Ifn = 2 and {X~} is a basis for u(2)* such that X~ (X) = X~ 
for X EU ( 2 ), then the polynomial function of degree 2 is given 
by 

(3.11 ) 

The Weil polynomial corresponding toJ; under the isomor
phism Y given in Eq. (3.9) is then 

L 2(XI,x2) = -!(X\iX~j -X\jX~i)' 

for XI,x2EU(2). (3.12) 

So, all Ad( U(2) )-invariant Weil polynomials on u(2) of 
degree 2 are polynomials proportional to the foregoing. In 
the basis 
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{TI,T2,T3,T4 } = {!i7"l>!i7"2,~i7"3,YI}, (3.13) 

for u(2), where 7"1,7"2,73 are the Pauli matrices and I the 
2 X 2 identity matrix, we find that these Weil polynomials 
are determined by 

L2 (Ta,Tb) = C/jab' a = 1,2,3, 

L2 ( T4 , T4 ) = C2, 

(3.14a) 

(3.14b) 

where we introduced constants CI ,C2 since the Weil polyno
mials are defined only upon an arbitrary constant. 

For G = SO (2,3) one can use the same methods to find 
that all Ad(SO(2,3 »-invariant Weil polynomials on so(2,3) 
of degree 2 are polynomials proportional to 

L 2(XI,x2) =~(X1AXfB -X1BXfA)' 

for XI,X2ESO(2,3), (3.15) 

with X~ = ~ (X), {X~} a basis for so(2,3)*. The genera
tors JAB of the Lie algebra so(2,3) are in 5 X 5-matrix repre
sentation given by 

(JAB)K L = OKA 1JBL - OK B1JAL> A,B,K,L = 0,1,2,3,4, 
(3.16) 

where 1JAB = diag( - 1,1,1,1, - 1). The ten elements 
JAB = - JBA can be split into six generators Jab' 
a,b = 0,1,2,3 of the S0(1,3) subgroup and four anti-de Sit
ter boosts Pa = (1I/)J4a , / the de Sitter length. In the basis 
{Jab'Pe} thus defined, we obtain from (3.15) and (3.16) 
that 

L2 (Jab,Jed ) = CI (1Jae 1Jbd - 1Jad1Jbe) = CI1Jab.ed' 

L2 (Pa,Pb) = C2 (1l/)21Jab , 

L2 (Jab ,Pc) = 0, 

where CI and C2 are arbitrary constants. 

(3.17a) 

(3.17b) 

(3.17c) 

IV. THE ELECTROWEAK GAUGE FIELD LAGRANGIAN 

In the electroweak theory, the photon field and massive 
vector boson fields are constructed from the SV (2) X V ( 1 ) 
gauge fields and a suitable scalar Higgs field that reduces the 
original symmetry to a V ( 1) subsymmetry. The Lie algebra 
u(2) = su(2) EBu(1) ofSV(2) xV(1) is, however, also the 
Lie algebraofV(2). A change from SV(2) XV( 1) to V(2) 
symmetry will therefore alter only few of the detailed mass 
calculations in the model (see remark in Ref. 11). Through
out the remainder of the section we then assume that (i) 
P(M,G) is a V(2) principal fiber bundle over four-dimen
sional space-time M; (ii) Q(M,H) is a V (1) subbundle of P. 
More precisely, the subgroup H is the charge conservation 
subgroup Ve (1) of V (2), i.e., 

(
e

2i
() 01). AEH if and only if A = ° (4.1) 

The structure group Ve (1) of Q is the isotropy sub
group ofV(2) at points (~)EC?, aER + (Ref. 11). The orbit 
space Vo = V (2) . (~ ) is S, the sphere of radius a in (;2, and 
is diffeomorphic with the coset manifold V (2) IV e ( 1 ) . 
Therefore, the existence of the reduced subbundle Q of P 
implies the existence of a global section in the vector bundle 
E(M, S, V (2),P) associated with P, or equivalently of a sym
metry breaking Higgs field l/J:P -+ S such that l/J - I (~) = Q. 
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In the basis (3.13), a connection one-form fi on P may 
be written as 

fi = algTI + a2gT2 + a3gT3 + a4g'T4' (4.2) 

where g and g' are coupling constants. We then define the 
new basis 0\ ,T2>T3,T4 }, where 

1'1 = (gTI - igT2 )/../2, 

1'2 = (gTI + igT2 )/../2, 

1'3 = - cos a(gT3) + sin a (g'T4 ), 

1'4 = sin a(gT3) + cos a(g'T4 ) 

In this basis, the restriction J.L of fi to Q is written as 

(4.3) 

(4.4) 

(4.5) 

(4.6) 

J.L= W-TI + W+T2 + ZT3 +AT4, (4.7) 

where 

W - = (a l + ia2 )/../2, 

W + = (a l 
- ia2 )/../2, 

Z= -cosaa3 +sinaa\ 

A = sin a a3 + cos a a4
• 

(4.8) 

(4.9) 

(4.10) 

( 4.11) 

It is clear that we identify a as the Weinberg angle () w' such 
that the charge e of the electromagnetic field A is given by 

e = g sin a = g' cos a = gg' [g2 + (g')2] - 112. (4.12) 

Since 1'4 = e( T3 + T4 ) generates the Lie algebra 
2 = Uc (1) of the charge conservation subgroup, and since 
the nonzero commutators of the new basis satisfy 

[1'1,1'4] = ieTI, 

[1'2,1'4] = - ieT2, 

[1'1,1'2] = ig(cos a 1'3 - sin a 1'4)' 

[1'1,1'3] = - igcosa 1'1' 

[T2,TJ] = igcos a 1'2' 

(4.13) 

(4.14 ) 

(4.15 ) 

(4.16) 

( 4.17) 

we can, according to Sec. II, decompose J.L into two pieces: 

(4.18 ) 

where w = AT4 is a connection one-form on Q correspond
ing to the electromagnetic gauge field A, and 
</J = W - 1'1 + W + 1'2 + ZT3 is a tensorial one-form on Q 
whose components correspond to the vector bosons W + , 

W - , and Z (see also Ref. 11). 
The reduction to Q of the curvature obtained from a 

connection one-form on P and given in Eqs. (2.6)-(2.9) is 
calculated making use of the commutation relations (4.13)
( 4.17). We find that the components in ~ = 0 + <I> + :l are 

0= (dA)T4 , (4.19)" 

<I> = (DW - )1'1 + (DW + )1'2 + (dZ)T3, 

~= -icos()w(W-I\.ZgTI - W+ I\.ZgT2 

(4.20) 

- W-I\. W+gT3 + W-I\. W+g'T4), (4.21) 

where 

DW- =dW- -ieAI\.W-, (4.22) 

(4.23 ) 

Equation (2.11) is now the Bianchi identity for the electro
magnetic field and (2.12) the corresponding identity for the 
intermediate vector boson field. 

To obtain the electroweak gauge field Lagrangian we 
must substitute the explicit expressions for the components 
0, <1>, ~ of ~ as given in Eqs. (4.19)-(4.23) into the Lagran
gian (3.8) and apply Eq. (3.3). Then we need the expres
sions for L2 (T;,'ij ),ij = 1,2,3,4, which one obtains from 
Eqs. (3.14) and the definitions (4.3)-(4.6) for the basis 
{TJ. To obtain dimensionless numbers for L2 (T;.'ij) we 
put CI = - 1/(2g2) and C2 = - 1/(2g'2) in (3.14), 
which are also chosen such that in the final Lagrangian 
terms appear with the correct coefficients. Then we find that 

L2(TI,T2) =L2(T3,T3 ) =L2(T4 ,T4 ) = -1/2 (4.24) 

and all other zero. For the Lagrangian we obtain 

L2 (~,*~) =.!.t'r +.!.t'w +.!.t'z + .!.t'w,w + .!.t'w,r,z, 

where 

.!.t'r = -!dA I\. *(dA) 

is the Lagrangian of the electromagnetic field, 

.!.t'w = - dW - I\. *(dW +) 

( 4.25) 

(4.26) 

(4.27) 

is the Lagrangian of the free intermediate charged vector 
boson field without the mass term, 

.!.t'z = -!dZ I\. * (dZ) (4.28) 

is the Lagrangian of the free intermediate neutral vector field 
without the mass term, 

.!.t'W,W=!g2W-I\.W+ I\.*(W-I\.W+) (4.29) 

is the self-interaction term of the Wbosons, and 

.!.t'W,r,Z = - cos ()w {i(g dZ - g' dA) I\. *( W - I\. W +) + i(gZ - g'A) I\. [*(dW +) I\. W - - *(dW -) I\. W +] 

+ cos ()w [gg'(A I\. W-I\.*(W+ I\.Z) +ZI\. W-I\*(W+ I\A» 

+ g,2A I\. W - 1\ * (A 1\ W + ) + g2Z I\. W - I\. * (Z I\. W + ) ]} (4.30) 

is the interaction between the electromagnetic, Z, and W 
boson fields. 

In the electroweak theory, the gauge symmetry is 
broken spontaneously. Therefore, the gauge field Lagran-
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gian .!.t' on M, of the type determined in (3,8), is supple
mented with a G-invariant Lagrangian .!.t'''' associated with a 
doublet of complex scalar physical Higgs fields 
'I':M -> (;2:J S( a) with quartic self-interaction potential that 
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assumes a minimum for 'lit'll = a2 [i.e., for 'II(x)eS(a)]. 
The effect of the gauge fields entering the covariant deriva
tives of the Higgs fields in .!£'''' is to give the Wand Z fields 
a mass term such that m w 2 = a2i'/2 and m z 2 

= a2(i' + g,2)/2 (Ref. 15). 

V. GRAVITATIONAL GAUGE FIELD LAGRANGIAN 

The derivation of the gravitational gauge field Lagran
gian is based on the anti-de Sitter group G = SO(2,3) and its 
subgroupH = S0(1,3). Fundamental ingredients are (i) an 
anti-de Sitter principal bundle P(M,G) over four-dimen
sional space-time M and a connection one-form ji, on P; (ii) a 
Lorentz subbundle Q(M,H) of P. 

However, to interpret the resulting theory as a gravita
tional theory, the restricted curvature ll. = r* K on Q must be 
directly related to the curvature of the underlying space-time 
manifold. Therefore, Q(M,H) must be the bundle O(M) of 
orthonormal frames over M, and P(M,G) the anti-de Sitter 
frame bundle. 

The coset space G 1 H is now the noncompact anti-de 
Sitter space F = SO(2,3 )/SO( 1,3). It is a space of constant 
curvature - 1/12 (l the curvature radius) that can be repre
sented by a hypersurface H t (I) = {SER~; (S,S) = - PHn 
RL (,) being the quadratic form on R~ with signature 
( - , + , + , + , - ). The coset space F can also be thought 
as the orbit of the H-fixed point So = (O,O,O,O,/)ERL and 
S0(1,3) istheisotropysubgroupofSO(2,3) inSo. Theexis
tence of the reduced subbundle Q of P now implies the exis
tence of a global section in the with P associated anti-de 
Sitter vector bundle E(M, H t , SO( 2,3 ), P) or of a symmetry 
breaking Higgs field f/!:P-+Ht such that f/!-I(SO) = Q. 

The Lie algebra ~ = so (2,3) is defined by 

[Jab,Jcd ] = Jad 1Jbc + Jbc 1Jad -Jac 1Jbd -Jbd 1Jac, (5.1) 

[Jab,Pc ] =Pa1Jbc -Pb1Jac' (5.2) 

[Pa,Pb] = (1/[2)Jab . (5.3) 

The parameter I is still the radius of curvature of the anti-de 
Sitter space whose group of isomorphisms is generated by 
this anti-de Sitter algebra. The generators Jab span the subal
gebra cW" = so( 1,3) of ~. The Pa span a vector space 
Crff = Rt, such that Eq. (2.3) and the condition 
[r*cW", Crff ] c Crff are satisfied. Therefore, if ji, is a connection 
one-form on P, its reduction J.L to Q splits as in Eq. (2.4). 
Explicitly we may write 

J.L = m + t/J = !mabJab + t/Japa, (5.4) 

where now m is a cW"-valued Lorentz connection while t/J the 
tensorial one-form of type (Ad H, Crff) on Qwill be identified 
with the canonical form () on Q = O(M). Indeed, on O(M) 
the canonical or soldering form () has the same transforma
tion low (2.1) as t/J in (5.4). Therefore, it is possible to define 
a connection ji, on P for which t/J = () (Ref. 16). This identifi
cation implies that we take J.L as the restriction to Q of a 
Cartan connection ji, on P and that the associated anti-de 
Sitter vector bundle E is a soldered bundle: 17 for all xEM, the 
fiber Fx over x is tangent to the base space M at So and the 
tangent spaces Tso (Fx) and Tx (M) can be identified by an 
isomorphism. Moreover, the zero section s(x) = So on E 
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can be identified with the base space M. After identification 
of t/J with the canonical form () on Q, n and <I> as given in Eqs. 
(2.7) and (2.8) can, respectively, be identified with the cur
vature form n and torsion form e of the bundle O(M). Ex
plicitly, we can write 

ll. = n + e + l: = Hnab + (1//2)()a /\ ()b ] Jab + ecpc' 
(5.5) 

where 

nab = Dmab = dmab + mac /\m~, (5.6) 

e a = D() a = d()a + mac /\ ()c. (5.7) 

From the Bianchi identities (2.11) and (2.12) we find 

Dnab = dnab + mac /\ n~ - n ac /\ m~ = 0, (5.8) 

ooa = dea + ma
b /\ e

b = nab /\ ()b' (5.9) 

Substituting the expression (5.5) for ll. into the Lagran-
gian form (3.8) on Q, we find making use of (3.3) and Eqs. 
(3.17) that 

L2 (ll.,*ll.) = (C1 /2) nab /\ *nab 

+ (C1 /2[2) Eabcd nab /\ () c /\ () d 

+ (C1 /41 4) Eabcd () a /\ () b /\ () c /\ () d 

(5.10) 

where EOI23 = 1. Except for the coefficients, this Lagrangian 
is the same as the SO( 1,4) gauge field Lagrangian obtained 
by Townsend who used the diagonal1Jab to contract group 
indices, or the Lagrangian of Zardecki who used the 
SO ( 1,4) Cartan metric to contract the Yang-Mills indices. 7 

Sources for the gravitational field must be described by a 
matter Lagrangian.!£' M' The energy-momentum three
form Ta = Ta b E b and spin angular momentum three-form 
Sab = Sab C Ec of the matter fields, where Ea = (1/3!) 
E abcd () b /\ () C /\ () d, are defined through 

De.!£' M = o()a /\ Ta, 

Ow.!£' M = omab /\Sab' 

(5.11 ) 

(5.12) 

If the total Lagrangian is varied with respect to () a and mab, 
respectively, the following field equations are obtained: 

!Eabcdnab/\()C-161TC2D*ed =K(Td + Tdvac), 

!Eabcdec /\ () d + 161TC2 *ea /\ ()b 

+ (K/161T)D *nab = - KSab , 

(5.13 ) 

(5.14 ) 

where we have put C1 = 1/161T, K = 81Tlp 2, and identified I 
with Ip the Planck length, such that for zero torsion the field 
equation (5.13) reduces to Einstein's field equation. The 
second equation is an extension of the equation introduced 
by Loosl8 to describe spin density in Einstein's theory. Put
ting C2 = - 1/161T would yield field equations obtainable 
from the SO(2,3) variant of the Zardecki action.7 In the 
right-hand side of the first field equation, Td vac represents 
the contribution of the "() field" to the energy momentum of 
the vacuum. In fact 

Td
vac = - (1/161Tl/)Eabcd ()a/\()b/\()c, (5.15) 

which yields an enormous (negative) energy density for the 
vacuum. However, zero-point energies of the normal modes 
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of matter fields can yield comparable vacuum energy densi
ties of the opposite sign (see for example Ref. 19), at least if 
general relativity is assumed to be valid upon the Planck 
scale. Therefore, it would be rather unnatural to obtain a 
small cosmological constant (see also Townsend, Ref. 7). 
The problem in particle physics is why all contributions to 
Td vac add up to cancel exactly resulting in a zero effective 
cosmological constant today. 19 The fact that in (5.13) the 
gravitational constant Ip 2 appears in a natural way as the 
consequence of the commutation relations of the anti-de Sit
ter group has already been emphasized by Townsend.7 Fin
ally, we see that in vacuum and for a zero effective cosmolo
gical constant, that is Td vac = 0, the field equations (5.13) 
and (5.14) reduce for zero torsion to Einstein's field equa
tions in vacuum. This is because the second equation yields 
in this case Yang's equation which is weaker than Einstein's 
equation in vacuum.20 

If the SO(2,3) gauge theory is broken spontaneously, 
i.e., there exists a scalar field \fI:M-+R~ :JH~ (/) such that 
the potential V(\fI) in a gauge invariant Lagrangian L "', as
sociated with \fI, assumes a minimum for (\fI,\fI) = - [2, 
that is for \fI(x)EH~ (I), then the mass term given to the () 
field and induced by the SO (2,3) covariant derivatives of \fI 
in L '" will give another contribution to the vacuum energy 
density. 

VI. DISCUSSION 

In the derivation of the electroweak and gravitational 
gauge field Lagrangian in Secs. IV and V it has become clear 
that fiber bundle reduction and the closely related concept of 
(possibly spontaneous) symmetry breaking, described in 
Sec. II, are essential for both theories. Moreover, this geo
metrical framework makes it possible to describe both theo
ries with one type of Lagrangian, Eq. (3.6). Fields in both 
theories of the same geometrical origin are the Wand Z 
vector boson fields and the soldering form () for the tensorial 
component of the reduced connection, and the electromag
netic field A and Lorentz connection 6J for the connection 
part. Other geometrical concepts that correspond are the 
soldering of the anti-de Sitter bundle, which is essential in 
the interpretation of the SO(2,3) gauge theory as a gravita
tion theory, and the process of symmetry breaking in 
electroweak theory. In the electroweak theory the manifold 
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of vacuum states is the sphere Sea) in C2 while the vacuum 
state corresponds to the global section of E(M, Sea), U(2), 
p) determined by \fI(x) = (~). In the SO(2,3) gravitational 
gauge theory the role of the vacuum manifold is played by 
the anti-de Sitter space H~ (I) CR~ while the vacuum state 
corresponds to the global section of the anti-de Sitter bundle 
E(M, H~ (I), SO(2,3), p) determined by \fI(x) = So 
= (0,/), which section can be identified with the space-time 

M such that the anti-de Sitter bundle is "soldered." Then, in 
a spontaneously broken SO(2,3) gauge theory, four-dimen
sional space-time could be interpreted as the "vacuum ex
pectation value" of a physical Higgs field \fI:M-+Ri that 
breaks SO(2,3) symmetry down to the SOC 1,3) subsym
metry thereby creating what is called gravitational interac
tion. 
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Conformal mapping and vertex operators in the light-cone gauge 
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Using Fourier coefficients of Neumann functions for the tree scattering in the light-cone gauge, 
an open-string field operator 'IIP(X(x),{a _ m}) generating all "off-shell" vertex operators, 
which are reduced in the mass-shell case to already proposed general vertex operators, is 
introduced. 

I. INTRODUCTION AND PRELIMINARIES 

In the light-cone gauge, I Mandelstam2 has derived the 
formula for calculating tree scattering amplitudes 
A (1,2, ... ,M) among Mbosonic open-string (excited) states. 
The result can be rewritten in the following form: 3 

x (E lexp {..!.. f I 'N<,;,:~)a(::Yma(::~} 10), 
2 r.s = I m,n = 0 

(1.1 ) 

where 
24 

. - + - - ++"'p','.,j Pr Ps = - Pr Ps - Pr Ps ~ rl's' 
j= I 

and pi,. (j = 1-24) being the energy momentum of the rth 
string. In ( 1.1) and hereafter l:' denotes the sum without the 
term with m = n = 0, while dummy suffixj is to be summed 
over j = 1-24. Real parameters Xr (r = I-M) are those spe
cifying conformal mapping from upper complex Z plane into 
the striplike p plane: 

M 

p( =7" + ;0") = L a r In(xr - z), 
r= 1 

where a r =2pr+, so that 
M 

L a r =0. 
r= I 

Operators a<,;,)j (m = ± 1, ± 2, ... ) satisfy 

[a<';')j,a~s)k] = m/)m + n/)rs/)jk, 

while a6r)j=pi,.. 
Then, 10) and (01 are defined by 

a~r)jIO) = (Ola<':)~ = 0 (r= I-M, n = 1,2, ... ). 

( 1.2) 

(1.3 ) 

(1.4 ) 

( 1.5) 

Without loss of generality, external M bosonic open-string 
state (E I can be taken to be 

M 00 24 (_ ia(r)j)e(r,nJ) 
(EI = (01 II II II .n , (1.6) 

r=1 n=lj=1 ~ne(r,nJ)'e(r,nj)! 

e(r,nj)'s being non-negative integers specifying excited 
state and (mass)2 of rth string is given by 

00 24 

- P; = 2 L L n'e(r,nj) - 2. ( 1.7) 
n= I j= I 

Furthermore, N <';':~)'s in (1.1) are defined as coefficients in 
the following expansions; 

In(zr - xs) = In(xr - xs) 

+ ~ N(r,s)(E{;,)m (r....Ls), 
~ m,O r ( 1.8) 

m=1 

+ ~ N(r,r)(E{;,)m 
~ m,O , ( 1.9) 

m=1 

In(zr - zs) = In(xr - xs) 

+ I 'N<';':~)(E{;,)m(E{;,)n (r#s) 
m,n=O 

( 1.10) 

and 

In(zr - Zr) = In(E{;' - E;') 

+ I' N<';':~)(E{;,)m(E;,)n, (1.11) 
m,n=O 

E{;'=l' II Ix, _xrl- a/ a,. ( 1.12) 
I( #r) 

In (1.8 )-( 1.11 ), Zr (zr) represents Z in the neighborhood of 
Xr and mapping from Zr (zr) into ;r (tr) is given by 

ar;r(=p+i'rr(al +a2 + ... +ar» 
= a l In(zr - XI) + ... + a r In(zr - x r ) 

+ a r+ 1 In(xr+ 1 - zr) + ... + aM In(xM - zr)' 

(1.13 ) 

In Sec. II and the Appendix, explicit formulas for 
N <';':~)'s in (1.1) are obtained by using Lagrange's theorem. 
In Sec. III, we derive an open-string field operator 
'l'P(X(x), {a _ m}) generating "off-shell" vertex operators 
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where Zr =Xr + y. for arbitrary excited states. We also find how to obtain scat
tering amplitudes ( 1.1) by using 'IIP(X(x), {a _ m})' In Sec. 
IV, we discuss our results and suggest that our expression for 
'IIP(X(x),{a _ m}) would be valid beyond the tree approxi
mation. We also speculate on possibility of formulating bo
sonic string field theory in the complex z plane. 

Then, an arbitrary functionf(y) can be expanded as 
00 ern + I);, 

fey) =f(O) + L Cn (n + 1), (2.2) 

II. EXPLICIT FORMULAS FOR N:;;,S; 
The purpose of this section is to obtain explicit formulas 

for N ~:~), with the help of which vertex operators for excited 
states will be explicitly constructed in Sec. III. 

It has already been pointed out that N ~:~) in ( 1.1) can 
be calculated4 by using Lagrange's theorem in the following 
specialform: (1.13) gives 

11=0 n + 1 
where coefficients C's are given by 

00 

L Cj(n)yi=f'(y)$n(y) 
j=1 

-f'( } II I 1- II(ala,) - y XI -Xr 
I( #r) 

( 

00 1 J+(m;xr ) ) 
X exp n L _ + ym , 

m 1 m Pr 
(2.3 ) 

with 

J+(m;xr )= L 
s(#r) (xs -xr)m 

(2.4 ) 

r-I 

y i' II (xr - XI + y) -ala, 

In the special casef(y) = In(xr - x. + y), we have 

1=1 

M 
f'(y) 

00 / 

- " (2.5) £.. ( )1+ 1 • 
X II (Xu Xr - y) - aula, 

1=0 Xs -Xr 

u=r+1 

(2.1) 

I 

Therefore, (2.2), (2.3), and (2.5) lead to the following ex
plicit formulas for N~:~) (r;6s): 

In(xr - Xs + y) 

=In(xr -xs) + i N~:~) (E;,)m. 
m 1 

Furthermore, we can see from (1.8), (1.9), and (1.13) that N ~:~) can be calculated by 

N(r,r) = __ 1_ " p+ N(r.s) 
m,O + "'-' s m.O' 

Pr s(#r) 

so that we have 

oc M 
" "N (r,s),,; a(r)j 
~ ~ m.O}'s-m 

m=1 s=1 

( 
1 J+(l'x) 1 J+(2'x) (J+(1'X»)2) 

+ --Ji(2'x )-Jj(l'x) 'r +_p',. " p',. 'r a(r)j 
2 'r " + 2 r + +r + 2 

Pr Pr Pr 

(2.6) 

(2.7) 

( 
1 [+(l'x) 1 J+(2'x} 3 (J+(l'X »)2 

--Jj(3'x) -Jj(2'x ) 'r --Jj(I'x) 'r --Jj(I'x) , r + 3 'r 'r + 2 'r + 2 'r + 
Pr Pr P, 

1 . J+(3;Xr) 3· J+(2;x,} J+(1;xr ) 3 .(J+(1;X,})3) (). 
+3'p',. + +'2p',. + --+--+'2p',. + a~) + ... 

Pr Pr Pr Pr 

~ N (r)ja(r)j 
£.. m -m' (2.8) 

m=1 
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where 

(2.9) 

On the other hand, N<';':~) (m,n = 1,2, ... ) can be ob
tained from N<';':~) [given explicitly by (2.6)] in the follow
ingway. First, (2.13) gives4 

( as ~ + a r ~)ln(Zr - zs) 
a;r a;s 

M a a 
= I at -In(zr - x t ) -In(zs - x t ), (2.10) 

t= I a;r a;r 

which together with (1.3), (1.10), (1.11), and (2.7) leads 
to 

N(r,s) = mn ~ a (N(r,t) _ N(r,s) 
m,n £,. t m,O m,O 

mas + nar t(#r,s) 

X(N(S,t)_N(s,r) (forr...J. s ) (2.11) 
n,O 1'1,0 r 

and 

N(r,r) = ~ ( ~ Pt+ N(r,t)N(r,t) + N(r,r)N(r,r)). 
~n ~ + m~ ~ m~ ~ 

m + n t(#r) Pr 

(2.12) 

Formulas (2.12) and (2.6) give 

N(r,r) _ ~ 1 + (2;xr) ~ (1 + (1;Xr»)2 
1,1 - 2 + + 2 + ' 

Pr Pr 
(2.13 ) 

-() 11+(3;xr) 1+(2;xr ) 1+(1;xr ) N r,r - + _______ _ 
2,1 --3 + + + 

Pr Pr Pr 

~ (1 + (1;Xr»)3 
+ 3 + ' Pr 

(2.14 ) 

-() 11+(4;xr) 1+(3;xr ) 1+(1;xr ) N r,r - + ___ _ 
3,1 - 4" P + P + Pr+ 

r r 

+ ~ (1 + (2;Xr»)2 + ~ 1 + (2;xr) 

8 Pr+ 4 Pr+ 

X 'r + _ ,r, (2.15) 
(

1+(1'X »)2 9 (1+(1'X »)4 
P: 8 P: 

and 

+ ~ (1 + (2;Xr»)2 
4 P: 
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(
1 + (1;Xr»)4 

+ + ' 
Pr 

(2.16) 

etc. 
As for N<';':~) (r#s, m,n = 1,2, ... ), we derive a formula 

(AS) in the Appendix, with the help of which we can easily 
obtain (A6)-(A9). The formula (AS) together with the 
observation that any N <,;,:~) (or N <';')j) can be expressed as a 
polynomial of (xr - xs) -p [or 1j(p;xr )] and 1 + (p;xr(S) 
(p = 1-m) is the new contribution of this paper. 

III. VERTEX OPERATORS 

In the covariant string theory, we have free fields 
XIl(Xr ), two point function of which is given by5 

(3.1) 

Then, we have the following operator product expansions: 

- ( I P': ). II eip
,1(x,). 

s(#r) (Xs -xr)m s(#r) 

_ i :(~)m XIl(Xr ) II eiP,1(X,):, (3.2) 
(m - I)! aXr s(#r) 

where: : represents normal ordering. 
Suggested by (3.2) we introduce an open-string field 

operator 

'l'P(X(X) ;{a _ m}) 

-, ip"X"(x) (~Yj a" =.e exp ~ m-m 
m=1 

1 ~ ") +- ~ Ymna'_ma'_n :, 
2 m,n=1 

(3.3 ) 

where we construct yjm and Ymn as polynomials of X(x) by 
making the following replacements in N <';')j and N <,;,:~), re
spectively; 

P':-pIl, (3.4) 

-i 11l (m'x ) _ . amXIl(x). (3.5) 
'r (m - I)! 

For example, we find from (2.8) and (2.13)-(2.16) 
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(
i a3x+ a 2x+ ax+ 2 .(aX+)3) .' . j + ---+--------1 -- (la-'...I)(la_ 2 ) + .... 
6 p+ p+ p+ 3 p+ 

Substituting (3.6) into (3.3), we find 

qJP(X(x);{a_ m }) = :eipX(X): + (aXj _ p a;++ )eiPX(X):(iai_l) + ~ :[ (aXj _ p a;++ )(axk _ pk a;++) 

+ [jik(..!...- a 2X + +..!.. (ax + )2)]eiPX(X):Uai _ I) (iak I) 
2 p+ 2 p+ 

+ 1 :(a2Xj _ 2i aXj ax + _ P a 2
x + + 2iP(ax + )2)eiPX(X):Uai _ 2) 

2 p+ p+ p+ 

+ ! :{(aXj_pa;++)(aXk_pka;++)(axl_ia;++) 

+ [(aXj _ p ax + )bkl (..!...- a
2
x + +..!.. (ax + )2) 

p+ 2 p+ 2 p+ 

+ (other two terms obtained by cyclic permutations among U,k,!) ]}eiPX(X): 

X (iai _ I ) Cia':. I ) Cial 
I) 

+ 1 : [(aXj _ p ax + )(a2xk _ 2iaXj ax + _ P a 2
x + + 2iP(ax + )2) 

2 p+ p+ p+ p+ 

1::ik( i a
3
x + + 2 a2x + ax + 4 .(ax + )3)] ipX(x) ( . ....j )(. k ) +v ---- -------1 -- e : lu-_I la_ 2 3 p+ p+ p+ 3 p+ 

+..!..:(..!..a3Xj_3ia2Xjax+ _ 3 iaXja2x+ J... aXj (ax +)2 _..!..pa
3
x+ 

3 2 p+ 2 p+ 2 p+ 2 p+ 

+ J... ip a
2
x + ax + + J...p(ax + )3)eiPX(X):Uai_ 3) + '" 

2 p+ p+ 2 p+ 

( 
(iai )e(nj ») =2: n ~n Vfe(nJ)} (X), 

nJ ~ne(nJ)'e(nJ)! 

(3.6) 

(3.7) 

(3.8) 

where the sum in (3.8) is taken over all non-negative e(nJ). Also, Vfe(nJ)} (x) defined by (3.8) are found to be vertex 
operators, since (3.1 )-(3.8) and (AS) lead to the following identity valid even in off-mass-shell case: 

(3.9) 

The right-hand side of (3.9) means that tree scattering amplitudes given by Mandelstam in the light-cone gauge have 
noncovariant features only in the polarization tensors for external excited string states. Moreover, (3.7) and (3.8) show that 
an open-string field operator qJP(X(x),{a_ m }) (3.3) with (3.6) generates an "off-shell" vertex operator Vfe(n.j)} having 
conformal weight 

p2 "" 24 

2" + n~1 j~1 n-e(nJ) 

[ which is equal to one only under physical condition (1.7) ], since we find the following operator product expansion: 

1 
: - 2"azXP-(z)azXp- (z):qJP(X(x);{a _ m}) 

(p2/2)qJP(X(x);{a - m}) + [N,qJP(X(x);{a - m})] + _1_ ax qJP(X(x);{a _ m}) + "', (3.10) 
(Z-X)2 z-x 
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where N is the number operator 
00 

N= I li_ nd,,· (3.11) 
n=1 

On the other hand, "on-shell" vertex operators have al
ready been proposed, in the following simple way:6 

iPo X"(x) :A " :A k :e" :. m(x)' n(x):"', (3.12) 

where 

Ajm(X)=J dZ.azXj(z)eimk"X"(X) 
h21Tl 

(3.13 ) 

with the restrictions 

Po2=2, k'Po = -1, k 2=0. (3.14) 

Applying operator product expansion to (3.12), we can ex
plicitly convert (3.12) into the form that has only one over
all normal ordering. Thus obtained results are found to be 
proportional to those vertex operators [multiplied by 
li _ m a k

_ n'" in (3.7)], when we set 

P = Po + (m + n + "')k 

in the special frame 

k + = k j = 0, k - = l/po+ . (3.15) 

Finally, we can explicitly calculate (3.9) for M = 2,3; 
for M = 2, we find from (1.10) and (3.9) 

(3.16) 

so that (3.8) gives 

(01 Vte(2.mj)} (x2 ) V {~l;.n.k)} (XI) 10) 
(-1)N2Ix2 _xl l-l"-2N2+2 

(x2 -XI )2 

00 24 

X II II {)e(2.mj).e( I.mj)' 
m= Ij=1 

(3.17) 

where, and hereafter, NT is an eigenvalue of (3.11) for the rth 
string: 

00 24 

NT = I I m·e(r,mJ). (3.18) 
m=lj=1 

On the other hand, (1.13), (1.18), and ( 1. 9) for M = 3 
give 

~ NO .• ),.; = (a ,.; _ a ,.;) _1_ (No.2) _ NO.3» 
£.J m.O 1'. 11'2 21'1 m.O m.O' 

.=1 a l 

. . -I 
= (a l l"7. - a 2fJ'J)N m' (3.19) 

(3.20) 

It is easy to see that (3.19) and (3.20) are valid even if we 
make cyclic permutations 1-+ 2 -+ 3 -+ 1. Therefore, (2.11) 
and (2.12) give 

- () -mnal a 2a 3 - -
N ":-:~ = N'",N~. 

mas + naT 
(3.21) 

In conclusion, we find 

IXI -x2 lhPz lx2 -x3Ip2'P3Ix3 _xI I
P
3'Pt(E lexp( ~ I I' N~:~)a<..':)~a<:>~)lo) 

T,S m,n 

= (_1)Nt +N2+N3 I (XI -X2 )(XI -x3 ) I-P~/2+Nt-1 

I (XI - X2 )(X2 - X3 )(X3 - XI ) I X2 - X3 

X I (X2 -X3 )(X2 -XI) 1-~/2+N2-1 I (X3 -XI )(X3 -x2 ) 1-~/2+N3-1 
X3 -XI XI -X2 

X (E I exp( ~ T.t I m.t I N~na<..':)~a<:>~ + (al~ - a 21t) Ttl N'",a<..':)~ ) 10), (3.22) 

where N'", is defined by (3.20) and 

(3.23) 

IV. CONCLUSIONS AND DISCUSSIONS 

The results we have obtained in this paper are summa
rized and interpreted as follows: Scattering amplitudes 
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A(1,2, ... ,M) among Mbosonic open-string (excited) states 
are expressed by 

A (1,2, ... ,M) 

=gM-2G(XM _ I -XI) (XM _ I -XI) (XM-XM _ I ) 
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with 

(4.2) 

where Vte(nJl} (x) are vertex operators for excited states. It 
is quite remarkable that (4.2) are shown to have simple 
structures 

= :eiP"x!'(X) exp( f Y~(x)ai_m 
m 1 

1 - .. ) + - L Ymn(x)a"'--ma"'--n :. 
2 m,n~ 1 

(4.3 ) 

[Incidentally, expression (4.3) is possible only in the off
shellcase.) Some explicit forms for Y~ and Y~n are given in 
(3.6), so that vertex operators can be calculated as (3.7). 

Although we have obtained (3.6) and (3.7) in the tree 
approximation, we believe that they are valid exactly (Le., 
beyond tree approximation), since operator product expan
sions (3.10) can be derived under the assumption that 

(4.4) 

hold in short range x, -x •. In (4.4), "vac" is supposed to be 
something like true vacuum. (In perturbation, "vac" would 
be expanded in loop numbers.) 

At present, heterotic superstring7 is a viable candidate 
for unified theory. However, since our physical space-time is 
four dimensional, spontaneous compactification of extra di
mensions must be shown by using the nonperturbative string 
field theory. Before investigating this physically important 
problem, we speculate on bosonic string field theory formu
lated in z plane [i.e., not in ("T,O') plane]. Although such a 
theory has not yet been constructed, open-string scattering 
amplitudes A (1,2, ... ,M) are calculated by (4.1) using open 

I 

string field operators \IIP(X(x),{a_ m }). [Together with 
closed string field operators q,p(X(z),XCz),{a _ rn' 

a _ m})], t/I'(X(x) ;{a _ m}) are second quantized string 
field operators obeying interacting equations of motions de
rived from certain action principles. Furthermore, these 
equations should be such that they give a kinematical rela
tion (4.3). Then XP(x) in (4.3) would be found to satisfy 
some dynamical equations of motion, with the help of which 
Green's functions like ( 4.4) would be calculated nonpertur
batively. We propose that these programs would be worthy 
of being carried out. 

APPENDIX: CALCULATION OF N:;;,"J IN (1.1) 

In much the same way as we have derived (2.6) by using 
(2.2) and (2.3), we obtain (for r#s) 

In(z, - z.) = In(xr Xs - y.) 

+ f N<';':~) (Etr)m, (AI) 
m~1 

"'" -where N <';':~'s are those obtained from N <,;,:~) by the following 
replacements: 

------. (i = 1,2, ... ), 
(x. + y. - x r )' 

(A2) 

other factors J + (i;xr)lp r+ being unchanged. Furthermore, 
we find 

(xs xr + Ys); 
--- -- In(xs - Xr + Ys) 1 (a)i 
(i I)! aXr 

1 (a' )i( -(1-' -1)-' aX
r 

In(xs -xr ) 

+ n~1 N~~o')(Ets)n), (A3) 

where "primed derivatives" (a 'Iaxr}i are assumed to oper
ate only on factors V(xr xs>j in N~~o') and not on any 
factor J + (j;xs)lp/ (j = I-n). In conclusion, we have from 
(A1)-(A3) and (2.6) 

In(zr - zs) = In(xr - Xs - ys) + Etr (~) In(xs 
aXr 

xr + Ys) + (Etr)2 (1. (~)2 + J + (;Xr ) (~)) 
2 aXr Pr aXr 

(
1 (a')3 J+(1·x) (a')2 Xln(xs -Xr + Ys) + (Etr)3 __ + ; r -
6 aXr Pr aXr 

1 J+(2;xr) (a') 3 (J+(l;xr»2(a,)) + - - + - - In(x - x + Y ) + ... 
2 + a. 2 + a. s r s Pr 'Xr Pr 'X, 

=In(xr -Xs -Ys) + f (Etr)m (D~m»)1n(xs -Xr +Ys). (A4) 
m 1 

Therefore, we find N(r,s) _ 1 
1,1 - ( )2' Xr -Xs 

(A6) 

With the help of (AS), we can easily calculate N <,;,:~) : 
N(r,sl_ + 1 J+(1;xr) 

2,1 - 3 2 + 
(xs - Xr) (Xs - Xr) Pr 

(A7) 
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and 

N- (r,s)_ 
2,2 -

+ I J + (1;Xr ) J + (1;Xs) 

(Xr - Xs)2 Pr+ Ps+ 

_ J + (1;XS )) 

+ ' Ps 

I 2 J + (1;xr ) N(r,s) _ + _________ _ 
3,1 - ( 4 3 + 

Xs - Xr ) (Xs - Xr ) Pr 

+~ I J+(1;xr ) 

2 (xs - xr)2 p/ 

~ I (J+(1;xr ))2 
+ 2 + 2 (xs - x r ) Pr 

(A8) 

(A9) 
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etc. Although (A6)-(A9) can be obtained from (2.11) after 
extremely tedious calculations, the reason why (A5) is valid 
for obtained results is not clear in such calculations. 

I For reviews of string theory, see M. B. Green, J. H. Schwarz, and E. Wit-
ten, Superstring Theory Vol. 2 (Cambridge U. P., New York, 1987). 

2S. Mandelstam, Nucl. Phys. B 64,205 (1973). 
3N. Berkovits, Nucl. Phys. B 304,537 (1988). 
4J. L. Torres-Hermindez, Phys. Rev. D 11, 3565 (1975). 
5 For reviews on conformal field theory techniques in string theory, see, for 
example, D. Friedan, E. Martinec, and S. Shenker, Nucl. Phys. B 271,93 
(1986); M. E. Peskin, "Introduction to string and superstring theory II," 
SLAC-PUB-4251 (1987). 

6M. Ademollo, E. D. Giudice, P. Di Vecchia, and S. Fubini, Nuovo Ci
mento A 19, 181 (1974). For vertex operator in the superstring, see K. 
Homfeck, Nucl. Phys. B 293, 189 (1987). 

7 D. J. Gross, J. A. Harvey, E. Martinec, and R. Rohm, Phys. Rev. Lett. 54, 
502 (1985). 
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Completeness relations for Maass Laplacians and heat kernels on the super 
Poincare upper half-plane 

Kazuto Oshima 
Gunma College o/Technology, Maebashl; Gunma 371, Japan 

(Received 29 June 1989; accepted for publication 1 August 1990) 

Simple completeness relations are proposed for Maass Laplacians. With the help of these 
completeness relations, correct heat kernels of (super) Maass Laplacians are derived on the 
(super) Poincare upper half-plane. 

I. INTRODUCTION 

In the Polyakov string theory, 1.2 it is an important sub
ject to compute determinants of Laplace-like operators 
(Maass Laplacians) on Riemann surfaces. Determinants 
are obtained from heat kernels by the ;-function regulariza
tion method. 3 

The expressions for heat kernels of Maass Laplacians 
are given by Fay4 on the Poincare upper half-plane H. Heat 
kernels on Riemann surfaces are constructed by the Poin
care sum. In the recent paper by D'Hoker and Phong,5 it is 
reported that Fay has pointed out to them that the discrete 
series that occurs in his expression for the heat kernel is erro
neous and should be deleted. This remark is rather mislead
ing. One may think that the discrete spectrum of the Maass 
Laplacian4.6 does not contribute to the heat kernel. This is 
not true. The fact is that the error exists in the previous 
estimate with respect to the continuous spectrum. We dis
cuss a procedure to obtain the correct heat kernel of the 
Maass Laplacian on H. A very simple and useful complete
ness relation is proposed. 

It is also important in string theories to study Laplace
like operators on super Riemann surfaces. Aoki7 obtained 
heat kernels of super Maass Laplacians on the super Poin
care upper half-plane sH = {(z,B) 11m z> O}. He solved heat 
kernel equations by a subtle trick. He used plane waves as 
eigenfunctions of the Maass Laplacian. The discrete spec
trum was neglected, and there remains obscurity about the 
completeness of the eigenfunctions and about the short-time 
behavior of the heat kernel. The main purpose of the present 
paper is to make Aoki's argument more precise on the basis 
of the completeness relation mentioned above. 

In Sec. II we discuss the procedure to derive the heat 
kernel of the Maass Laplacian in the bosonic case. In Sec. III 
we investigate the supersymmetric case. Section IV is devot
ed to a summary. 

II. COMPLETENESS RELATIONS AND HEAT KERNELS 
ONH 

Our starting point is the following spectral decomposi
tion theorem:4 

g(r) = )' 21kl 2m-l h(lkl-m)P1kl m,k(chr) 
(,;;S 41T 

ds h(s) --------+ 
_1_ i sin 21TS 

81Ti Res 112 sin 1T(S + k)sin 1T(S - k) 

X (s - !)Ps•k (ch r), (2.1) 

or the completeness relationS 

-1- 8(chr-l) 
21T 

= )'m 21k I 2m - 1 
(,;;S 41T P1kl_m,k(chr) 

+ _1_ r ds sin 21TS 

81Ti JRes= 112 sin 1T(S + k)sin 1T(S - k) 

X (s - !)Ps•k (ch r), (2.2) 

where 

{m} = {mlmeZ,O<;m < Ik 1- !}, keZ or keZ +!, 

ps•k 
(u) = (_2_)SF(S _ k,s + k,l; u - 1), 

l+u u+l 
with F the hypergeometric function and r = r(zl ,Z2 ) is the 
hyperbolic distance between Zt and Z2 on H. Here, 

( 
Z - z~ ) - kpS.k (ch r(z,zo » 
Zo -z 

is the eigenfunction of the Maass Laplacian 

with the eigenvalue s(s - 1) (Re s =!, s = Ik 1m). 

(2.3 ) 

The heat kernel gt k (r) for the Maass Laplacian D k is 
defined by setting h(s) = ets(s- \) in (2.1). In Ref. 4 gtk (r) is 
calculated to be 

I ()_~2Ikl 2m-1e'<lkl-m)(lkl-m-1) g k r - -'--'-----
m 41T 

1
00 be-b2/4t (Ch (bf2») 

X db T2k , 
r ~chb-chr ch (rf2) 

(2.4) 

whereas the recent paper by D'Hoker and Phong5 says Fay 
pointed out to them that (2.4) is not correct and the correct 
expression for gt k ( r) is given by 
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1 /ie- 1/41
00 be b

2
/41 (Ch (b 12») 

g k (r) = db T2k , 
(41Tt) 3/2 r Jch b - ch r ch (rI2) 

(2.5) 

where T2k is the (2k)th Chebyshev polynomial. 
Equation (2.5) is different from (2.4) by the contribu

tion of the discrete spectrum. This situation is likely to cause 
the misunderstanding that the discrete spectrum does not 
contribute to the heat kernel. The fact is that the sum of the 
contribution from the discrete spectrum and that from the 
continuous spectrum gives (2.5). In order to decide on this 
point, we derive (2.5) from (2.1). 

Equation (2.4) was derived by misusing the formula 
[ (22) in Ref. 4] 

sin 21TS P (ch r) 
sin 1T(S - k)sin 1T(S + k) s,k 

4 100 

shes - !)b (Ch (b 12») = -- db T2k , 
1T r J2 ch b - 2 ch r ch (rI2) 

Ik I <Res< 1 -Ik I, (2.6) 

in the second term of (2.1). For nonzero k, the line Re s = ! 
lies out of the region (2.6) holds. To avoid this barrier we use 
the formula [(20) in Ref. 4] 

sin 21TS p (u) 
sin 1T(S - k) sin 1T(S + k) s.k 

where 

X (_2_)SF(S - k,s + k,2s;_2_) 
I+u l+u 

= __ I (_2 )s 
41T 1 + u 

x I r(s+k+n)r(s k+n) (~)n. 
n~O r(2s + n)n! 1 + u 

(2.8) 

For Re s> 1 k I, Qs,k (ch r) has the following integral repre
sentation [( 21) in Ref. 4] : 

Qs,dch r) 

1 (00 dbe(1/2-s)b (Ch (bI2») 
= - 21T J J2 ch b - 2 ch r T2k ch (rI2) , 

Res> Ik I· (2.9) 

We move the line of integration from Re s = 112 to 
Res>lkl (Res <1 -Iki) for Qs,k(QI-s,k)' Here, 
(s !)Qs,k has poles at s = Ik 1 - m (mEZ,O <,m < Ik I 

= - 4(Qs,k (u) - QI_ s,k (u», (2.7) - 112), and we find 

~ ( ds h(S)(S - ~)QS.k 
21TIJRes=l12 2 

= -- dsh(s) s 1 1 ( 
21Ti Re s> [k I 

= -- dsh(s) s 1 1 ( 
21Ti Res>lkl 

~ )Qs'k + k h( Ik 1- m)(lk I m - ~ )ReS(Qs,k )s~ Ikl- m 

~ )Qs'k - 4~ k h(lk 1- m)(lk 1- m - ~ )P1kl-m,k' (2.10) 

where 

Res(Qs,k (2.11 ) 

was used. Similarly we get 

2~i Les~ 112 ds h(s)(s - ~ )QI s,k 

= ~ ( ds h(S)(S ~)QI _ s,k 
21TI JReS<i Ikl 2 

__ 1 )' h(lkl-m)(lkl-m-~)plkl 
41T~ 2 

m,k' 

(2.12) 

Substituting (2.7), (2.11), and (2.12), into (2.1), we get 

g(r) = ~ (( ds h(S)(S - ~)Qs'k (ch r) 
21TI JRes>lkl 2 

- ( dSh(S)(S-~)QI_s'k(Chr»). 
JRes<I-lkl 2 

(2.13) 
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I 
The pole residues that occur in calculating the contribution 
of the continuous spectrum has canceled the contribution of 
the discrete spectrum. Paying attention to h(s) = h( 1 - s) 
and using (2.9), we get the final formula: 

g(r) = - ~ ( ds h(s) (s -~) Qs,k (ch r) 
1TI JRe» Ikl 2 

/i 1 100 e()/2 - sIb 
=- ds db h(s) 

4~i Res>lkl r Jchb-chr 

x (s ~) T (Ch (bI2»). 
2 2k ch (rI2) 

(2.14 ) 

Equation (2.2) can be read as 

1 
-8(ch r- 1) 
21T 

= -~ ( dS(S-~)Qs'k(Chr) 
1TIJRes>lkl 2 
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,J2 i Loo e( 112 - s)b 
= -- ds db --;::;::::;:::==:;::= 

4ri Res>lkl r ~chb-chr 

X(s _~) T (Ch (b/2»). 
2 2k ch (r/2) , 

(2.15 ) 

QS,k is regular for Re s> Ik I. If we set h(s) = e'S(S- I), the 
integration over s is a Gaussian. This Gaussian integral gives 
the correct expression of g'k (r) (2.5) irrespective of the val
ue Re s. On account of this independence of the value Re s, 
the same term appears in (2.4). 

Equations (2.14) and (2.15) are very simple and useful, 
and they are used in the next section. 

III. HEAT KERNELS ON sH 
A-

We study the heat kernel G'n (ZI ,Z2) on sH defined 
by7 

A. 1-0 

G'n (ZI ,Z2) -+ (ZIT / - 4 )8(xI - X 2 )8(YI - Y2 ) 

X(01-02)(01-02)' 

where Z = (z,O)ESH, 

an = ZI12azaz + ZIIOII (aJj _ + aSj + ) 

+ (2n + l)zIID_ D+ 

(3.1 ) 

(3.2) 

2 A A 2 
- nZ11 (az + az ) + 2n OIl (D _ + D + ) - n , 

(3.3 ) 

(3.4) 

D + = a(} + oaz' D = a lJ + oaz ; (3.5) 

an is the Laplacian on superfields of weight n on sH. Then, 
G'n (ZI ,Z2) can be expressed by invariant variables r, a, X 
as 

G'n (ZI,Z2) 

= (ZI'Z/Z21 Y(g'n (r) + iaXh In (r», 

where 

ch r(ZpZ2) = 1 - 2 (Z12ZT2/ZIIZ22 ), 

(3.6) 

(3.7) 

0IZ22 + 02 Z21 + ~Z12 + 0102 02 a= 1/2' (3.8) 
(Z12 Z22 Z21 ) 

and the complex conjugate one. The initial conditions (3.2) 
can be read as 

,_0 
g'n (r) -+ 0, (3.9) 

h' (r) 1-0 1 
_n_ -+ --8(chr-1). 

sh r 417" 
(3.10) 

[This initial condition of h 'n (r)/sh r is different from that 
of Ref. 7 by the factor of 1/2. It seems that the factor of 1/2 
was missed in Ref. 7 in changes of variables. ] 

Aoki deduced g'n (r) and h 'n (r) from g'n (ZI ,Z2) and 
P'n (ZI ,Z2) that are defined by 
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G'n (ZpZ 2) = g'n (ZI ,Z2) 

+ [010 1 /(ZI - ZI )]p tn (ZI ,Z2) 

+ terms involving O2 ,02 , 

Comparing (3.6) and (3.11), we see 

the body of g'n (r) 

A-

+ (2n+ 1)F'n (ZI,Z2) =0, 1>0, 

(2n + l)D _ ng'n (ZI ,Z2) 

(3.11) 

(3.13) 

(3.14) 

+ [at -(D_ n + (n+ 1)2)]F'n (ZI'Z2) =0, 1>0, 

(3.15 ) 

1-0 

g'n (ZI ,Z2) -+ 0, (3.16) 

( 3.17) 

whereD _ n is the Maass Laplacian in (2.3). Also,g'n (ZI ,Z2) 

should obey 

{[a, - (D_ n + (n + 1)2)] [a, - (D_ n + n2
)] 

- (2n + 1)2D_n} g 'n(ZI,z2) =0, 1>0, 

[a, - (D_ n + n2)]g'n(ZI,Z2) 
1_0 

-+ - (2n + 1 ){(ZI - Z2 )/ 

(Z2 - ZI Wy1
28(xI - X 2 )8(YI - Y2 ), 

and (3.16). 
We use the Laplace transform in t. For 

g,\ (ZI ,Z2) = 100 

dt e- Alg'n (ZI,z2)' 

(3.16), (3.18), and (3.19) yield 

{[A. - (D_ n + (n + 1)2)] [A. - (D_ n + n2
)] 

- (2n + 1)2D_ n}t\(ZI,z2) 

= - (2n + 1) «ZI - Z2 )/(Z2 - ZI ) )nY12 

X8(xI - X 2 )8(YI - Y2)' 

(3.18 ) 

(3.19) 

(3.20) 

(3.21 ) 

To solve (3.21), Aoki used the plane-wave expansion for 
k"n (ZI ,Z2) and the 8 functions. Only the Whittacker func
tions were used as eigenfunctions of D _ n' The Whittacker 
functions correspond to the continuous spectrum. The La-
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guerre polynomials that correspond to the discrete spec
trum6 were neglected. In this point, Aoki's argument is not 
perfect. We make Aoki's argument more precise. We expand 
gA n (ZI ,Z2) and the {j functions by 

_1_ { ds(et(s+ n)2 _ e'(s- n 

2'TTi JRes> Inl 

where u is the body part of the super hyperbolic distance rin 
(3.7). Using the expression of Qs. n (2.9), we find 

g'n (ZI ,zz) 

«ZI Z2 )/(z2 - ZI nn 
2~/2t 112 

Loo e b
2
/4' sh(n + ~)b 

db -;:;;:::;:::;::::::::;::::;=-
u ~2chb-2chu 

xT (Ch (bI2»). 
2k ch (uI2) 

Here, g'n (r) will be deduced as 

(3.23) 

1 100 e-
b2

/
4'sh(n+ l )b g' (r) = _ db l 

n 2~l2t 112 r ~2 ch b - 2 ch r 

X T (Ch (b 12») . 
2k ch (rI2) 

(3.24) 

The present result (3.24) just agrees with the result by Aoki 
(3.13) in Ref. 7. As we have seen in the bosonic case, it is 
possible to obtain the correct heat kernel by a rough treat
ment of the continuous spectrum and by neglect of the dis
crete spectrum. We see the same situation holds also for the 
present supersymmetric case. We have removed obscurity 
from the argument in Ref. 7 about obtainingg'n (r). 

Then, P'n (ZI>Z2) is obtained from (3.14) and (3.24) as 
A 

F'n (ZI ,Z2) 

1 i ( (s - !) (e'(s+ n)2 + e'(S 
-- ds 

'TTi Res> Inl 2 
(e,(s+n)2 _e'(S-n-1)2») 

+ 4 

3063 J. Math. Phys .• Vol. 31. No. 12. December 1990 

as in (2.14) and (2.15). After the inverse Laplace transform, 
we get 

(3.22) 

( - )n ZI -Z2 
X _ Qs. _ n (ch u). 

Z2 -ZI 
(3.25) 

A 

We see, from (2.15),£'n (ZI ,zz) satisfies condition (3.17) as 
t goes to O. This fact, together with (3.13), will warrant the 
initial condition (3.10) for h 'n (r). 

IV. SUMMARY 

We have discussed the procedure to obtain the correct 
heat kernel on H. To calculate the contritibution from the 
continuous spectrum, it is inevitable to move the line of inte
gration. The contribution from the discrete spectrum can
cels the pole residues that originate in moving the line of 
integration. The very simple and useful completeness rela
tion was given for the Maass Laplacian. 

We have obtained the heat kernel on sH, with the help of 
the completeness relation mentioned above. We made Ao
ki's argument about solving the heat kernel equation on sH 
more precise. We also confirmed explicitly that the heat ker
nel satisfies the initial condition. 

I A. M. Polyakov, Phys. Lett. B 103, 207, 211 (1981). 
2 0. Alvarez, Nucl. Phys. B 216, 125 (1983). 
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6 A. Comtet and P. G. Houston, J. Math. Phys. 26,185 (1985); A. Comtet, 
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7K. Aoki, Commun. Math. Phys. 117,405 (1988). 
8K. Oshima, Prog. Theor. Phys. 81. 286 (1989). 
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Test fields on compact space-times 
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In this paper, some basic aspects of (Lorentzian) field theory on compact Lorentz manifolds 
are studied. All compact space-times are acausal, i.e., possess closed timelike curves; this 
makes them a useful testbed in analyzing some new notions of causality that will be introduced 
for more general acausal space-times. In addition, studying compact space-times in their own 
right raises a wide range offascinating mathematical problems some of which will be explored. 
It will be shown that it is reasonable to expect Lorentzian field theory on a compact space-time 
to provide information on the topology of the underlying manifold; if this is true, then this 
information is likely to be "orthogonal" (or complementary) to the information obtained 
through the study of Euclidean field theory. 

I. INTRODUCTION 

As a fundamental physical theory, general relativity is 
well known for not imposing any constraints on the geome
try of space-time other than the Lorentzian-manifold struc
ture and the Einstein field equations. These constraints are 
mild: Every noncompact manifold admits a Lorentz metric, 
and unless one puts rather strong (energy) conditions on the 
form of the admissible stress-energy tensors, most any Lor
entz metric is allowed as a possible solution. In specific prob
lems, it may be appropriate to impose additional model-de
pendent constraints (such as symmetry or asymptotic 
conditions) on the geometry, and more generally, under a 
wide range of physical circumstances it is reasonable to as
sume the classical energy conditions. However, it is neither 
suggested nor warranted by the theory to discard any entire 
class of space-times as "unphysical," regardless of how 
strange and counterintuitive their properties may be. Atti
tudes that lead to such selective, ad hoc dismissals of space
time phenomena may be misleading and counterproductive; 
consider, for an example, the history of precisely these kind 
of attitudes that were held against singularities and horizons 
in the early decades of relativity. 

Currently, causality conditions are widely believed to be 
natural constraints to impose on realistic space-times; e.g., a 
physically admissible space-time is generally assumed to be 
free of closed causal curves. The standard arguments given 
to justify this view all seem to be based on the notion of free 
will (see, e.g., Ref. 1, p. 189). The mathematical embodi
ment of this viewpoint, at least in classical general relativity, 
is the much more general strong cosmic censorship hypothe
sis (CCH) (Penrose, 2 Clarke et aP ). The "mildest" acau
sal space-times are those that simply fail to be globally hy
perbolic, i.e., which violate only the strongest of all causality 
conditions. Such space-times need not possess any closed 
causal curves. The strong CCH asserts that space-times that 
develop from regular, well posed, generic initial data never 
violate global hyperbolicity, i.e., that the maximal Cauchy 
developments of such data are inextendible. This is equiva
lent to the assertion that all Cauchy horizons that develop 

a) Present address: The Enrico Fermi Institute, University of Chicago, Chi· 
cago, Illinois 60637. 

from arbitrary (but well posed and regular) initial data are 
unstable (nongeneric). Specific examples of such horizons 
are obtained when the development of the Cauchy data gives 
rise to closed causal curves, lying in a region to the future of 
the initial surface. The null boundary that separates this re
gion from the remaining, causal part of space-time is a 
Cauchy horizon, and the strong CCH predicts that this hori
zon will be unstable against small perturbations, thus pre
venting one from ever creating the closed causal curves that 
lie in its future. 

Recently, it has been discovered4 that it is, in fact,possi
ble to prepare regular, generic Cauchy data whose unique 
(stable) evolution produces closed timelike curves, pro
vided one is allowed to use (i) "exotic" matter fields that 
violate, among other features of classical, ordinary matter, 
the averaged weak energy condition,s.4 and (ii) an initial 
Cauchy surface with wormhole topology [e.g., with topol
ogy (R 3 with a handle) r;;;;t,R 3#(S2 XS 1) in the asymptoti
cally flat case, or (S 3 with a handle) r;;;;t,S 3 # (S 2 X S 1) in the 
compact case] . Indeed, with the example that is described in 
detail in Ref. 4, we explicitly construct a Cauchy horizon 
that almost certainly (the rigorous proof being not yet pub
lished) is stable, and which thus constitutes a counterexam
ple to the strong CCH as described above. In this construc
tion, exotic matter fields (that violate the averaged weak 
energy condition) playa crucial role, not only in maintain
ing a traversible wormhole over macroscopic timescales, but 
also in providing for the stability of the Cauchy horizon (see 
Ref. 4 for details) . 

The responsibility of ruling out closed causal curves in 
general relativity thus rests with quantum field theory 
(which might rule out the exotic stress-energy tensors of the 
kind needed for the above construction), and quantum grav
ity (which might prohibit the topology change that is neces
sary to create Cauchy surfaces with wormhole topology, 
when the spatial sections of space-time are initially simply 
connected). Given the nature of these two fields of research, 
it is reasonable to assume that the answers to the problems 
above are not going to be firmly in hand any time soon. 
Moreover, the strong-CCH argument can only rule out 
those closed causal curves which are "produced" when the 
space-time initially does not have them; it cannot rule out 
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those causal loops that may be "primordial," i.e., which may 
exist in the space-time eternally: Even if the strong CCH 
were to be proven "true" eventually by definitive results in 
quantum gravity or field theory, this would still leave the 
question open for space-times with primordial closed causal 
curves. 

These considerations have recently led the author and 
his collaborators (Friedman et al.6 

) to the conclusion that it 
is important to explore the alternative possibility, namely, 
that the laws of physics might not rule out closed causal 
curves. In the course of their investigations, the authors have 
arrived at a mathematically well-defined viewpoint that al
lows theoretical physics to continue consistently in the pres
ence of causal loops; this is embodied in the Principle of Self 
Consistency which we describe briefly in Sec. III A below. 
We will not expound this viewpoint any further here as it and 
its consequences are discussed in detail in a separate publica
tion.6 Instead, in this paper we will study some basic aspects 
of (Lorentzian) field theory on compact Lorentz manifolds, 
which we hope will provide useful insights into the physics 
and mathematics of more general acausal space-times. 

All compact Lorentz manifolds possess closed timelike 
curves (see Sec. II below), and compactness allows elegant 
mathematical formulations for many of the notions that we 
will introduce below for more general acausal space-times 
(Sec. III). In addition, we believe there are good mathemat
ical reasons to study compact space-times in their own right. 
It is well known that an astonishing amount of information 
on the topology and geometry of a compact (Riemannian) 
manifold can be obtained by studying Euclidean field theory 
on its background. Examples are the analysis of the Lapla
cian and other related elliptic operators on Riemannian 
manifolds (reviewed in Ref. 7), the more recent advances in 
four-dimensional topology achieved through the study of 
(Euclidean) Yang-Mills fields,8 and the recent application 
of Euclidean quantum-field-theory ideas to the analysis of 
the topology of (compact) low-dimensional manifolds. 9,10 

We will see that it is reasonable to expect Lorentzian field 
theory on a compact space-time to provide similar kinds of 
information on the topology of the underlying manifold; if 
so, it is likely that such information will be "orthogonal" (or 
complementary) to the information obtained through the 
study of Euclidean field theory. Furthermore, there are too 
many serious problems with the standard "Wick-rotation" 
argument to justify Euclidean field theory in general, in an 
arbitrary curved space-time (see Ref, 11 and the references 
therein). It is our view that ultimately all path integrals in 
field theory must be computable (after suitable regulariza
tion) in the Lorentzian regime, and studying Lorentzian 
field theory on compact spacetimes may offer fresh clues as 
to how such computations could be done. 

Our most general problem, then, is the study of (Lorent
zian ) Yang-Mills fields on compact space-times, possibly 
also coupled to (spinorial) fermions. In this generality, the 
problem raises issues whose resolution is likely to involve 
long and extensive investigations and a substantial research 
effort. As a prelude to such investigations, in this paper we 
will study simpler (linear) field theories involving differen
tial forms as test fields on a compact background space-time 
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(see Sec. V for details). These theories are simple mathemat
ical generalizations of Maxwell's theory. In fact, for zero
forms in two dimensions our theory reduces to that of a sca
lar field t/J satisfying Dt/J = 0, and for one-forms in four 
dimensions it is the standard Maxwell theory [Abelian 
Yang-Mills for a trivial U( 1 )-bundle over space-time]. We 
will start, in Sec. II, with a brief review on compact space
times. In Sec. III we introduce some new notions of causality 
(for acausal space-times) which will motivate most of the 
discussion that follows. These notions are in turn motivated 
by the Principle of Self-Consistency which is described brief
ly in Sec. III A. In Sec. IV, we illustrate our causality notions 
by studying two-dimensional compact space-times where 
our analyses become particularly simple. Section V describes 
the mathematical details of the general formalism with dif
ferential forms as test fields. In Sec. VI, we state some geo
metric criteria related to the causality notions of Sec. III, 
these criteria involve the geometry of null hypersurfaces and 
the spectrum of the d' Alembertian on-forms. Section VII 
contains a brief discussion on the problems of quantizing a 
classical field theory defined on a compact background 
space-time. 

The primary goal of this paper is to communicate to the 
mathematical-physics community (and to some extent also 
to topologists and geometers) the wide range of fascinating 
questions on compact space-times that still remain largely 
unexplored. Detailed formulation and/or proof of some of 
the results (notably in Sec. VI) will be omitted from the 
discussion that follows. These can be found, along with a 
number of conjectures on questions left unresolved in this 
paper, in Ref. 12. 

II. COMPACT SPACE-TIMES 

By a space-time we will always mean a real, connected, 
COO manifold M without boundary, with arbitrary dimen
sion n (>2), and with a smooth (C 00) metric g of Lorentz 
signature ( + , + , ... , + , - ). For any smooth manifold the 
existence of a Lorentz metric is equivalent to the existence of 
a global line field (a smooth one-dimensional distribution); 
see Markus. 13 Every noncompact manifold admits a global 
line field; in fact, every noncompact manifold admits a vec
tor field without zeros. (There always exists a vector field 
with isolated zeros; by noncompactness, it is possible to push 
the set of zeros to "infinity" using a sequence of diffeomor
phisms that locally approach identity around every point.) 
For a compact, orientable manifold M, the existence of a 
Lorentz metric and the following conditions are all equiva
lent: (i) There exists a global line field on M; (ii) X(M) = 0 
[X(M) denotes the Euler number of M]; (iii) M admits a 
nowhere-zero vector field (not necessarily timelike). To 
prove (i) ::::} (ii), consider the double covering M of M asso
ciated with the given line field. By construction, there always 
exists a nowhere-zero vector field on M; this implies 
X(M) = X(M) = 0 (see, e.g. Hirsch,14 Theorem 5.2.2, p. 
133). The Euler number of a compact (orientable) manifold 
M is equal to the Euler characteristic of its tangent bundle, 
and it is a standard result that every vector bundle over M 
with vanishing Euler characteristic admits a global (no
where-zero) section (Hirsch,14 Theorem 5.2.10, p. 137); 
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this proves (ii) ~ (iii). Finally, given a nowhere-zero vector 
A 

field X onM, letX~.X l[gR (X,x)] 112, and let 0) be the one-
form equivalent to X with respect to some Riemannian met
ric gR on M. Then gL ==gR - 20) ® 0) is a smooth metric of 
Lorentz signature; thus M admits a Lorentz metric when
ever (iii) holds. A space-time (M,g) is called time orientable 
if the bundle of timelike vectors over M is disconnected 
(with two components). Time orientability is equivalent to 
the existence of a nowhere-zero timelike vector field on M 
[thus (M,g) is time orientable when M is simply connect
ed]. If (M,g) is not time orientable, then its double covering 
(M,11"*g) (the same covering as that associated with the ti
melike line field on M, 11":M --M being the projection) is a 
connected, time-orientable space-time. Thus there is no real 
loss of generality in assuming that all space-times we consid
er are both oriented and time orientable, and we will make 
this assumption unless stated otherwise. 

Every odd-dimensional compact (orientable) manifold 
has zero Euler number, but for even-dimensional compact 
manifolds, X(M) = 0 is a nontrivial topological obstruction 
to the existence of Lorentz structures. Since we focus mostly 
on even-dimensional compact space-times in this paper (for 
reasons that are described in Sec. V below), we will now 
discuss this obstruction in a bit more detail. 

In two dimensions, X(M) = 0 completely fixes the to
pology of a compact space-time to be that of the two-torus 
(Sec.IV). For a compact four-manifold M, combining Poin
care duality l5 with X(M) = 0 gives bl = 1 + b2 /2;> 1, 
where bk (M) denote the Betti numbers of M. Hence, a com
pact, four-dimensional space-time (M,g) cannot be simply 
connected. I It follows that (M,g) has a noncompact, (uni
versal) simply connected covering space (M,g); this might 
lead one to the conclusion that (M,g) is a more "natural" 
model for the space-time than (M,g) itself (Ref. 1, p. 190). 
We will not subscribe to this viewpoint, but instead adopt the 
view that space-time topology is fixed a priori, analogously 
to fixing the equations that physical fields satisfy. From this 
point of view, the statement that space-time has the topology 
of M is equivalent to imposing certain periodicity constraints 
on all physical fields (including the metric) defined on the 
covering space M. 

In (even) dimensions higher than four, the obstruction 
X(M) = 0 becomes milder. In particular, there exist higher
even-dimensional simply connected compact space-times. A 
six-dimensional example is 8 3 X8 3

, equipped with the Lor
entz structure consisting of the canonical Lorentz metric on 
8 3 direct summed with the canonical Riemannian metric on 
8 3

• [By the canonical Lorentz metric on an odd sphere 
8 2n - I, we mean the following: With the imbedding 
8 2n - 1= {IZI 12 + ... + IZn 12 = l}c Cn==R 2n, consider 
the nowhere-zero vector field X on 8 2n - I associated with 
the one-parameter flow IP,:(ZI ' ... 'Zn )~(ei'zi , ... ,ei'zn). In the 
standard coordinates on R 2n, X is given by the vector field 

n a a L (-Yk-+Xk-) 
k=1 aXk ah 

tangent to 8 2n - I. Let 0) be the one-form equivalent to the 
(unit) vector field X with respect to the canonical Rieman-
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nian metric gR on 8 2n - I. Then the canonical Lorentz struc
tureon8 2n 

- I is defined bythemetricgL ==gR - 2w ®O).] In 
fact, in all even dimensions including four, any manifold M 
with X(M) #0 can be turned into a manifold with X = 0 
after connected summing with certain fixed, well-known 
manifolds. For example, in four dimensions, consider the 
compact orientable manifolds U4 ==Cp2 and D4 ==CP2#T4. 
We have X( U4 ) = 3 and X(D4) = 1, where more generally 
X( CP m) = m + 1, X( Tn) = 0, and we have used the well
knownfactx(MI#M2) =X(MI ) + X(M2) - 2 (Ref. IS). 
If M is a four-manifold with X(M) = - p(p;>O), then 
M#( U4#·· ·#U4 ) (where the connected sum in parenthesis 
has P terms) has zero Euler number; similarly, if 
X(M) = + q(q;>O), then the Euler number of 
M#(D4#·· ·#D4 ) (where the connected sum in parenthesis 
has q terms) vanishes. Therefore, X = 0 is not an essential 
restriction from the viewpoint of topological classification: 
Any information on the topology of four-manifolds M with 
X(M) = 0 directly translates into equally valuable informa
tion on the topology of all orientable compact four-mani
folds. In higher (2m) dimensions, it is possible to find simi
lar well-known manifolds U2m and D 2m with X( U2m ) = 3, 
X(D2m ) = 1, so that the above argument continues to apply. 
In particular, when m = 2k one can choose 
U4k == CP 2~( T4k# .. ·#T4k) and D4k == U4k#T4\ where the 
connected sum in parenthesis has (k - 1) terms. 

When combined with extra assumptions on the topol
ogy of M, X = 0 may become a powerful restriction. As an 
example, consider the assumption that 11"1 (M), the funda
mental group of M, is Abelian. 16 It is known17 that for the 
Betti numbers of a compact manifold with Abelian 11"1 (M) 
the inequality b l (b l - 1) <2b2 holds. If furthermore the 
constraint X(M} = 0 is imposed (which implies 
bl = 1 + b2 /2), then a four-manifold can only have the b2 

values 0, 2, 4, and 6. Therefore, a compact four-dimensional 
space-time with Abelian fundamental group can only have 
the homology types (1,0), (2,2), (3,4), or (4,6) for its Betti 
numbers (b l ,b2 ) (see Ref. 16 for details). For a six-dimen
sional compact space-time with Abelian 11"1 (M), the same 

argument yields the weaker estimate 2b l < 1 + ~ 1 + 8b2 on 
the first Betti number bl • 

All compact space-times are acausal; i.e., they contain 
closed causal (in fact timelike) curves. [By a "curve" we 
will always mean a C I curve. Note that our use of the term 
"acausal" for space-times with closed causal curves should 
not be confused with the notion of an acausal (or achronal) 
subset in space-time: A subset 8 is called acausal (achronal) 
if no two points of 8 can be joined by a causal (timelike) 
curve.] This is stated (but not quite proved) as Proposition 
6.4.2 in Ref. 1. For a proof, consider the covering of a com
pact space-time (M,g) by open sets of the form 
{I + (p) ,pEM}. Since Mis compact, this covering has a finite 
subcover{I + (PI ), ... ,I+(Pk}}. Thepointpi is contained in 
I + (PI!) for some 1</1 <k; the point PI! is contained in 
I + (P1

2
), and so on. Since the subcover is finite, eventually 

some point PI, must belong to I + (PI) where s<r. Then 
there is a past-directed timelike curve joining PI, to P I, (since 
s<r), and another one joining PI, to PI, [since PI,El + (PI)]; 
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this gives a closed timelike curve through PI (and PI ) in M. 
In general, the (open) subset of points or' (M,g) through 
which there are closed timelike curves (the "chronology
violating set" of M) can be written as the disjoint union of 
subsets of the form 1+ (p) nI - (p) (Ref. 1, Proposition 
6.4.1). For a compact space-time (M,g) the chronology vio
lating set mayor may not be equal to M; if there are closed 
timelike curves through every point and if in addition Mis 
simply connected, then (M,g) does not admit any global 
spacelike hypersurfaces. [A global spacelike hypersur/ace is 
a closed, imbedded, (n - 1) -dimensional spacelike subman
ifold without edge.] This is because such a hypersurface di
vides a simply connected (M,g) into two disconnected 
pieces (say M, and M 2 ), and a future-directed timelike 
curve can intersect the hypersurface only in the direction 
from M, to M2 and not from M2 to M,. For example, 
S 3 X S 3 does not admit a global spacelike hypersurface. 
Even when M is not simply connected, a compact space-time 
may not admit such hypersurfaces; an example in four di
mensions is S 3 X S ' with the canonical Lorentz metric on S 3 

and the Riemannian metric on S '. 
Another set of constraints under which a compact 

space-time does not admit global spacelike hypersurfaces is 
the strong energy condition coupled with the usual generi
city conditions on the curvature tensor. 1 For the proof see 
Newman. ls We will not impose these or any other restric
tions on the curvature tensor of the compact Lorentz mani
folds we consider: The energy conditions are irrelevant phy
sically in the context of acausal space-times (see Sec. I), and 
because compact space-times do not admit an initial-value 
interpretation, genericity conditions on curvature are not as 
plausible as in the case of the space-times developing from 
well-posed Cauchy data. For similar reasons, we will not 
impose any extra topological constraints on M either; e.g., 
we will not demand that a spin structure exists on (M,g). It 
is well known 19 that a noncom pact space-time admits a spin 
structure if and only if it is parallelizable. This result appears 
to be false in the compact case, and the necessary and suffi
cient conditions for a compact space-time to admit spin 
structures are not well understood (see Ref. 20 for a detailed 
discussion and references). 

One significant geometric assumption that we will im
pose on our compact space-times is that of geodesical com
pleteness. In contrast with the Riemannian case, a compact 
Lorentz space is not necessarily complete. Let r: [O,L) .... M 
be (a terminal segment of) an incomplete (timelike or space
like) geodesic in (M,g) , which is parametrized by the 
arclength: g(r.,r.) = ± 1, and which is inextendible be
yond the parameter value L. Since r is a geodesic, it is "local
ly flat" topologically, i.e., in every normal neighborhood of 
any point p on it the curve r looks like a straight line (a 
Minkowski-space geodesic). In particular, if gR is any Rie
mannian metric on M, and U and V are normal neighbor
hoods around per with respect to the metrics gR and g, re
spectively, then in both (respective) normal coordinate 
systems on un V r appears (nearly) straight. Since the 
curve r: [0, L) - Mis inextendible and M (being compact) 
is complete (as a metric space) in any Riemannian metric, 
this implies that r has infinite length (although it is not nec-
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essarily a geodesic) with respect to the metric gR' Therefore, 
r(s) (where s is the affine parameter) is essentially an "infi
nite" curve; it has finite length in the Lorentz metric g only 
because r. (s) asymptotes an (infinitely large) null vector 
ass-L (Fig.l). [Thisbehavioris similar to the incomplete
ness behaviors ofthe Tauh-NUT space-time2' and its two
dimensional analog, the "Misner space".22] To express this 
claim more precisely, pick a unit timelike vector field X on 
(M,g) [g(X,x) - 1], and let m=g(X,.). We claim that 
Ig(X,r. (s»1 is unboundedly large as s_L. For the proof, 
assume that 

Ig(X,r. )I<C, (1) 

for some constant C> 0. By the construction of the one-form 
m, gR =g + 2m ® m is a Riemannian metric on M. But Eq. 
(1) implies 

(2) 

and Eq. (2) is in contradiction with the fact that r: 
[O,L) - M has infinite length in the Riemannian metric gR . 
Exactly the same argument (with ± 1 replaced by 0) shows 
that an incomplete null geodesic must similarly have infinite 
Riemannian length and a blowing-up tangent vector. It fol
lows from these results that g can be turned into a complete 
Lorentz metric just by slightly "opening-up" its light cones. 
More precisely, ifjeC '" (M) with ttl ~ 1 is any suitable func
tion supported in a neighborhood of r, then the curve r has 
infinite length (and hence cannot be incomplete) with re
spect to the Lorentz metricg' =g ±f2m ® m (Fig. 1). Conse
quently, we have proved that for a compact (orientable) 
manifold M the set Lore (M) of all complete Lorentz metrics 
is dense as a subset in Lor(M), where Lor(M) denotes the 
space of all (time-orientable) Lorentz metrics on M topolo
gized with the (L 2_) norm obtained from any Riemannian 
structure. It is therefore reasonable (at least during the 
course of this preliminary investigation) to focus attention 
on complete compact space-times, and we will do so 
throughout most of the paper. 

Whether a compact space-time is geodesically complete 
under the assumption of flatness remains a challenging open 

FIG. 1.. Typical behavior ofan incomplete timelike geodesic r in a compact 
space-time M. The curve ris infinitely long with respect to any Riemannian 
metric on M, but it has finite Lorentz length since the tangent vector r. 
asymptotes a null direction. In particular, by slightly opening up the null 
cones of M r can be turned into a complete curve with infinite Lorentz 
length. 
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question. We conjecture that all flat compact space-times are 
complete; efforts to prove this conjecture are currently being 
investigated by the author. [A simple but intriguing example 
that is relevant to the issue of completeness is the two-dimen
sional Misner space.22 For a brief description of Misner 
space see also p. 1448 of Ref. 4. The Misner space-time is flat, 
noncompact (with topology S \ X R \), and geodesically in
complete; but all of its incomplete geodesics are totally fu
ture (or past) imprisoned in a fixed, compact subset.] Even 
with the assumption of completeness (which implies that the 
universal covering space is Minkowski), the classification of 
compact flat Lorentz spaces is a much more difficult prob
lem than in the Riemannian case as it involves finding all 
discrete subgroups of the (noncompact) Lorentz group. 
This problem has only recently been solved (up to finite 
coverings) in Fried23 and Goldman and Kamishima;24 we 
refer the reader to these sources for further information. 

III. CAUSALITY CONDITIONS FOR SPACE-TIMES WITH 
CLOSED CAUSAL CURVES 

A. The principle of self-consistency 

The only type of causality violation that is unacceptable 
in our view is the one embodied in the science-fiction concept 
of travelling back in time and killing one's grandmother be
fore one's mother was conceived ("changing the past"). We 
shall enforce this view in the form of a Principle of Self
Consistency, which states that the only solutions to the equa
tions of physics that can occur locally are those which are 
globally self-consistent. More precisely, the Principle of Self
Consistency (PSC) allows one to build a local solution to the 
field equations only if that local solution can be extended to 
be part of a (not necessarily unique) global solution that is 
well defined throughout the space-time. 

Here, we adopt the viewpoint that in any space-time, 
including those that are globally hyperbolic, all solutions to 
the test-field equations of physics must ultimately (i.e., in 
principle) be globally well defined and smooth. Singularities 
that occur at points which belong to the space-time manifold 
are never realistic; in principle they must be removable either 
by refining the model (as in the treatment of a point charge 
in electromagnetism) or by enlarging the equations that de
fine the test field (as in the treatment of shocks in hydrody
namics). [The only realistic singularities are those of general 
relativity, which may occur when the test-field equations are 
coupled with the Einstein equations. However, the occur
ence ofGR singularities automatically implies the exclusion 
(or excision) of any singular "points" from the global space
time manifold, as the Lorentzian manifold structure of 
space-time must always be preserved. Throughout any sin
gular space-time the metric and all other physical fields al
ways remain smooth and globally self-consistent.] 

It is only within the above viewpoint that we consider 
the PSC to be valid. Note also that the general formulation of 
the PSC conveniently leaves unspecified all relevant notions 
of smoothness such as "well defined," and "globally self
consistent." These notions will have to be made precise in 
accordance with the specific field theory that one chooses to 
study on the space-time. For our purposes in this paper, 
where we study simple linear theories for tensor fields, the 
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standard notion of Coo smoothness is sufficient, although 
occasionally we will find it convenient to consider tensor 
fields that are smooth only in the (L 2_ ) distribution-sense 
(Sec. V). It is conceivable that distribution solutions will 
playa much more important role in this context when non
linear field theories are treated. 

In a globally hyperbolic space-time, the PSC is automat
ically enforced by the well-posed nature of the Cauchy prob
lem (at least for those physical fields that satisfy hyperbolic 
equations). When space-time possesses closed causal curves, 
as a physical law the PSC by fiat forbids ~'changing the past," 
but in so doing it puts constraints on the allowed local solu
tions of the field equations; these, in turn, constrain the ini
tial data for the Cauchy problem if the space-time admits a 
global spacelike hypersurface. Our main motive in the re
mainder of this paper will be the analysis of such constraints 
in the context of compact space-times. 

B. Field-theoretical causality conditions 

Let M be an n-dimensional compact manifold with zero 
Euler number. We will denote the vector space of smooth q
forms on Mby Aq(M). We will equip Mwith a fixed Rie
mannian structure gR; then A q (M) naturally becomes a Hil
bert space upon completion with respect to the inner product 

(A,B)R= fM AI\*R B, 

where l<q<n - 2,A, BEAq(M) , and *R denotes the Hodge 
dual with respect to gR. If g is any Lorentz metric on M, then 
we will define the Hilbert-space structure on 
A ° (M) = C 00 (M) using the inner product 

<J,g)R= fMfl\*g= fMfg*l, 

wherej,gEAo(M), and * is the Hodge dual with respect tog. 
In Sec. V, we describe in detail the construction offield theo
ries on the space-time (M,g) that involve as fields the ele
ments of Aq(M), O<q<n - 2. The field equations for these 
theories are simply the wave equation DQA = 0, AEAq(M), 
where DQ is a second-order linear operator with hyperbolic 
symbol which is symmetric with respect to the Hilbert space 
structure (,) Ron Aq(M). Forq = 0, DQ reduces to the stan
dard d' Alembertian operator on functions. When the dimen
sion n of the space-time is even, the field theory of 
(n12 - 1) -forms is especially interesting since it is invariant 
under conformal rescalings of the metric g (see Sec. V for 
details). 

Let M be compact and even dimensional. Since (M,g) 
contains closed timelike curves, the PSC must constrain the 
solutions of the field equations that can be built locally in a 
given open neighborhood U in M. Those neighborhoods for 
which there are no constraints are special; we will call such 
neighborhoods causally regular since the presence of closed 
timelike curves cannot be detected by local observations 
confined in them. 

Definition: An open subset U of M is called causally 
regular, if U (the closure of U) has an open neighborhood 
U\ in M such that for every (n12 - 1) -form A in 
A n/2 - \ ( U\ ) satisfying DQA = 0 on U there exists a C 00 ex-
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tension A from U to M that satisfies the wave equation; i.e., if 
there exists an AEA nl2 - I (M) satisfying DQA = 0 on M and 
A lu =A lu on U. 

Since the space-time M is trivially a causally regular 
(cr) neighborhood in M, we must be slightly more careful in 
defining the notion of a causally regular point. 

Definition: A point pEM is called causally regular if ev
ery neighborhood around p contains a cr neighborhood of p. 

Using the local solvability of the Cauchy problem for 
the wave equation, it is easy to see that if V is a convex nor
mal neighborhood in M which is causally regular, then every 
open subset contained in V is a cr neighborhood. In particu
lar, any point pE Vis a cr point. It follows that every cr point p 
has a convex normal cr neighborhood around it. [If p is 
causally regular, then any convex normal neighborhood VI 
around p contains a cr neighborhood U of p. Let V be a 
convex normal neighborhood of p contained in U. Since U is 
contained in a normal neighborhood (VI)' solutions on V 
can be extended from V to U by the local well posedness of 
the Cauchy problem, and they can be extended from U to M 
by the causal regularity of the neighborhood U. Therefore, V 
is a convex normal cr neighborhood around p.] It also fol
lows that every cr point has an open neighborhood consist
ing of cr points; hence the subset of all cr points in M is open. 
We will denote this open subset of M by C; the subset C 
coincides with M in a globally hyperbolic space-time. 

Definition: A space-time (M,g) is called benign if 
C = M; (M,g) is called causally regular if C is nonempty. 

For an even-dimensional compact space-time the above 
notions are conformally invariant. If (M,g) is a compact 
space-time with arbitrary (not necessarily even) dimension 
n, then our definitions can be generalized in the following 
way: Define an open subset U of M to be causally q regular 
(cqr),forO<q<n - 2, ifU has a neighborhood UI inMsuch 
that for every AEA q( UI ) satisfying DQA = 0 on U there ex
ists an element A in Aq(M) which satisfies DQA = 0 on M 
and A I u = A I u on U. The remaining definitions naturally 
extend to cqr points, the open subset Cq , causally q-regular 
space-times, and q-benign space-times. 

Another natural generalization of our causality notions 
can be obtained by considering, instead of smooth solutions 
to the wave equation, (L 2_ ) distributions [in the appropriate 
Hilbert space Aq(M)] lying in the domain of the adjoint 
DQ* of DQ (see Sec. V). In this context, a distribution a 
satisfies the wave equation if the distribution DQ*a [de
fined by (DQ *a,¢) R == (a,DQ¢) R for any Coo test form 
t/JEA q(M)] is in L 2 and is identically zero. Two distributions 
a, P coincide in an open subset UCM if (a,¢) R = (P,¢) R 

for every smooth t/JEA q (M) whose support is contained in U. 
One obtains interesting variants of the field-theoretical 

causality conditions by introducing a sheaf~ over (M,g) 
defined as the sheaf of germs of C 00 local solutions to the 
wave equation. (See Chap. 5 of Ref. 25 for basic notions of 
sheaf theory .) Then one can define a point pEM to be causal
ly s-regular if passing through every point of 1T - I (p) there is 
a global section of ~, where 1T: ~ --+ M is the projection. The 
space-time (M,g) is s-benign if there is a global section 
through every point of~. Although these definitions are not 
mathematically equivalent to the previous, field-theoretical 
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ones (e.g., benign implies s-benign but not conversely), phy
sically they capture the same notions of causality. Whether 
the sheaf-theoretical viewpoint can bring any significant in
sights into Lorentzian field theory on compact space-times 
remains to be seen; we will not pursue this viewpoint any 
further in this paper. 

IV. CASE STUDY OF LORENTZ METRICS ON THE TWO
TORUS 

For compact, two-dimensional orientable manifolds the 
Euler number is a complete topological invariant; i.e., all two 
manifolds are classified up to diffeomorphism by X(M). It 
follows that for any compact two-dimensional space-time 
(M,g) M is diffeomorphic to the two torus T 2. In fact, in two 
dimensions any metric is locally conformally flat; it is then 
easy to prove that almost every (in the sense of Lebesgue 
measure) compact, two-dimensional, complete space-time is 
globally conformal to a flat Lorentzian two-torus. In the fol
lowing few paragraphs we will first discuss some basic prop
erties of flat Lorentz tori (with arbitrary dimensions), and 
later we will explore the causal behavior of two-dimensional 
compact space-times by studying scalar (q = 0) field theory 
on 2-D toroidal backgrounds. 

By a flat Lorentz torus we mean a complete, flat Lorentz 
metric on Tn. The universal covering space of a flat Lorentz 
torus is (R n,'lj), the n-dimensional Minkowski space-time. 
It follows that any such torus can be obtained as a quotient 
(R n,'lj)IN, where Nis an n-dimensional lattice in (R n,'lj); 
i.e., a discrete subgroup (consisting of translations) of the 
group of motions, 

N={glg:XJ---+x+mlal + ... +mnan, miEZ}, (3) 

where {at , ... ,an}C (R n,'lj) is a basis. Each ofthe vectors ak 

may be timelike, null, or spacelike independently of the oth
ers; thus there exist many qualitatively different flat Lorentz 
tori in any dimension n. We will denote (R n,'lj) IN, whereN 
is given by Eq. (3), by the symbol T(a\ ..... a.l . 

The isometry group of T(a\ ..... a.l consists of the transla
tions 

(4) 

and boosts BEO(n - 1,1;R) ==L(n;R), which must satisfy 

(5) 

where L{a\ ..... a.} CR n denotes the lattice generated by inte
grallinear combinations of al , ... ,an • For n>3, the conformal 
group of T(a\ ..... a.l is equal to the isometry group given by 
Eqs. (4 )-(5). A two-dimensional flattorus T(a\.a2l has noni
sometric conformal transformations ifit admits nonconstant 
solutions to the wave equation; otherwise the isometry group 
and the conformal group of T(a\.a2 l coincide. 

How many distinct flat tori are there? It is easy to see 
that two flat Lorentz tori T(a\ ..... a.l and T(b\ ..... b.l are globally 
isometric if and only if 

L{Ba\ ..... Ba.} = L{b\ ..... b.} ' (6) 

for some boost BEL(n;R). The tori T(a\ ..... a.l and T(b\ ..... b.l 
are globally conformal to each other if and only if 

(7) 

Ulvi Yurtsever 3069 



                                                                                                                                    

for some BeL(n;R) and A> O. For n>3, any conformal dif
feomorphism between T(al •...• an) and T(bl •...• bn) is in fact a ho
mothety. In two dimensions, there exist nonhomothetic con
formal diffeomorphisms between globally conformal flat 
tori iff the tori admit nonconstant solutions to the wave 
equation. For a fixed compact manifold M with zero Euler 
number, we will define the conformal (Lorentzian) moduli 
space of Mas the space Mod(M) ==Lorc(M)/ -, where the 
equivalence relation (M,g) - (M,g') holds iff there exists a 
diffeomorphism "':M ..... M which is conformal with respect to 
the Lorentz metrics g and g'; that is, iff there exists a '" satis
fying ",*g' = n2g for some positive nEe 00 (M). We will dis
cuss the space Mod ( T2) in a little more detail shortly; it will 
tum out to be plausible to conjecture that Mod( T2) has the 
structure of a finite-dimensional manifold except for singu
larities that form a subset of measure zero. For higher-di
mensional manifolds, Mod(M) is in general an infinite-di
mensional space. 

The spectrum of the wave operator DQ on q-forms is 
easy to compute on a general flat torus T(al •...• a

n
). On the 

manifold Tn, we will fix an arbitrary.flat Riemannian metric 
gR' We let {WI , ... ,W.} [where s = C(n;q)] be any orthonor
mal basis (with respect to gR) jn Aq(TpM) consisting of 
eigenvectors of the op~ator Q~q):Aq(TpM) ..... Aq(TpM) 

[with eigenvalues uq (j):Q ~q)Wj = uq (j)wj ] at s~me point p 
inM= Tn. [ForthedefinitionoftheoperatorsQ~q), Q(q)p, 

and Q (q) see Sec. V. All three operators reduce to identity for 
q = 0.] We will denote the q-forms on Tnwhichequalwj atp 
and which are parallel (constant) with respect to gR (or 
equivalently with respect to g) by the same symbols wj • Since 
the metrics gR and g are both flat, the q-forms Wj satisfy 
Q (q)Wj = cUq (j)wj throughout space-time, where c> 0 is a 
constant. Let {dp ... ,dn}C (R n,1]) be the basis dual to 
{a l , ... ,an }:1](d;,aj ) = t>ij' Then the (orthogonal) set of ei
gen-q-forms ofDQ on T(al ..... an) can be written in the form 

{tP\mk}(x)==wj exp[21Ti1](m l d l + ... +mndn,x)], 

(8) 

where the coordinates x== (XI , ... ,xn) belong to the standard 
global chart on (R n,1]), and the q-forms </J{mk} (x) are obvi
ously well defined on the quotient T(al ..... an) == (R n,1])/N 
[see Eq. (3) ]. The complex exponential is a convenient way 
of grouping together the two linearly independent real eigen
forms m [</J{mk} (x)] and 0 [</J{mk} (x) ]. According to Eq. 
(8), 

s= { - 4rcuq (l) ;jtl m;mj 1](d;.dj ), mkEZ,I<I<s}, 

(9) 

where S denotes the spectrum of DQ acting on 
A q [ T(al ..... an) ] • 

We now return to discussing the causal properties of 
(generic) two-dimensional compact space-times. Since al
most every two-dimensional (complete) (M,g) is globally 
conformal to some T(al.a2)' it follows that (i) there are closed 
timelike curves through every point of M, and (ii) (M,g) 
admits global spacelike hypersurfaces through every point. 
In fact, in two dimensions the (q = 0) field theory of zero-
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forms is conformally invariant. Consequently, in order to 
understand the field-theoretical causality conditions of Sec. 
III for generic two-dimensional compact space-times, it is 
sufficient to analyze these conditions on flat Lorentz two
tori. We will carry out this analysis in the following remain
ing paragraphs of this section. 

Consider a real scalar field tP satisfying DtP = 0 ( 0 == DQ 
for q = 0) on a flat toroidal background T(al.a2)' Initially, we 
will restrict our attention to those flat two-tori for which a l 

is spacelike and a2 is a timelike vector orthogonal to a I • 

Every such torus is globally conformal to a 
T(I.r) == T[(I,Q).(o.r) J' where r> 0 is a real number. Any so'u
tion of DtP = 0 on T( I.r) naturally lifts to a solution of the 
wave equation on the covering space (R 2,1]); that lifting 
(which we will denote by the same symbol tP) is one-periodic 
in the x coordinate and r-periodic in the t coordinate. 
Through every point of (R 2,1]) there is a spacelike hypersur
face of the form {t = cons!}; these define global spacelike 
hypersurfaces through every point of the quotient T( I.r) • Let 
us fix (without any loss of generality) one such hypersurface 
{t = O}, and consider the initial data {tPo (x),(Po (x)} that a 
solution of DtP = 0 0!l T(I.r) induces on {t = O}. By con
struction, tPo (x) and tPo (x) are both periodic in x with peri
od 1. In addition, the solution tP(x,t) on (R 2,1]) that devel
ops from the data {tPo (x),(Po (x)}, 

I 
tP(x,t) = '2 [tPo (x - t) + tPo (x + t)] 

+ - (Po (s)ds, 
I lX+I 
2 x-I 

( 10) 

must be r periodic in t to pass to the quotient T( I.r) • It .is then 
easy to see from Eq. (10) that the initial data {tPo,tPo} in
duced from any solution of DtP = 0 in T( I.r) are constrained 
in the following way: 

tPo (x + 1) - tPo (x) = (Po (x + I) - (Po (x) 

= tPo (x + r) - tPo (x) 

= (Po (x + r) - (Po (x) = 0, (11) 

f (Po (s)ds = O. (12) 
J{I~ o} 

The first set of constraints [Eqs. (11)] express the doubly 
periodic structure of tPo and (Po (with periods 1 and r), and 
the second [Eq. (12)] is an integral constraint on the data 
(Po' 

Consider first a two-torus T( I.r) with r = p; P being an 
integer. In this case, the only constraint on the initial data for 
tP is Eq. (12), since the periodicity constraints [Eqs. (11)] 
are automatically satisfied on the torus T( I.p)' Consequently, 
every torus T( I.p) is benign: For any point mET( I.p) , all suffi
ciently small convex normal neighborhoods Varound mare 
cr neighborhoods, because the initial data induced by a local 
solution in Von a {t = const} surface through m can always 
be extended (in many different ways) so as to satisfy the 
integral constraint Eq. (12). 

Consider now a T(I.r) with r = p/q;p/qbeing a rational 
number with (p,q) = 1. In this case, Eqs. (11) constrain tPo 
and (Po to be l/q-periodic functions of x. Clearly, the two-
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torus To,p/q) is benign: All normal neighborhoods V suffi
ciently smaller than l/q in the x-direction are cr neighbor
hoods, because any local data {¢o ,~o} in V can be extended 
in a lIq-periodic manner while still satisfying Eq. (12). 

Suppose now that r is an irrational number. In this case, 
the only solutions ¢o, ~o of the double-periodicity con
straints Eqs. (11) are constants, and Eq. (12) implies that 
~o =0: there are no nonconstant solutions to the wave equa
tion on T( I,r) • Clearly, a two-torus T( 1.r) with irrational r is 
not benign, 

Similar results hold for the two-tori T(Q"Q2) where al is 
spacelike but a2 is an arbitrary vector, Every such torus is 
globally conformal to a T[(l,Q).(S,T) J' where 'T> O. It is not 
very difficult to analyze the behavior of a scalar field ¢ satis
fying O¢ = 0 on T[ (I,O),(s,r) 1 using Eq. (10) and the initial 
surface {t = O}, in a manner similar to the above analysis. It 
turns out that T[(l,Q),(S,T) J is benign if and only ifboth 'T - s 
and 'T+s are rational: 'T-s=Pllql' 'T+s=P2Iqz, 
(Poqj) = 1. The constraints on the initial data in this case 
are that ¢o' ~o be 11m-periodic, and 

r ~o (s)ds = 0, J{t = o} 

where m = [ q 1 ,q2] is the smallest common multiple of q 1 

and qz. If only one of 'T - S or 'T + s is rational, then 
T( (1,Q),('.T) J is not benign, but it still admits an infinite-dimen
sional space of solutions to the wave equation. The initial 
data of any such solution are constrained to satisfy 
~o = ± ¢b, and ¢o must be 11 q-periodic, where either 'T - S 

or 'T + s = plq, (p,q) = 1. When both 1" - sand 1" + s are 
irrational, the only global solutions to the wave equation on 
T[(1,Q),($.T) J are constants, consequently, T[(I,Q),($.T) I is not 
benign. 

For a completely general flat two-torus T[(s,.r,),(s"T2) I' 
the analysis of causal regularity can be carried out using the 
observation that any solution ¢ to O¢ 0 can be written in 
the form ¢ =f(u) + g(v) on the covering space (R 2,71), 
where u=t - x, v=t + x. The periodicity constraints for ¢ 
to pass to the quotient T[ (.,,1", ),($2,T2) I imply thatf( u) be dou
bly periodic with periods 1"1 - Sl and 1"2 - S2' and g(v) be 
doubly periodic with periods 1"1 + Sl and'T2 + S2 ,It follows 
that T[(s"r,).(S2. T 2) I is benign if and only if both 
('Tz -s2)/(1"1 -S1) [or (1"1 -SI )/('T2 -S2) if 1"1 =51 ] 

and (1"2 +S2)/(1"1 +SI) [or (1"1 +sl)/(1"2 +S2) if 
'TI = - SI ] are rational. 

We are now ready to answer the following natural ques
tion: What fraction of all (complete) Lorentzmetricson T Z 

[or equivalently of all two-dimensional (complete) compact 
space-times] are benign? Clearly, it is sufficient to study this 
question on the (Lorentzian) conformal moduli space 
Mod (T2): if g and g' are globally conformal metries on T2 

then (T2,g) is benign if and only if (T2,g') is. What, then, 
does Mod( T2) look like as a topological space? 

In the Euclidean case, it is well known from elementary 
Riemann-surface theory that the conformal moduli space of 
Riemannian metrics on the torus T2 is canonically isomor
phic to the complex plane, i.e., it has the structure of a two
dimensional smooth manifold. In contrast, the Lorentzian 
moduli space Mod ( T2) has never been studied before, and it 
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remains an interesting challenge to rigorously understand its 
structure. Some insight into that structure can be obtained 
by investigating a "component" of Mod( T2), namely, the 
open subset consisting of all elements whose flat representa
tives are T(Q,,02) ' where a l is spacelike and az is timelike. 
Conformally, these elements are all of the form T((1,O),TJ' 

'TEC + , where C + is the "upper half cone:" 
C + = {'TEC I ~1" > 19t1"I}. After computations that follow the 
same logic as in the Riemannian case,Z6 and using Eq. (7), 

one finds that two points 'T' and 'T = a + ib in C + represent 
the same element of Mod ( T 2 ) iff 

'T' = [(a + pa)2 - p 2b 2] -I loa + (po + ya)a 

(13) 

where 

(14) 

is an admissible element ofSL(2;Z). An element ofSL(2;Z) 
of the form (14) is admissible to act on 1" a + ib if it satis
fies the constraints 

y,a>O, yb> Iya + 01, la + pal> IPb I, (15) 

Clearly, the open subset of Mod (Tz) that we are considering 
is C + with points identified under transformations of the 
form (13 )-(15). However, the structure of this subset is 
complicated by the fact that neither SL(2;Z) nor any of its 
nontrivial subgroups act on C + ; the constraints (15) do not 
single out a subgroup, and what is worse, they depend on the 
argument 1". 

Whatever its ultimate, detailed structure is, it seems 
quite clear that Mod ( T2) is two dimensional at least in the 
topological (but possibly not in the differentiable) sense. In 
particular, it is possible to introduce a canonical Lebesgue 
measure on Mod ( T2). It then follows from the results of the 
preceding paragraphs that the subset of all benign Lorentz 
metries is of measure zero in Lore (T 2

), because the points 
(s, 'T) with rational coordinates form a subset of zero Lebes
gue measure in the real plane R 2. Equivalently, among all 
complete Lorentz metrics on T2 those that are benign form a 
nongeneric subset. In Sec. 6.3 of Ref, 12, we conjecture that 
this result is peculiar to two dimensions, and argue that for 
higher-dimensional compact manifolds M the Lorentz met
rics that are benign probably form a generic subset in 
Lore (M). 

We will close this section by briefly discussing the spec
trum of the d' Alembertian 0 on functions in a two-dimen
sional compact space-time. For brevity, we will restrict our 
attention to flat two-tori of the form T[(l,Q).{O,r»)' r> O. (The 
properties of the spectrum that we will discuss below are 
conformally invariant, so it is sufficient to consider only flat 
two-tori.) We are interested in the following questions on 
the spectrum: (a) Is the zero-eigenspace (the kernel of D) 
infinite dimensional? (b) ISA = 0 an accumulation point for 
the eigenvalues? (c) Can the eigenvalues have finite accu
mulation points on the real axis? (d) Are there any infinite
dimensional (A =1:0) eigenspaces? For an elliptic operator 
(e.g., the Laplacian on T2), the answer to all four questions 
is no (see Sec. V for a more general discussion). For the 
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d' Alembertian 0 on T[(J,o),(o,r) l' the following information 
about the spectrum is easily derived using Eq. (9): When r is 
rational, the answer to all three questions (b). (c). and (d) 
is no, whereas the answer to (a) is yes. If r is irrational but r 
is rational. then the answer to (a), (b). and (c) is no, and the 
answer to (d) is yes. If rand r are both irrational. and r can 
be approximated abnormally well by rational numbers (a 
nongeneric property for irrational numbers). then the an
swer to (b). (c). and (d) is yes, and the answer to (a) is no. 
When rand r are both irrational and r cannot be approxi
mated abnormally well by rational numbers, the answer to 
(a), (b) is no, and the answer to (c) and (d) is yes. 

V. THE GENERAL MATHEMATICAL FORMALISM 

Let Mbe a compact orientable manifold with vanishing 
Euler number. We will choose a Riemannian metric gR on M 
which will be kept fixed throughout the analysis of the com
pact space-times (M,g), where gis any Lorentz metric on M. 
All essential features of our analysis will be seen to be inde
pendent of the choice of the Riemannian metric gR' 

For 1 <q<n - 2, n == dim M, the vector space of q-forms 
Aq(M) has a natural Hilbert-space structure given by the 
completion of the (positive definite) inner product 

(A,B)R== fM AA*RB , A,BeAq(M). (16) 

For q = 0, we will define the Hilbert-space structure on 
AO(M) Coo (M) using the inner product 

(f,g)R== fMfA*g= fMfg*l, J,geAo(M) , (17) 

where * is the Hodge dual with respect to the Lorentz metric 
of the space-time (M,g). We will denote by the symbol Hq 
the Hilbert space obtained after completing Aq(M) under 
the inner product(s) (16) or (17) (for O<q<n - 2). The 
elements of H q can be naturally identified with L 2 distribu
tions (in the sense of q-forms) on M. By definition, any ele
ment aeHq is the limit of a Cauchy sequence {an} (with 
respect to the norm obtained from (,) R ) of smooth q-forms 
in Aq(M). When regarded as a distribution, the element a 
acts on a smooth test form ¢eA q(M) through the relation 

a[t/J] == lim (an,t/J) R == (a,t/J)R' (18) 
n-oo 

On the infinite-dimensional vector space Aq(M), 
O<q<n 2, we will introduce two more symmetric bilinear 
quadratic forms that depend on the Lorentz metric g on M; 
the form (,) E given by 

(A,B)E== fM dAA*dB, A,BeM(M), (19) 

and the (nondegenerate) form (,) H given by 

(A,B)H== fM AA*B, A,BeAq(M). (20) 

The quadratic form (,) H coincides with the inner product 
(,) R for q = O. In fact, for any q the form (.) H admits a 
unique, well-defined, nondegenerate (but indefinite) exten
sion to the Hilbert space Hq: 
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(a,{J)H== lim (an,{Jn)H' a,{JeH
q
, (21) 

n_ 00 

where {an} and {[In} are Cauchy sequences of smooth q
forms in A q(M) converging (in Hq) to a and {J, respective
ly, It is not difficult to show that the right-hand side of Eq. 
(21) is independent of the choice of the sequences {an} and 
{[In}. In contrast. the quadratic form (,) E on M(M) does 
not admit an extension to Hq since its definition involves 
differentiating the arguments A. BeA q(M). 

We will define the d'Alembertian operator 
D:Aq(M) -Aq(M) on q-forms as 0== - od: 

Da==( -l)l+q+Q(n- q )*d*da, aeAQ(M). (22) 

The operator 0 is symmetric (formally self-adjoint) with 
respect to the indefinite quadratic form (, > H on A q (M) : 

(Da,{J)H = (a,D{J)H' a,{JeAQ(M). (23) 

Furthermore, 0 satisfies the property 

(a,{J ) E == (da,d{J ) H 

= (Da,{J)H 

= - (a,D{J)H, a,{JEAq(M), (24) 

where (,) E is defined by Eq. (19). [For a concise review of 
our conventions for Lorentzian exterior calculus see Sec. V 
of Ref. 12.] 

We will define our field theory of q-forms by the action 

S[A] (A,A)E fMdAA*dA, AEAq(M), (25) 

where O<q<n - 2. The (Euler-Lagrange) field equations 
for the theory (25) are simply DA = O. In fact, the first vari
ation of the action (25) is 

oS [A ] (oB) = - (oB,DA ) H' 

and the second variation is 

(26) 

- (oB,D(oC»H = (OB,OC)E' 
(27) 

which is independent of the q-form A. 
For q 0, the wave operator 0 is symmetric (formally 

self-adjoint) with respect to the Hilbert-space structure (,) R 

on A ° (M) [Eqs. (17) and (23)]; we will denote this sym
metric operator by DQ:A ° (M) - A o(M). For q> 1, however, 
o is symmetric with respect to the indefinite (,) H but not 
with respect to the positive-definite (,) R' To cure this, we 
will introduce an operator Qp : TpM - TpM via the relation 

gR (QpX,y) = g(X,Y), X,YeTpM, (28) 

where pEM is any point. The operator Qp is nonsingular, and 
symmetric with respect to gR: 

We will denote the canonical extension of Q to the exterior 
'" p 

algebra Aq(TpM) (q>l) by Q~q):Aq(TpM)-Aq(TpM). 
Since the manifold M is orientable, there exists a positive 
FEC 00 (M) that relates the volume forms OR and 0: 

*Rl =F*l, F(x) >0, FeC"'(M). (30) 

We will define another operator Q(q)p:Aq(TpM) 
-Aq(TpM) by 
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(31) 

and let Q (q):Hq~Hq denote the unique extension of the 
operator Q(q):Aq(M)~Aq(M) [defined pointwise by Eq. 
(31)] to the entire Hilbert space H q. Clearly, Q (q) is a lin
ear, bounded [with norm IIQ (q)1I<maxpEM {Iuq (p)IF(p) I}, 
~here U q (p) is the largest (in absolute value) eigenvalue of 
Q~q):Aq(TpM)~Aq(TpM)], nonsingular (invertible), and 
local operator on Hq. [By Q (q) :Hq ~Hqbeing a local opera
tor we mean the property that for any distribution aEll q that 
vanishes on an open UCM, Q (q)a on U also vanishes. An 
aEllq vanishes on U if (a,if» R = ° for any test form 
if>EA q (M) whose support is contained in U.] It follows from 
Eqs. (29) and (31) that Q (q) is self-adjoint: 

(Q(q)a,{3)R = (a,Q(q){3)R' a,{3Ellq, (32) 

and that it satisfies 

(33) 

For 1 <q<n - 2, we will define the wave operator 
DQ:M(M) ~Aq(M) by 

DQ==Q(q) 0 D. (34) 

The operator DQ is symmetric (formally self-adjoint) with 
respect to the Hilbert-space structure (,) R on Aq(M): 

(Q (q)DA,B) R = (DA,B) H = (A,DB) H 

= (DB,A ) H = (Q (q)DB,A ) R 

= (A,Q (q)DB) R' A,BEAq(M). (35) 

Furthermore, it follows from Eqs. (24), (33), and (34) that 

(A,B ) E = - (DQA,B) R 

= - (A,DQB) R' A,BEAq(M), (36) 

and, using Eq. (26), 

8S[A ](8B) = - (DQA,8B)R' (37) 

Consequently, the field equations DA = 0 for the action Eq. 
(25) can be written in the fully equivalent form DQA = 0, 
AEAq(M). 

When M is even dimensional, the quadratic form (,) E 

on A n/2 - 1 (M) is invariant under conformal rescalings of 
the metric g: If g' = {l2g, {l > 0, then the Hodge star 
*:A n/2 (M) ~ A n/2 (M) on half forms is the same operator for 
g' as it is for g, consequently, (A,B) E' = (A,B) E for A, 
BEAn12-1(M). If t/J:M~M is a diffeomorphism and 
g' = t/J*g, then it is easy to show that for all q, 
(,) E' = t/J*[ (,) E]' where 

t/J* [(,) E] (A,B) == (t/J*A,t/J*B) E' A,BEAq(M). (38) 

Therefore, for general conformally related Lorentz metrics 
g' and g on M that satisfy t/J*g' = {l2g, the quadratic forms 
(,) E' and (,) E on A n12 - 1 (M) are related by 

t/J*[(')E'] = (,)E[on An/2-1(M)]. (39) 

In fact, it is known that the above results are also true in the 
converse direction: If g and g' are two Lorentz metrics on M 
with the same Hodge star *:An/2(M) ~An12(M) on half 
forms, then there exists a positive {lEC 00 (M) such that 
g' = {l2g (for a proof, seeDrayetal.27 ).ltfollowsthatwhen 
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(,) E' = (,) E on A n/2 - 1 (M) one similarly has g' = {l2g. In 
fact, if there exists a diffeomorphism t/J:M ~ M such that 
t/J* [ (,) E' ] = (,) E on A n/2 - 1 (M), then t/J*g' = {l2g for 
some positive {lEC 00 (M). Therefore, the quadratic form 
(,) E onA nil - I(M) isacompleteconJormalinvariant forthe 
space-time (M,g). In other words, if we let Q(M) denote the 
space of all quadratic forms (,) E on A n12 - 1 (M) that come 
from complete Lorentz metrics g, and we let - denote the 
equivalence relation on Q(M) defined by Eq. (39), then the 
quotient space Q(M)I - is naturally isomorphic with the 
conformal moduli space Mod(M). 

The adjoint DQ * of the symmetric operator 
DQ:Aq(M) ~Aq(M) is defined as the operator with domain 
D(DQ*) = {aEllqIDQ*aEllq}, whereDQ*ais thedistribu
tion whose action on a test form if>EAq(M) is given by 
DQ *a [if>] == (a,DQif» R' It is possible to prove that DQ is es
sentially self-adjoint on Hq. We will not describe this proof; 
but it proceeds in essentially the same way as the proof of 
essential self-adjointness of the Laplacian [by showing that 
± i are in the resolvent set (after complexifying the Hilbert 

space Hq)], given, for example, in Sect. 11.7 of Richt
myer.28 The differential operator DQ on Aq(M) has hyper
bolic symbol, therefore none of the regularity results for el
liptic operators apply to DQ. In particular, the spectrum of 
DQ is not necessarily discrete, nor the eigenspaces are neces
sarily finite dimensional. [By the "spectrum" ofDQ we will 
always mean the point spectrum, i.e., the set of eigenvalues 
counted with multiplicity. For an elliptic operator L, any 
bounded infinite sequence {Uk} for which {Luk} is also 
bounded contains a Cauchy subsequence (Ref. 25, Theorem 
6.6). This result by itself implies that the spectrum of L is 
"clean." It then follows from standard "elliptic regularity" 
(Ref. 25, Theorem 6.30) that the eigenvalues of L are 
smooth functions (as elements in the Hilbert space).] Since 
DQ is symmetric (in fact essentially self-adjoint) with dense 
domain Aq(M) in Hq, it follows (i) that its eigenvalues are 
real, (ii) that the eigenspaces with distinct eigenvalues are 
orthogonal, and (since Hq is separable) (iii) that the 
(point) spectrum S of DQ is a countable subset in R (e.g., S 
cannot contain an open interval). It also follows that the 
eigenspaces of DQ span the Hilbert space H q, About the 
eigenvectors ofDQ, we will make the following assumption: 
Every eigenspace admits an orthonormal basis consisting of 
smooth elements in Aq(M); in particular, all vectors in a 
finite-dimensional eigenspace are smooth q-forms. We sus
pect that this assumption is true quite generally, but we will 
not attempt to prove it in this paper. 

Let E Ai denote the eigenspace corresponding to the 
eigenvalue A;ER of DQ. We will denote a complete ortho
normal sequence of smooth eigenforms by {u;e}, where i is 
an index for the distinct eigenvalues Ai> and e indexes an 
orthonormal basis for the eigenspace EA, (For notational 
convenience, we will omit the superscripts q unless they are 
needed for clarity.) It follows from Eq. (36) that the qua
dratic form (,) Eon Aq(M) is in diagonal form in the basis 
{u;e}. The null space of the form (,) E will be denoted by 
NCAq(M); Nis equal to the zero-eigenspace Eo. The sym
bol H will denote the orthogonal projection H:H q ~ N. For-
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mally, H can be written in the fonn 

H= I Uoe(uoel, (40) 
i=O,e 

where (u ie I denotes the bounded linear functional 

(uiel(a)==(uie,a)R (41) 

on Hq. We will denote by I the image of A q(M) under OQ: 

I==OQ [Aq(M)]. (42) 

One has the orthogonal direct-sum decompositions 

Aq(M) = N(fJ RI = N(fJ EI, (43) 

and the relations 

7 = N 1R, Aq(M) = N 1E, (44) 

where overbar denotes closure (in Hq), and 1R , 1E denote 
the orthogonal complements with respect to (,) R in H q, and 
(,) E in Aq(M), respectively. We will define the Green's op
erator G:Aq(M)--I by G:¢t--+G(ifJ) , where G(ifJ) is the 
unique solution in I of the equation 

OQ[G(ifJ)] =ifJ-H(ifJ), G(ifJ)El. (45) 

Fonnally, G can be written in the fonn 

I 
G= I -Uie(uiel· (46) 

i#O.eAi 

It is possible to express the notion of causal q-regularity 
(Sec. III B) for an open neighborhood ueM purely in 
tenns of the quadratic form (,) E' Let Z u e A q (M) denote all 
q-fonns in Aq(M) that vanish on U, and let cueAq(M) 
denote all q-fonns whose supports are contained in U. Clear
ly, the linear subspaces Cu and Zu in Aq(M) are orthogonal 
with respect to both (,) Rand (,) E' It is easy to see that Uis a 
causally q-regular neighborhood if and only if 

Cu1E=N+EZU , (47) 

where the (,) E orthogonal sum + E is not necessarily a di
rect sum. 

VI. GEOMETRIC CRITERIA RELATED TO THE FIELD
THEORETICAL CAUSALITY CONDITIONS 

Given a complete compact space-time (M,g) of dimen
sion;>3, under what conditions on M andg is (M,g) benign? 
In this section, we will announce some partial results that 
point to a resolution of this question in terms of the geometry 
of (M,g). Our results fall far short of providing any kind ofa 
definitive answer. In particular, we cannot even prove that 
every compact manifold M [with X(M) = 0] of dimen
sion;>3 admits a benign Lorentz metric in Lore (M). How
ever, we believe that this statement is true; in fact, in Sec. 6.3 
of Ref. 12 we conjecture that the subset of (q - ) benign 
metrics is generic in Lore(M) whenever dimM;>3. On the 
other hand, in dimensions higher than 2 it is, in general, 
exceedingly difficult to explicitly construct benign Lorentz 
metrics on a given compact manifold M. 

As a prelude to our discussion, we will first explore the 
causal regularity of higher-dimensional flat Lorentz tori. 
For definiteness, we will focus our attention on (q = 0) sca
lar field theory on the simplest "unit" four-torus 
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T\1) ==T(a"a2,a3,a4)' where a1 = (1,0,0,0), a2 = (0,1,0,0), 
a3 = (0,0,1,0), and a4 = (0,0,0,1). Theflattorus T\1) ad
mits a large infinite-dimensional kernel N for the wave oper
ator OQ (see Sec. V). [In contrast, e.g., the torus T(a"a2,a3,b4) 
with b4 = (O,O,O,r) does not admit any nonconstant solu
tions of the wave equation when r is irrational.] Surprising
ly, we will find that T\1) is not benign; in fact, T\1) is not 
even causally regular: we will prove that the subset ce T4 (1) 

of cr points in T\ I) is empty. 
Before describing this proof (which we will only give for 

the q = a case), let us briefly discuss the structure of the 
space N of solutions to the scalar wave equation on T4 (1) • 

Consider the initial data {ifJo ,;Po} that a solution ifJEN induces 
on the global spacelike hypersurface {t = a} (with topology 
T 3

) in T 4
(l). On the covering (Minkowski) space (R 4, 1]), 

the solution ifJ that develops from the (periodically ex
tended) data {ifJo';Po} is given by29 

ifJ(x,t) = ~J [t;Po (S-) + ifJo (S-) 
41Tt JI,;- xl = I 

+ VifJo(S-)'(s--x)]dS,;, (48) 

and it coincides with the canonical (periodic) lifting [to 
(R 4, 1])] of the solution ifJ on the quotient T\ 1)' [In Eq. 
( 48), dS,; denotes the area element on the sphere 
IS- - xl = t.] The right-hand side ofEq. (48) has the correct 
periodicity in x by construction (since ifJo and;Po are toroi
dally periodic in S-ER 3). On the other hand, the solution 
ifJ(x,t) must be one-periodic in the time coordinate t as well; 
according to Eq. (48) this constrains the initial data {ifJo ,;Po} 
so that 

L,I';-XI<I+ 1 IS- ~ xl 

X[~ifJo + IS-~xl [;Po + (S--x)·V;Po] ]dS-=O, 

Vx,Vt>O. (49) 

It is now fairly easy to see that if No denotes the linear sub
space of L 2 ( T 3) that consists of all possible initial data ifJo 
(or ;po) which satisfy the time-periodicity constraint Eq. 
( 49) (i.e., which are induced from solutions ifJEN), then No 
is spanned by orthonormal basis elements of the form 
r -,f- (i) 
!>a =!> (K.L,M,q) 

== (2)312{sin,cos}[ 21Tq 2~M x ] {sin,cos} [ 21Tq 2~M y] 

[ 
M 2 _L 2 _K 2

] 
X {sin,cos} 21Tq d Z , (50) 

where i = 1,2, ... ,8 is an index for the particular choice of 
sines and cosines, q runs over positive integers, K,L,M run 
over non-negative integers, and d = d(K,L,M) is the posi
tive integer such that 

( 
2KM 2LM M 2 _ L 2 _ K 2) _ 

" -1. d d d 
(51) 

[The integers k=2KM/d, 1=2LM/d, m= (M2_L2 
- K2)/d, andn = (M 2 + L 2 + K2)/d constitute the gen

eral solution of the simple Diophantine equation 
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k 2 + /2 + m2 = n2, (k,/,m) = 1; see Mordell. 30 J 
Theorem 1: The subset Co C T4 (I) of causally zero-regu

lar points in T\I) IS empty. 
Proof Since T4 (I) admits a transitive group of isome

tries consisting of translations [Eq. (4) J, it is sufficient to 
show the causal nonregularity of a single arbitrary point 
peT4

(1). We can choose p such that pe{t = O}== T3. Let us 
assume, contrary to the statement of the theorem, that p is a 
cOr point; then there exists a convex normal cOr neighbor
hood V around p. Put U == vn {t = O}. By construction, ini
tial data for the scalar wave equation on T4 (1) are freely 
specifiable on the neighborhood Uc {t = O}. In U, we can 
place a closed cube CQ C U with dimensions 1/Q X 1/Q 
X 1/Q, where Q is a sufficiently large positive integer. Clear
ly, initial data are also freely specifiable on the cube CQ . 

The functions that are available to pose the initial data 
tPo and ¢o on CQ are given by linear combinations of the basis 
elements;a [Eqs. (50)-(51)]. Consider;a as elements of 
L 2( CQ ) by simply restricting them to CQ C T3. The Hilbert 
space L 2( CQ ) is obtained by the completion of C "" (CQ ) 

with respect to the inner product 

rllQ rllQ rllQ 

<J,g)== Jo Jo Jo Jgdxdydz, j,geC""(CQ ), 

(52) 

and a complete orthonormal basis for L 2( CQ ) is 

U a == UU) (K,L,M) 

== (2Q)3/2{sin,cos} [21TQKx] {sin,cos} [21TQLy] 

X {sin,cos} [21TQMz], 

(ua,up) = 8ap , (53) 

where i, K, L, and M are integers as defined before [see Eq. 
(50)] . 

The statement that initial data tPo, ¢o are freely specifi
able on CQ is equivalent to the statement that the elements 
;aEL 2( CQ ) form a complete basis for L 2( CQ ). Obviously, 
{;a} is a linearly independent set of vectors in L 2( CQ ), but 
it is not an orthonormal (or orthogonal) sequence. We will 
apply the following argument to explore the completeness of 
the sequence {;a} in the Hilbert space L 2( CQ ): Given any 
element 1]EL 2( CQ ) and an integer N> 1, we approximate 1] 
by using;1 ';2 ''''';N only; i.e., by minimizing 

N 

111] - L ck;kll· (54) 
k=l 

The minimum of (54) is achieved when the coefficients C k 

satisfy 
N -

- 2(1]';k) + 2 L (;k';/)C/ = O. (55) 
/=1 

With the values (55) for Ck, the minimum value achievable 
for 111] - l'.f = I Ck;k 112 is 

N 

(1],1]) - L (1]';k)G (N\/(;/,1]), (56) 
k,/= 1 

where G (N) is the inverse of the N XN matrix T(N) defined 
by 

(57) 
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the matrix T(N) is invertible since ;a are linearly indepen
dent. [Supposing (for contradiction) that{;a}is complete, 
we may assume, after trimming down the sequence {;a} if 
necessary, that G (N) remains bounded as N - oo.J Now, the 
sequence {;a} is a complete basis for L 2( CQ ) if and only if 
for every 1]EL 2( CQ ) 

J~~ L~l (1]';k)G(N\/(;/,1])] = (1],1]). (58) 

We will show that there are elements 1]EL 2( CQ ) for which 
Eq. (58) fails to hold. This proves that{;a}is not complete 
in L 2( CQ ), and this contradiction establishes that peT4

(1) 

cannot be a cOr point, 
Let (Ko,Lo,Mo) be any triple of integers such that 

Ko 2 + Lo 2 + Lo 2 is not a perfect square. Then, for any in
teger n> 1, (nKO)2 + (nLO)2 + (nMO)2 and (nQKo)2 
+ (nQLo)2 + (nQMo)2 are not perfect squares either. 

Consider the infinite sequence of elements [Eq. (53)] 

inL2(CQ ) for some fixed l<i<8. Clearly, 

(1]n,1]n) ==1, Vn>1. 

(59) 

(60) 

On the other hand, using Eqs, (53), (52), and (50) it is 
straightforward to obtain the following estimate 

(61) 

where C( Q,a,Ko ,Lo ,Mo) is a positive quantity depending 
on its arguments but not on n, The crucial ingredient in es
tablishing the estimate (61) is the fact that as n - 00, the 
perfect-square triple closest to Tn == (nQKo,nQLo,nQMo) 

differs from Tn asymptotically as -A /ii, where A is a con
stant depending on Q and (Ko,Lo,Mo) [this follows from 
the general solution (51) of the Diophantine problem 
k 2 + /2 + m2 = n2]. In computing I (1]n,;a) I, it is seen that 
for fixed a I (1] n ';a ) I is monotonically decreasing for large 

enough n, and that it decays asymptotically as - 1/ /ii; 
hence the inequality (61) is asymptotically sharp. In fact, 
the constant C(Q,a,Ko,Lo,Mo ) is bounded as lal- 00, we 
can thus write 

(62) 

where D is another constant independent of a and n. It is 
now easy to see that given any E> 0, there exists an integer 
KE> 1 such that 

1(1]n';a)1 <E, Vn>KE,Va. (63) 

Clearly [cf, Eq. (60) ], when E > 0 is small enough, the equa
lity (58) cannot be satisfied with those elements 1]n for 
which n >KE • This completes the proof of Theorem 1.0 

The above proof shows that for any point peT4 
(I) , there 

are null directions at p along which the construction of 
plane-wave solutions with arbitrarily high frequency is pro
hibited by the PSC. These null directions (along which the 
PSC imposes an effective cutoff on the frequency of plane 
waves) are precisely those null vectors 5, for which the null 
geodesics y(t) = expp (ts) are not closed but densely fill 
some;> 2-dimensional submanifold of space-time. Further
more, exactly the same reasoning as the above proof demon
strates that in general the flat n-torus Tn (1) is not causally q 
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regular for any O<.q<.n - 2 when n>3. We have not studied 
the causal regularity of the other more general higher-di
mensional flat tori, but our results here and in the following 
subsections suggest that it is unlikely for any of these flat tori 
to be benign (or causally regular) in dimensions higher than 
2. 

It is, in general, extremely difficult to explore the causal 
regularity of a higher-dimensional compact space-time 
(M,g) in the above manner, i.e., by studying the local-com
pleteness properties of the space of solutions to the wave 
equation. One would like to have more accessible criteria 
involving the geometry of (M,g) that would provide neces
sary and sufficient conditions for (M,g) to be benign or caus
ally regular. In the following two subsections, we will an
nounce the results of some preliminary attempts to construct 
such criteria. The proofs of these results can be found, along 
with some speculations on benign compact space-times in 
higher-than-two dimensions, in Ref. 12. 

A. Criteria involving the geometry of null submanifolds 

Consider the scalar wave equation on the flat two-torus 
TO,r) [Sec. IV, Eqs. (10)-( 12)]. The reader might already 
have observed in Sec. IV that when the torus T( I,r) is benign 
(i.e., when r is rational), all of its null geodesics are closed, 
whereas when ris irrational [i.e., when To,r) is not benign] 
every null geodesic is open and densely fills the whole torus 
TO,r) • In the local coordinates u = t - x, v = t + x, O<p = 0 
reads <P,uv = 0; therefore, for any solution <p, <P,u is constant 
along a null geodesic {u = const}, and <P,v is constant along a 
null geodesic {v = const}. In other words, information 
about d<p propagates exactly (without diffraction) along the 
null geodesics of T( I,r)' After this observation, it becomes 
easy to understand why T(I,r) is not benign (in fact, it does 
not admit any nonconstant solutions to O<p = 0) whenever r 
is irrational, because for irrational r each null geodesic in 
T( I,r) winds densely around the torus and comes arbitrarily 
close to every point throughout the entire space-time. 

In higher dimensions (> 3), information on solutions of 
the wave equation does not propagate along the null geode
sics exactly, but only asymptotically in the geometric-optics 
limit. 

Definitions: Aflat ray field in (M,g) is a closed, null one
form lUEA I (M) that satisfies d *lU = O. In an even-dimen
sional space-time, a flag field is a pair (lU,h), where 
lUEA1(M) -is a closed null one-form, hEAnI2-1(M) is a 
closed spacelike (n12 - 1 )-form, and lU 1\ h spans a null 
plane at each point and satisfies d * (lU 1\ h) = O. 

Theorem 2: Let a space-time (M,g) (not necessarily 
compact) admit a flag field (or a flat ray field) Y, and let 
pEM be a point in M. Suppose that every neighborhood of p 
contains a point q such that p is a limit point of the integral 
curve of Y through q and q is a limit point of the integral 
curve of Y throughp (both in the future direction). Thenp 
cannot be a causally regular (causally zero regular) point of 
(M,g). 

Theorem 3: Let Y be a flag field (flat ray field) on 
(M,g). Let ybeaclosed (null geodesic) integral curve of Y. 
If.7 admits (n - 2) families of closed integral curves that 
correspond to (n - 2) spacelike, linearly independent varia-

3076 J. Math. Phys., Vol. 31, No. 12, December 1990 

tions of y, then there exists an open neighborhood U C M 
around y such that the integral curve of Y through every 
pointpEUis closed, and has the same homotopy type as (i.e., 
is homotopic to) the integral curve y. In particular, the fol
lowing hold: (i) If all integral curves of Yare closed, then 
they all have the same homotopy type (i.e., they are all ho
motopic). (ii) In two dimensions, either all integral curves 
of Yare closed (and have the same homotopy type), or all 
of them are open. (iii) All integral curves of Yare closed iff 
the closed null one-form lU is exact iff the null hypersurfaces 
orthogonal to K w define a smooth, (n - 1) -dimensional foli
ation of M iff there is a global Maxwell field A with 
dA = lU 1\ h (a global solution <p with d<p = lU). 

B. Spectral criteria 

Consider the spectrum of the d' Alembertian OQ on 
functions on a flat two-torus T( I,r) • (Recall our discussion in 
the last paragraph of Sec. IV.) Whenever T(I,r) is benign 
(i.e., when r is rational), the spectrum of OQ is as regular as 
that of any elliptic operator except for the infinite dimen
sionality of the kernel (zero eigenspace) N. In the other 
cases [i.e" when r is irrational and TO,r) is not benign], the 
spectrum is not discrete and has a highly irregular structure; 
in general, there are many infinite-dimensional eigenspaces, 
and in some cases clustering of nonzero eigenvalues may 
occur. We will see in this subsection that such connections 
between the spectral geometry and causal regularity of a 
compact spacetime (M,g) exist more generally; in fact, as we 
speculate in Ref. 12 these connections are likely to probe 
very deep into the geometry and topology of (M,g). 

Consider the following statements, where UCM is an 
arbitrary open subset: (SI): For every ¢E V satisfying 
OQ¢ = OonM\ U, 3a<p E Nthatcoincideswith¢onM\ U. 
(S2): For every ¢ E I satisfying OQ ¢ = 0 on M \ U, 3 a 
<p E N that coincides with ¢ on M \ U. 

Proposition 1: The statements (S 1) and (82) are equiva
lent. 

Theorem 4: An open neighborhood U C M is causally q 
regularif and only if the statement (S 1 ) is true. In particular, 
U is a cqr neighborhood if and only if the interior of M \ U is 
causally q regular. 

Definition: The null space (kernel of OQ) N is called 
sufficiently large with respect to an open set UCM, if for 
every ¢E V \ C u satisfying OQ ¢ = 0 on M \ U there exists an 
element <PEN that vanishes on Uand satisfies <<p,¢> R #0. We 
will simply say N is sufficiently large if every neighborhood 
around any point pEM contains a neighborhood U of p with 
respect to which N is sufficiently large. 

Definition: A compact space-time (M,g) is called spec
trally q benign if the (point) spectrum {AJ of OQ satisfies 
the following four conditions: (i) The zero eigenspace (ker
nel of OQ) N is sufficiently large. (ii) For each nonzero 
eigenvalueA;o dim (E,,) < 00. (iii) The nonzero eigenvalues 
do not have any accumulation points in the real line. (iv) 
The infinite sum ~;,..o,e IA; 1- 2 is convergent. 

Theorem 5: A spectrally q-benign compact space-time 
(M,g) is q benign. 
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VII. COMMENTS ON QUANTUM FIELD THEORY ON A 
COMPACT BACKGROUND 

Classical (Lorentzian) field theory on a compact space
time involves a wide variety of novel mathematical features 
some of which we have explored in the previous sections. In 
this short section we will briefly comment on the issues 
raised by quantization. For simplicity we restrict our atten
tion to scalar (q = 0) field theory on a compact background 
(M,g). An immediate consequence of compactness is that 
canonical quantization ceases to be a convenient and natural 
approach: A compact space-time may not admit any global 
spacelike hypersurfaces (Sec. II); and even when such hy
persurfaces exist they may not all be homologous, i.e., there 
may exist a pair ofhypersurfaces whose difference is not the 
boundary of an n-cycle in M (by contrast, all Cauchy sur
faces in a globally hyperbolic space-time are homologous to 
each other). Consequently, it is difficult to define a natural 
Klein-Gordon inner product (symplectic structure) on the 
space of solutions N. (For a quick review of the relevant 
aspects of canonical quantization see the introductory sec
tion in Woodhouse. 31 

) Moreover, even if one succeeds in 
constructing a symplectic product on N [e.g., via 

(ifJ,t/!) == i (ifJvat/! - t/!VaifJ)d n - Ina 

after singling out a particular global spacelike hypersurface 
~ (which hypersurface determines each solution in N 
uniquely by its Cauchy data on ~) ], the standard postulates 
of canonical quantization (such as the commutativity of the 
field operators evaluated at different points of ~) are diffi
cult to justify because of the global causal correlations (self
consistency constraints on the data on ~) between locally 
spacelike-separated points of (M,g). 

We believe that the most natural approach to quantiza
tion in a compact background space-time (or in any space
time containing closed causal curves) is path integration. 
The path-integral approach easily makes transparent a fun
damental feature of quantum field theory on compact back
grounds, namely, the existence of a uniquely determined ca
nonical vacuum state. Consider the generating functional 

Z[J]== r f1J[ifJ]eXP i(r L [ifJ] + r JifJn ) , (64) 
J{,plN} JM JM 

where f M L [ifJ] is the action defined by Eq. (25) 

L [ifJ]==difJ/\*difJ=g(VifJ,VifJ)n, (65) 

and the path integral is over all fields ifJ orthogonal to the 
space of solutions N with respect to the Hilbert-space struc
ture (,) R on AO(M). It is easy to see that the Green's func
tion (propagator) derived from Z[J], 

G(x,y) == - 2i[!52 In Z [J ]/!5J(x)8J(y) ]J=o (66) 

is precisely the Green's operator G defined in Eqs. (45)
( 46). (It is instructive to compute the path integral (64) 
explicitly and verify this statement for the flat two-torus 
T(\.\) (Sec. IV); the result can be obtained [after expanding 
the field ifJ in an orthonormal basis of AO(M)] via a simple 
regularization process. We suspect that this is a generic fea
ture of Lorentzian path integrals on a compact background; 
they can be computed directly using standard regularization 
schemes without recourse to the Euclidean approach.) The 
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construction Eq. (64) of the generating functional Z[J] 
specifies a unique vacuum state for the field ifJ because the 
Green's function Eq. (66) is sensitive to the choice of vacu
um; in other words, the canonical vacuum state is associated 
with a canonical choice of boundary conditions (ifJlN) for 
the (classical) field ifJ in the path integral (64). If (M,g) 
admits a global spacelike hypersurface ~, then an alternative 
way to define the above vacuum is to introduce the "vacu
um-state wave functional" \{Io:C 00 (~) --+ R via the path in
tegral 

\{Io[h]== r f1J[ifJ] 
J{,pll: = h.,plN} 

xexp(i fM L [ifJ]) [hECoo(~)], (67) 

where the integration is over all fields ifJlN that coincide with 
h on ~. It is an interesting challenge to give a canonical
quantization interpretation for the vacuum defined by Eq. 
(67) [i.e., an interpretation based on a specific choice of 
polarization (mode decomposition) in the classical phase 
space of solutions N]. (Quantum field theory in curved 
space-time is reformulated in Ref. 32 in a way that may 
prove particularly useful in the above context.) 

If our Conjecture 5 in Sec. 6.3 of Ref. 12 is false and 
nonbenign compact space-times are the rule rather than the 
exception, would this necessarily render the study of com
pact space-times an irrelevant mathematical exercise? It ap
pears conceivable that from the viewpoint of quantum field 
theory nonbenign space-times may be as interesting as be
nign ones. For example, a nonbenign two-torus T( l.r) with r 
irrational (Sec. IV) features a finite-dimensional phase 
space of classical solutions, and it is easy to construct other 
examples of compact space-times (consider S2XS 1) whose 
phase spaces of solutions (to DifJ = 0) have arbitrary and 
finite dimensions. On these compact backgrounds the vacu
um expectation value of the stress-energy tensor for the field 
ifJ is manifestly finite. On the other hand, near any point in 
any of these space-times there exist as many local modes of 
solutions to DifJ = 0 as in Minkowski space; most of these 
local modes do not extend globally to become elements of the 
phase space N. Since the standard argument for stress-tensor 
renormalization is the "subtraction" of the contribution of 
these local high-frequency modes, it is not entirely obvious 
how the avoidance of renormalization can be justified when 
N is finite dimensional. Similar issues of principle are also 
raised for those nonbenign space-times where the phase 
space N is not finite dimensional but excludes all (or almost 
all) local modes with high enough frequency (a good exam
ple is the flat four-torus T4 (1) discussed in Sec. VI). 
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The quantum Clebsch-Gordan coefficients for the coproduct 8 X 8 of the quantum sl (3 ) 
enveloping algebra are computed. In the decomposition of the coproduct 8 X 8, there are two 
octet representations that are identified by the symmetry in changing the order of the factor 

v 
octet representations. The corresponding Rq matrix and a new link polynomial are obtained. 

I. INTRODUCTION 

The quantum Yang-Baxter equation (QYBE) I plays a 
crucial role in the completely integrable system of two di
mension,2 and has an intimate relation to the conformal field 
theory.3 From the solution R of QYBE, a representation of 
the braid group and a link polynomial can be built Up.4,5 
QYBE is a highly nonlinear equation and is difficult to solve. 
When the quantum parameter q tends to unity, it becomes 
the classical one (CYBE), which appears to be a commuta
tion relation. The solutions of CYBE were classified.6 Quan
tizing the trigonometric solution ofCYBE based on a simple 
Lie algebra,7 we otain the solution Rq of QYBE, which can 
be expressed by the quantum Clebsch-Gordan (qCG) coef
ficients of the quantum enveloping algebra.8

,9 The Rq matri
ces for any irreducible representations (IR) of the quantum 
s1(2) enveloping algebra [q-s1(2)] were discussed in great 
detail. 8,10 Those for the fundamental representations of some 
quantum classical Lie algebras were discussed, and proved 
to satisfy the Hecke algebra. 11,12 In our previous paper, 13 we 
computed the Rq matrix and the corresponding link polyno
mial for the coproduct 6 X 6 of the quantum sl (3) envelop
ing algebra [q-sl (3) ]. In all these cases, there is no multiplic
ity in the decomposition of a coproduct. 

The decomposition of the coproduct 8 X 8 of q-s1( 3) is 
the simplest but very useful example where there is multi
plicity in the decomposition, namely, there are two octet 
representations appearing in the coproduct 8 X 8 of q-sl (3). 
In the SU (3) theory, those two octet representations are 
identified by the symmetry for changing the order of the 
factor octet representations. 14 This symmetry can be gener
alized to the case of the quantum enveloping algebras in dis
cussing the decomposition problem with multiplicity. In this 
paper we discuss this typical examp~ in detail. We will com
pute the q-CG coefficients and the Rq matrix, and then, ob
tain a new link polynomial. 

In this paper we use the same notations as those used in 
the previous paper. 13 The plan of this paper is as follows. In 
Sec. II, we describe the octet representaiton of q-sl (3) brief
ly. In Sec, III, the qCG coefficients of the coproduct 8 X 8 of 
q-sl (3) are given, We review the general method of comput-

a) On leave from the Institute of High Energy Physics, P.O. Box 918( 4), 
Beijing 100039, People's Republic of China. 

v 
ing the Rq matrix, which is the solution of QYBE, and give 
the calculation results based on the octet representation of q
s1( 3 ). At last, a new link polynomial is built up in terms of 
the representation of the braid group based on this Rq matrix 
in Sec. V. 

II. OCTET REPRESENTATION OF q-sl(3) 

We denote an IR of q-sl ( 3 ) by its Young tableau [A I' A2 ] 

or, briefly, by its dimension N. The enumeration of the states 
of the octet representation is given in Fig. 1 (a). Using the 
method given in the previous paper,13 we obtain the octet 
representation matrices from the decomposition 
[2,0] X [1,0] = [3,0] + [2,1] (6X3 = 10 + 8): 

D!(kl ) = diag(qI/2,q-1/2,q,I,I,q-l,ql12,q-1/2), 

D! (k2) = diag(qI/2,q,q-1/2, 1, l,ql12,q-1 ,q-1/2), 

D! (e l ) 12 = D !(el )78 = D! (e2) 13 = D! (e2)68 = 1, 

D! (e I) 34 = D! (e I) 46 = [2] 1/2, 

D!(e2)24=D!(e2)47= [2]-1/2, 

D! (e2b = D! (e2)57 = ([3 )/[2]) 1/2. (1a) 

The rest of the matrix elements are vanishing, and the matri
ces of fa are the transpose of those of e a; 

8 ~ Dq(fa) =Dq(ea ), a= 1,2. (1b) 

2 1 3 2 1 
4 7 6 5 

6 5 3 9 8 
10 

8 7 
b) IR [3,0) 

a) IR [2,1) 

3 2 
1 

3 2 7 5 
6 5 4 9 8 6 

10 9 8 7 
16 13 11 

18 17 14 12 
c) IR [3,3) 15 

22 20 
24 23 21 19 

27 26 25 

dl IR [4,2) 

FIG. 1. The enumerations of the states ofiR's of q-sl(3). 
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III. qCG COEFFICIENTS FOR THE COPRODUCT 8X8 

The coproduct 8 X 8 is defined as 

D:8(ka) =D:(ka)XD:(ka ), 

D:8(ea ) =D:(ea)XD~(ka-l) +D~(ka)XD~(ea) 
(2) 

(4a) 

where 

527 = 58s = 51 = 1, 

5\0 = 5\0* = 58A = - 1. (4b) 

and that replaced ea by fa. 
The representation D ~8 is a reducible one and can be 

reduced by an orthogonal transformation Cq , called the 
qCGmatrix, 

The sUbscript of the octet representation just denotes this 
symmetry. 

(3) 

whereN=27, 10, 1O*,8s , 8A and l,i.e., [4,2], [3,0], [3,3], 
[2,1 ]s, [2,I]A' and [0,0]. Here Cq is a 64 X 64 matrix with 
the row indices m l , m2 and the column indices NM. Some
times, we use the submatrix (Cq ) N which is a 64 X N matrix 
with the column indices M. In the classical case, the CG 
matrix has the symmetry property for exchanging the row 
indices m l and m 2• Because of the coproduct (2), the quan
tum (Cq ) matrix has the following symmetry property: 

Through a straightforward but tedious calculation, we 
obtain the representation matrices and the qCG coefficients. 
Owing to our conventions, 13 what is only needed to be listed 
is the nonvanishing matrix elements of e2 (see Table I). The 
enumerations of the states of IR's are given in Fig. 1. The 
rows of the qCG matrix 8 X 8 in q-sl (3) are ordered by m I 
and m2, which both go from 1 to 8, and the columns are 
denoted by (27,M), (10,M), (1O*,M), (8s ,M), (8A ,M), 
and (I,M) for the different IR's, respectively. The qCG ma
trix is a block matrix, and some submatrices are equal to 
each other. The nonvanishing matrix elements are listed in 
Table II. The equal submatrices are listed in the same table 
and distingushed by (a), (b), and so on. 

In addition to those listed in Table II, there is one 10 X 10 submatrix in qCG matrix that combines the states I m I) 1m2 ) of 
the product spaces into the states INM) of the irreducible representation N as follows: 

127,13) = [2]1/2([4][3])-I12{q213)16) + [2]1 4)1 4) +q-216)13)}, 

127,14) = ([5][ 4 ][2]3}i/2{q2[ 4] 11) 18) + q[ 4] 12) 17) + q-2 - q2) 13) 16) 

+ ([4] - 2[2])14)14) + [4][3] 1/214)15) + [4][3]1/215)14) 

+ (q2_q-2)16)13) +q-I[4]17)12) +q-21[4])11)}, 

127,15) = {[5][4][3][2]}-1/2{ - i[3] 11)18) + q3[3] 12)17) - q- 113)16) 

+ 14)14) + [3]215)15) -qI6)13) +q-3[3]17)12) -q-2[3]18)ll)}, 

110,6) = [2]-1[3]-1/2{ql1)18) + 12)17) + 13)16) + (q-I- q)14)14) 

-q[3]1/214)15) +q-I[3F /2 15)14) -16)13) -17)12) -q-118)11)}, 

110*,5) = [2]-I[3]-I12{ql1)18) + 12)17) + 13)16) + (q-I- q)14)14) 

+q-I[3]1/214)15) -q[3]1/215)14) -16)13) -17)12) -q- 118)ll), 

18s ,4) = [3]1/2([2] -1)-1{2q[2]([3] + [2])}-1/2{ll)18) +q- 112)17) 

+ (1-q)13)16) +q-I(1-q-q2+t)14)14) _q-l(1 +q3)[3]-1/2 

X(14)15) + 15)14» - (1-q)16)13) +q217)12) +qI8)11)}, 

18s ,5) = {2q[2]( [3] + [2])}i/2{11) 18) - q12) 17) + q-2, (1 + q3)( [2] - 1) -113) 16) 

_q-l(1 +q3)([2] -1)-114)14) +q-2(1_q+q2+q3_ q4+q5)([2] -1)-115)15) 

+ (1 +q3)([2] -1)-116)13) -17)12) +qI8)ll)}, 

18A ,4) = [3]1/2( [2] - 1)-1{2q[2]( [3] - [2])}-1/2{ - 11) 18) - q- 112) 17) 

+ (1-q)13)16) +q-l(1 +q-q2-t)14)14) _q-I(1_q3)[3]-1/2 

X(14)15) + 15)14» - (1 +q)16)13) +q217)12) +qI8)11)}, 

18A ,5) = {2q[2]( [3] - [2])}i/2{ll)18) - qI2)17) + q-2)( 1 - q3)( [2] + 1)-113)16) 

-q-I(1-~)([2] + 1)-114)14) _q-2(l +q+i_q3_q4_~)([2] + 1)-115)15) 

+ (l-q3)([2] + 1)-116)13) + 17)12) -qI8)11)}, 

11,1) = ([4][2])-1/2{q- 21 1) 18) -q-112)17) -q-113)16) + 14)14) + 15)15) 

-qI6)13) -ql7)12) +q218)11)}· 

3080 J, Math. Phys., Vol. 31, No. 12, December 1990 Zhong-Qi Ma 3080 



                                                                                                                                    

IV. Rq MATRIX 

v In the previous paper,13,8 w~ave the definition for the 
Rq matrix. From the definition, Rq matrix can be expressed 
by the qCG coefficients 

Rq = LSN q.,,(N)(Cq)N(Cq)N, (5) 
N 

whereN = 27,10,10*, 8s , 8A ,and l'SN is given in (4b),and 

7](N) = 2C2(8) - C 2 (N). 

Removing a factor q-2 for normalizing, we replace 7]N' by 
7]N in (5), 

7]i7 = 0, 7];0 = 7];0- = 2, 7]~s = 7]~A = 5, 7]; = 8. (6) 
v 

The Rq matrix is a block matrix and some submatrices 
are equal to each other. The calculation results are listed in 
Table III. The equal submatrices are listed in the same table, 
and distingushed by (a), (b), and so on. 

There is a lOX 10 submatrix in R q. Notice that Rq is a 
symmetric matrix. The nonvanishing elements of the 10 X 10 

v 
submatrix of Rq are listed as follows: 

v v v 2 
(Rq )44,44 = (Rq )45,54 = (Rq )55,55 =q, 

(Rq) 18,SI = (Rq )27,72 = (Rq )36,63 = q4, 
v v 

(Rq )27,SI = (Rq )36,SI =~-~, 

(R q )44,63 = q -~, 
v 2 4 [ (R q )44,72 = (q -q)/ 2], 

v 7 3 
(Rq )44,SI = (q - 2q + q)/[2], 

v v 
(Rq )45,72 = (Rq )54,72 = (q2_q4)[3]1/2/[2], 

v v 
(Rq )45,81 = (Rq )54,SI = (q_~)[3]1/2/[2], 
R
v -I v 6 

( q )55,72 = - q (R q )55,SI = (1 - q )/[2], 
v v 

(Rq )63,63 = (Rq )72,72 = q6 - q4 - q2 + I, 
v 6 4 

(Rq )63,72 = q - q , 

(Rq )63,SI = (R q )72,SI = - q7 - 2~ _ q3, 

(Rq )SI,SI = q8 - 2q6 + 2q4 - 2q2 + 1. 

Define 
v 

Xm,MM'm; = ,,~ (Cq)m,m,NM(Rq)m,m,m,m;' 
m. m2m)m2m.l 

X (Rq) m"m m'm' (Cq )m'm'NM" I J 3 I 2 3 

It is easy to show that the X matrix satisfies the definition of 
R:S matrix, namely, Rq matrices satisfy the pentagonal re
lation 

v NS 
= L (Cq ) m,m,NM' (R q ) m,M'Mm; . 

M' 
(7) 

v 
It is generally correct that the Rq matrix defined in the 

previous paperl3 satisfies the pentagonal relation, and then, 
satisfies the QYBE without the spectral parameter.9 

TABLE I. The nonvanishing matrix elements of e2 in IR's [3,0), [3,3) and [4,2). 

Row 2 3 6 4 9 7 
Column 5 6 8 7 10 9 

D ~O(e2) (2)1/2 (3)112 (2) 

Row 6 3 5 I 4 2 
Column 9 5 8 2 7 4 

D ~o'(e2) (2)1/2 (3)112 (2) 

Row 1 4 18 24 2 22 2 23 5 16 
Column 4 10 24 27 5 26 6 26 11 22 

D!7 (e2) (2)"2 (2) {~}1/2 {ill@}1/2 
[3Ji72 (3) (4) 

Row 5 17 6 17 11 9 12 9 
Column 12 22 12 23 19 16 19 17 

D!7(e2) {~}1/2 
[4](3) 

{ [4](2) }'12 
(3) 

{Bt}112 
(4) 

{ (5) (2) } 1/2 
(4) 

Row 3 20 3 21 7 13 7 14 
Column 7 25 8 25 13 20 14 20 

D!7 (e2) {Bt} 112 { [5](2) }'12 (2) { (5) } 112 
(3) (3) (4)1/2 (2) [4](3) 

Row 8 14 8 15 
Column 14 21 15 21 

D!7(e2) {J±Lr2 

(3) 
(4)1/2 
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TABLE II. Nonvanishing matrix elements of qCG for coproduct 8 X 8 in q-sl (3). 

Column (a) (27,1) (b) (27,3) (e) (27,10) 

Row (d) (27,18) (e) (27,25) (f) (27,27) 

(a) II (b) 22 (e) 33 

(d) 66 (e) 77 (f) 88 

Column (a) (27,2) (b) (27,4) (a) ( 10*,1) (b) ( 10,1) 

(e) (27,9) (d) (27,19) (e) (10,4) (d) (10*,7) 

Row (e) (27,24) (f) (27,26) (e) (10*,10) (f) (10,10) 

(a) 12 (b) 13 

L~J/2 (e) 26 (d) 37 (q [2)) -1/2 

(e) 68 (f) 78 

(a) 21 (b) 31 -( [~J/2 (e) 62 (d) 73 (q[2)) -1/2 

(e) 86 (f) 87 

Column (a) (27,5) (27,6) (10,2) ( 10*,2) (8,,1) (8.,1) 

Row (b) (27,22) (27,23) (10*,9) (10,9) (8,,8) (8 A ,8) 

(a) 14 q[3]-1/2 -q [3]-112 [3]-1/2[2]-1 Nsq-3/2[3] 1/2 NAq-3/2[3]1/2 
(b) 48 [2]([5][3)) 1/2 

(a) 15 
0 

q[3] 
0 [2]-1 Nsq-3/2( [2] - I) - NAq-3/2([2] + I) 

(b) 58 [2][5]1/2 

(a) 23 q-I/2 
q'/2( [5][ 3 ][2)) -1/2 

q-3I2 _ q'/2 
-Ns ([3][2))1/2 - NA ([3][2))1/2 

(b) 67 ([3][2])1/2 ([3][2])1/2 ([3][2]) 1/2 

(a) 32 ql/2 q-5/2 _ q'/2 q-]/2 
-Ns ([3][2])1/2 NA ([3][2])1/2 

(b) 76 ([3][2]) 1/2 ([5][3][2])1/2 ([3][2]) 1/2 ([3][2])1/2 

(a) 41 q-I[3]-1/2 
_q-I 

_ [3]-1/2 _ [3]-1/ 2[2]-1 Ns q'/2 [3]1/2 _ NAq'/2[3] 1/2 
(b) 84 [2]( [5][3]) 1/2 

(a) 51 q-I[3] 
- [2]-1 Ns q'/2([2] - I) NAq'/2([2] + I) 0 0 

(b) 85 [2][5]1/2 

Column (a) (27,7) (27,8) (10,3) (10*,3) (8s ,2) (8 A ,2) 

Row (b) (27,20) (27,21) (10*,8) (10,8) (8 s ,7) (8 A,7) 

(a) 16 q'/2 _ q'/2 ql/2 ql/2 
Nsq-I([3][2])1/2 NAq-I([3][2])1/2 

(b) 38 ([3][2])1/2 ([5][3][2])1/2 ([3][2])1/2 ([3][2]) 1/2 

(a) 24 [3]-1/2 q' q-I[3]-I/2 -q' _ Ns ql/2[3] 1/2 -NAql/2[3]1/2 
(b) 47 [2]([5][3])1/2 [2][3]1/2 

(a) 25 q[3] 
0 [2]-1 - Ns q-3/2([2] - I) NAq-3/2( [2] + I) 0 

(b) 57 [2][5]1/2 

(a) 42 [3]-1/2 
q-3 

- q[3]-1/2 
q-2 

_Nsq-1/2[3]1/2 NAq-1/2[3]1/2 
(b) 74 [2]([5][3])1/2 [2][3]1/2 

(a) 52 q-I[3] 
0 - [2]-1 Ns q'/2( [2] - I) NAq'/2([2] + I) 0 

(b) 75 [2][5]1/2 

(a) 61 q-3/2 _ q-3/2 _q-1/2 _q-1/2 
- Nsq( [3] [2]) 1/2 - NAq([3][2]) 1/2 

(b) 83 ([3][2]) 1/2 ([5][3][2])1/2 ([3][2])1/2 ([3 ][2)) 1/2 

Column (a) (27,11) (27,12) (10,5) (10*,4) (8s ,3) (8 A,3) 

Row (b) (27,16) (27,17) (10*,6) (10,7) (8s ,6) (8 A,6) 

(a) 17 L(.!ti.f' ql/2 ql/l 
Nsq-I( [3][2)) 1/2 _ N.q-I([3][2))1/2 0 ([3][2))1/2 (b) 28 [2] [5] ([3][2)) 1/2 

(a) 34 (.ELf' q-2_1 q-I q-I 
_ NS (q-1/2 _ q-3/2)[3] 1/2 N. (q-1/2 + q-312)[3] 1/2 

(b) 46 q [4] ([5][4][2))1/ 2 [2][3]1/2 [2][3]1/2 
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TABLE II. (Continued.) 

(a) 35 
0 _I (l4](3]r -q[2]-' q-'[2]-' _ Ns (q'l2 + q-312) N. (q'12 _ q-3/2) 

(b) 56 [2] [5] [2] 

(a) 43 -'(ELf q' -1 -q -q Ns (q'/2 _ q'/2)[3] '12 _ N. (q'/2 + q'/2) [3]'/2 
(b) 64 q [4] ([5][4][2])'/2 [2][3]'/2 [2][3]'/ 2 

(a) 53 
0 _1_( [4](3] r q-'[2]-' - q[2]-' _ Ns (q'12 + q_3/2) NA (q'12 _ q-3/2) 

(b) 65 [2] [5](2] 

(a) 71 q-.1f2 ( JiL f' _q-./2 _q-'/2 
Nsq([3][2j)'I' N Aq[3](2»'12 0 

(b) 82 [2] [5] ([3][2])'" ([3][2])'/ 2 

Ns = {2[2]([2]- 1)([4] + Il}-'12, NA = {2[2]([2] + 1)([4]- 1)}-'!2. 

TABLE Ill. The matrix based on IR [2,1] of q-sl (3). 

Column (a) Il (b) 22 (e) 33 
Row (d) 66 (e) 77 (0 88 

(a) Il (b) 22 (e) 33 
(d) 66 (e) 77 (f) 88 

Column (a) 12 (b) 13 (a) 21 (b) 31 
(e) 26 (d) 37 (e) 62 (d) 73 

Row (e) 68 (0 78 (e) 86 (0 87 

(a) 12 (b) 13 
(e) 26 (d) 37 0 q 
(e) 68 (f) 78 
(a) 21 (b) 31 
(e) 62 (d) 73 q 1- q' 
(e) 86 (0 87 

Column (a) 14 (a) 15 (a) 23 (a) 32 (a) 41 (a) 51 
Row (b) 48 (b) 58 (b) 67 (b) 76 (b) 84 (b) 85 

(a) 14 
0 0 0 q' 0 0 

(b) 48 

(a) 15 
0 

(b) 58 
0 0 0 0 q' 

(a) 23 
0 0 q' (q'/2 _ q7/2)[2]'/2 0 0 

(b) 67 

(a) 32 
0 q' 0 (q'i2 _ q7/2)[2]-'12 (q'''_ q7/Z) (~)!/' 0 

(b) 76 [2] 

(a) 41 
q' 0 (q'I'_q712)[2]'/2 (qlfZ _ q7/')[2]-'/2 (q' - 2q' + q-l)[2]-' (q'-q,)QE 

(b) 84 [2] 

(a) 51 
q' 0 (q'/Z _ q7/') (~)'12 ( '_q') [3]'/2 q-' -q' 

0 
(b) 85 [2] q [2] [2] 

Column (a) 16 (a) 24 (a) 25 (a) 42 (a) 52 (a) 61 
Row (b) 38 (b) 47 (b) 57 (b) 74 (b) 75 (b) 83 

(a) 16 
0 0 

(b) 38 
0 0 0 q' 

(a) 24 
0 

(b) 47 
0 0 q' 0 (q'12 _ q7l2)[2] 1/2 

(a) 25 
0 q' 0 0 0 0 

(b) 57 

(a) 42 
q' (q - q')[2]-' 

[3] '/2 
(q'/2 _ q'12) [2]-112 0 0 (q-q')--

(b) 74 [2] 
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TABLE III. (Continued.) 

(a) 52 
q' 

(3)'/2 
(q-'-q')[2)-' (q9" _ q''') (..0..)'12 0 0 (q - ti) [2f" 

(b) 75 [2) 

(a) 61 
ti (q''' q7l2)[2) '/2 (q,/2 _ q'12)[2r'/2 (q9/2 _ q'/2) (..0..)'/2 q4_2q'+ I 0 

(b) 83 [2) 

Column (a) 17 (a) 34 (a) 35 (a) 43 (a) 53 (a) 71 
Row (b) 28 (b) 46 (b) 56 (b) 64 (b) 65 (b) 82 

(a) 17 
0 0 0 ti 0 0 

(b) 28 

(a) 34 

(b) 46 
0 0 0 q' 0 (q'/2 _ q7/2) [2)-'/2 

(a) 35 
0 0 0 0 q' (q'/2 _ q7/2) (..0..)'12 

(b) 56 [2) 

(a) 43 
0 q' 

(b) 64 
0 I-q' 0 (q"/2 _ q7/2) [2)-112 

(a) 53 
q' (qll2 _ q7/2) (..0..)'12 0 0 0 0 

(b) 65 [2) 

(a) 71 
q' (q'/2 _ q7i2)[2r'/2 (qll2 _ q7/2) (..0..)'/2 (q"/2 _ q712)[2)-1/2 (q'/2 _ q7l2) (..0..)'/2 q4_2q'+ I 

(b) 82 [2) [2) 

v. NEW LINK POLYNOMIAL 

Since the QYBE without the spectral parameter is the 
same as the multiplication rule of the braid group, a mono
dromy representation of the braid group Bn can be obtained 

v 
by the Rq matrix, 

v 
D(b j ) = IXIX"'XIXRqXIX'''XI, (8) 

where the Rq matrix is located in the ith and (i + I) th posi
tions in the direct product. 

From the monodromy representation a new link poly
nomial can be built up in terms of the standard way:4,5,J3 

a(B,n) = (1'1') - (n -11/2(1'!1')e(BII2 Tr(VD(B,n» (9) 

I 

_ q28(l _ q6 + q8)a(AbB,n) + q4°a (AB,n) 

a(E,2) = q-4 + 2q-2 + 2 + 2q2 + q4. 
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The Goursat problem for Maxwell's equations 
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Using the spinor formalism of electromagnetism, the Goursat problem for Maxell's equations 
is defined and some examples of solutions are given. 

I. INTRODUCTION 

The Goursat problem I is a boundary value problem 
with data on the characteristics g = Z - x o, 1] = Z + X o 
(xo = et) of the I-D wave equation a; ¢ - a~, ¢ = O. Some 
authors speak of a boundary value problem of the first 
kind2

•
3 and of a characteristic initial value problem.4 

In a previous work,5 we pointed out how the Goursat 
problem may be generalized to the 3-D wave equation by 
considering the transverse variables x,y, as some parameters. 
Here, we consider the Goursat problem for Maxwell's equa
tions. 

Because the spinor formalism of electromagnetism is a 
powerful tool to discuss the Goursat problem, we start with a 
presentation of this formalism. We also define the electro
magnetic modal solutions of Maxwell's equations. 

II. SPINOR FORMALISM OF ELECTROMAGNETISM 

Let us consider the propagation of an electromagnetic 
wave in the z direction of a homogeneous medium. To sim
plify, we assume £ = I" = 1, where £,1" are, respectively, the 
electric permittivity and the magnetic permeability. We now 
introduce the complex vector: 

A = E + iH, i = ..r=T, (1) 

where E, H are the electric and magnetic fields. In fact, A is a 
self-dual tensor and there exists6 a well-known relationship 
between self-dual tensors and traceless spinors t/I,. of rank 
two (r,s = 1,2). One has 

Ax + iAy = ¢L 
Ax - iAy = t/li, . (2) 

A z = ¢: = - tfl2 
Moreover if t/I,. is a solution of the Proca equation 7 

(3) 

with 

at = az - aX" , a." = az + ax", 

a;; = ax + iay, a-;, = ax - iay, (3') 

then it is easy to prove that A is a solution of the Maxwell 
equations. 

Now let ¢ be a solution of the scalar wave equation: 

(ata.,,+a;;a-;,)¢=o, (4) 

then the solution of the Proca equation (3) is 

¢i =a(;a.,,¢, 

t/li = a-;,ad, (5) 

¢~ =asa.,,¢= -a;;a-;,¢, 

which supplies, through the relations (2), the solutions of 
the Maxwell equations in terms of the scalar field ¢. 

An interesting point to note is that Eq. (4) is just written 
in the form we previously used5 to obtain the modal solu
tions of the scalar wave equation. They are 

¢o = _1_ F(WU), !/fiJ.k,/ = a (;aj."a ~a~¢o (6a) 
1",.. 1",.. 

and 

I 1 ( 1",.. ) .1,\ i ' k I 1 ¢ =-F - , 'f'iJ.k,/ =ata~a;;a-;,¢. 
1",.. wu 

(6b) 

In these expressions, one has 

u= (a+g)(b +1]) + (e+;)(d +t), 

1"\ = a + g, 1"2 = b + 1], 1"3 = e +;, 1"4 = d + t, (7) 

a,b,e,d,w are some constants, Fis an arbitrary function with 
sufficient derivatives, a denotes a derivative and ij,k,l are 
non-negative numbers. The fields ¢o, ¢I are the fundamental 
modes, ¢?J.k.1 and ¢L.k,/ the higher-order modes. 

The relations (5) and (6) supply the modal solutions of 
the Maxwell equations: 

.11',1 .I,a 
'f'2 = 'f'iJ+ I,k + 1,1' 

.I,a,2 - .11' a 0 1 
'f'1 - 'f'i+IJ.k,!+I' =,. (8) 

t/ff,1 = ¢f+ IJ+ I,k,!' 
The best known of these modal solutions are the focus wave 
modes8

•
9 obtained with a = 0 when Fis an exponential func

tion and 1",.. = 1"1 (or 1"2)' 

Let us give another example. Starting with t/J0 = U - 1. 
We get from (8) for the fundamental mode: 

¢~ = (2/u3 )(a + g)(d + t), 
t/Ji = (2/u3 )(b + 1])(e +;), (9) 

¢: = (1/u3 )«b + 1])(a + g) - (e + ;)(d + t». 
It appears that in a homogeneous medium the Maxwell 
equations are very rich in modal solutions. 

III. THE GOURSAT PROBLEM 

For the homogeneous wave equation (4) the Goursat 
problem is defined5 by the boundary data: 
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( 10) 
with the compatibility condition, 

t/J(;,t,O,1/) = ffJI (;t,1/) , t/J(;,t,s,O) = ffJ2(;,t,sH 10') 

Similarly, we define the Goursat problem for the Proca 
equation (3) by the boundary data: 

with the compatibility conditions 

ffJ~(;,t,Q) = t1~(;,t,O), r,s = 1,2. (11') 

But here the boundary data must satisfy supplementary con
straints easy to find from (3): 

a'lffJ: + £%ffJ 1 = 0, £%ffJ: - a'lffJ i = 0, 

ast1: + att1i = 0, at t1: - ast11 = 0, 

leading to 

(12a) 

(12b) 

I a a I a 2 2 a 2 (13 ) ffJ I = '1 l;ffJ, ffJ 2 = - '1ffJ, ffJ I = l;ffJ, a 

t1:=asat t1, t1i=-a~t1, t11=a~t1, (13b) 

where ffJ is a function of ;, t, 1/, and t1 a function of ;, t, 5· 
To sum up, the Goursat problem for the Proca equation 

is characterized by the boundary data ( 11 ), ( 11') , and ( 13 ) . 
As an important result, the modal waves (8) satisfy 

these boundary conditions. Consequently, these waves are 
solutions of some Goursat problem. Let us prove this result 
for the fundamental mode t/J0 with 7'fL = 7'1' One has 

t/J0=_I_ F (v), V={i)(b +1/ (c+;)(d +t»), 
a+s a+s 

(14) 

then F', F" being the first and second derivatives of F with 
respect to v, we get from (8) and (14) 

t/JI = {i)2 (d + t) F" 
2 (a + 5)2 ' 

t/Ji = - 2{i) (c + ;) F' _ {i)2 (c + ;)2(d + t) F", (15) 
I (a + 5)3 (a + 5)4 

t/JI = - {i)F' _ {i)2 (c + ;)(d + t) F", 
I (a + 5)2 (a + 5)3 

and using the notations: 

v = (i)( b + 1/ + (c + ;) ~d + t) ) , 

D={i)(b + (c+;)(d +t»), 
a+s 

we deduce from (15) on 1/ = 0: 

t1 1 ={i)2 (d +t) F"(D) 
2 (a + 5)2 ' 

(16) 

t1 2 = _ 2{i) (c + ;) F'(D) (17a) 
1 (a + 5)3 

_{i)2 (c+;)2(d +t) F"(D), 
(a + 5)4 

t1: = -(i) F'(D) _ {i)2 (c+;)(d +t)F"(D), 
(a + 5)2 (a + 5)3 

andons=O 
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2 

ffJ1 =~(d +t)F"(v), 
a 

ffJi = - 2{i) (c+;)F'(v) 
a3 

(17b) 

2 

-.;- (c + ;)2(d + t)F" (v), 
a 

2 

ffJ: = - ~ F'(v) - -;- (c + ;)(d + t)F"(v). 
a a 

One sees at once that the compatibility conditions (11') are 
satisfied as well as the relations ( 13) with 

ffJ = [(d + t)la2]F(v), t1 = [lI(d + t) ]F(D). 
(18) 

Let us remark that in (17) we used the equalities: 

a.,F(v) = {aJ(v)t= ii' a.,F(v) = {aJ(v)t= v 
(19) 

and similar relations for the second derivatives. 
We discuss in the next section another class of Goursat 

problems where solutions are easy to find. 

IV. THE SEPARABLE GOURSAT PROBLEM 

The separable Goursat problem is defined by the bound
ary data: 

ffJ~ =/~(;,t)g',.(1/), t1~ =/~(;,t)h ~(s), r,s = 1,2, 
(20) 

with the compatibility conditions: 

g',.(O) = h ~(O), r,s = 1,2, 

while the relations (12) take the form: 

Ag1 = a'lg: , ,ug: = a'lgi 

ph i = ash:' O'h: = ash 1 
AI: = al;/1, ,u/i = a?;i: 

pi: = as/i, O'/~ = at/: 

(20') 

(21a) 

(21b) 

where A,,u, ;, 0' are some constants. From (21 b) we deduce 
AU = p,u while I~ satisfies the equation: 

(atal; + AO')/~ = 0, r,s = 1,2, (22) 

which was the elementary solutions: 

1= ei().l; + at), I = Jo(~AO';t ), (22') 

where Jo is the Bessel function of the first kind of order zero. 
Taking (21a) into account, the conditions (20') be

come: 

pO'gi (0) - ash ~ (0) = 0, O'a'lgi (0) - ,uah ~ (0) = 0, 

,uAh ~ (0) - a ~gi (0) = O. (23) 

We now discuss some particular separable Goursat 
problems starting with the case where g: (1/) = h : (5) = 1. 
According to (21) this implies: 

g: = h i = 0, gi = ,u1/, h ~ = 0'5, 
Ii = (1/,u)a;;/:' I~ = (1/O')at/:' 

so that the boundary conditions become 

Pierre Hillion 
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qJ 1 = 0, t'l1 = sa{;/L 
qJ i = TJat;/L t'l i = 0, (25) 

qJ: =/1. t'l: =/1. 

where/: is a solution ofEq. (22). 
To solve this Goursat problem one has just to remark 

that tP: satisfies the wave equation (4). Consequently, it is 
enough to look for the solution ofEq. (4) with the boundary 
conditions: 

(26) 

The obvious solutions for the elementary functions (22') are 

tP: = Io(kgij)Jo(k/ff), 2 (27a) 
_ k = ACT, tP: =Io(kgij)ei(A{;+a{;), (27b) 

where 10 is the modified Bessel function of the first kind of 
order zero. 

Now according to (5) one has tP: = aSa7J tP so that we 
get from (27) and from the well-known properties of the 
Bessel functions tP = 4k -2tP:. Substituting this last result 
into (5) gives the solutions in terms of the Bessel functions: 

I (st)l12 -tP2 = - TJ~ II (kgij)JI(k/ff), 

( 
TJ~)I12 . -tPi = - st II (kgij)JI(k/ff), 

tP: = Io(kgij)Jo(k/ff)' 

tP1 = 2i (;~) II (k gij )ei(At; + ap , 

tPi = 2i (~;) II (k gij)ei(At; + a{;), 

tP: = Io(kgij)ei(At; +a{;);. 

(28a) 

(28b) 

The expressions (28) are the solutions of the Goursat prob
lem (25) for the Proca equation (3) when/: isanelemen
tary function (22'). 

Let us now assume that/: is a function with the Fourier 
expansion: 

I: (~,t) = L cAaei(At; + a{;) (29a) 
A,a 

or with the Fourier-Bessel expansion:lO 
00 I: (r) = L amJo(kjm r), y2 = ~t, (29b) 

m= 1 

wherejo,jl,j2OO' are the positive zeros of Jo arranged in as
cending order of amplitude. Then the solutions tP: ofEq. (4) 
become for these boundary conditions I: : 

tP: = L cAaIo(kgij)ei(At; +ap , (30a) 
Aa 
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00 

tP: = L amIo(kjmgij)Jo(kjm r ). (30b) 
m=l 

As was obtained previously from the third relation (5) we 
get 

tP = 4 L cAa Io(kgij)ei(At; + a{;), (3Ia) 
A,a ACT 

tP = k42 f ~2m Io(kjmgij)Jo(kjm r ), (3Ib) 
m~ 11m 

Substituting (31 ) into (5) supplies the solution of the Gour
sat problem provided that all the series converge: 

and 

tP1 = 2i .Jf ~ C Aa .Jf II (k gij) ei(At; + a{;), 

tPi =2i.J'f ~CAa~II(kgij)ei(At;+a{;), (32a) 

tP: = LCAaIo(kgij)ei(At;+a{;), 
Aa 

tP1 = - ri[ f amII(kjmgij)JI(kjmr), 'i -;jf m~ I 
tPi = - r;;{ f amII (kjmgij)JI (kjm r ), (32b) 'i 7f m~1 
tP: = f am1o(kjmgij)Jo(kjm r ). 

m=l 

As a second example of separable Goursat problem, let us 
consider the case A = Jl which impliesp = CTand from (2Ia) 
and (23): 

I I ..2 -A7J h I h I h 2 as gl=g2=51=e, 1= 2= I=e, (33) 

leading to the boundary conditions: 

qJ1 = (lIA)~7Jar;l:, t'l1 = (lICT)easa{;/:, 

qJi = (1/A)~7Jat;/:, t'li = (lICT)eaSat;/:, (34) 

qJ: = ~'1L t'l: = ea~L 

where I: is still a solution of Eq. (22). For the elementary 
solution I: = ei(At; + a{;) the boundary conditions (34) re
duce to 

qJ: = iqJ1 = - iqJ1 = ~7Jei(A7; +a{;), 

t'l: = - it'l1 = - it'l i = easei(At; + a{;), 
(35) 

and the solution of the Goursat problem is obtained at once: 

tP: = - itP1 = - itPi = e(A7J + as) ei(At; + a{;). (36) 

For the other elementary solutions (22'), the boundary data 
become 

(37) 
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Proceeding as we did previously, we find as a solution of the 
Goursat problem 

¢i = - ~ .J1I- e().7J+uS)J!(~Aut;), 

ifli = - ~ .J1f e().7J+uS)J!(~Aut;), (38) 

¢: = e()·7J+aS)Jo(~A(J'(;;). 

One notes at once the similarity of (38) and (28b) which 
comes from the invariance of Eq. (4) under the transforma
tions (t,1J)+-+(t,;) and t+-+1J, t+-+;· 

As shown previously, iff: is given by (29a) or (29b), 
one may use similar expansions to (32a) and (32b) with the 
expressions (36) and (38) taking the place of (28a) and 
(28b). 

As a final example of a separable Goursat problem, let 
us remark that relations (13) suggest to consider boundary 
conditions with functions rp, 1J, such as 

rp = f(A;)g(A 1J - t), 1J = - f(t + A;)g( - t)· 
(39) 

Denotingf' ,J II and g', gil the first and second deri vati ves off, 
g with respect to the variables t + A; and A 1J - t, respec
tively, relations (13) become 

rp: =A 2f'(A;)g'(A1J-t), 

rp i = A 'l" (A;)g(A1J - t), (40a) 

rp i = - A 2f(A;)g" (A 1J - t), 

1J: = A 2f'(t + A;)g'( - t), 

1J i = A 2/" (t + A;)g( - t), (40b) 

1J i = - A 2f(t + A;)g" ( - t)· 

The compatability conditions (11') are fulfilled and using 
the same technique as previously we get as a solution of this 
Goursat problem: 

3088 

¢i = - A 'l(t + A;)g" (A1J - t), 

ifli = A 2/" (t + A;)g(A1J - t), 

¢: = A 2f'(t + A;)g'(A1J - t)· 
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(41) 

With ( 41 ), one may obtain easily the solution of the Goursat 
problem when rp and 1J have the expansions: 

rp = I C;./(A;)g(A1J - t), 1J = I c;./(t + A;)g( - t)· 
). ). 

(42) 

v. CONCLUSIONS 

This work proves that the spinor formalism of electro
magnetism together with the Proca equation is a powerful 
tool to solve the Goursat problem for Maxwell's equations. 
Here, we only defined the Goursat problem giving some ex
amples of solutions in the class of modal waves or for separa
ble problems. But we left untouched some important math
ematical questions such as conditions for the existence and 
uniqueness of solutions as well as the quest for (numerical?) 
methods to solve this problem. Clearly, further work is need
ed. 

One also has from a physical point of view to discuss the 
meaning of the Goursat problem that could appear as some 
relativistic generalization of the Huyghens principle stating 
that the sources may be replaced by boundary conditions on 
the characteristics. Such a situation emerges naturally from 
the relativistic front form of electromagnetism initiated by 
Dirac!! many years ago. Hopefully, one expects that some 
solutions discussed in this work will be useful for the later 
developments of this theory. 
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